SIEMENS

SIEMENS

Description 2
SINAMICSMounting3
SINAMICS G120X
SINAMICS G120X converter
Operating Instructions
Wiring 4
Commissioning 5
Upload of the converter 6
settings
7
Protecting the converter settings
Advanced commissioning 8
Parameters 9
Warnings, faults and system messages 10
Corrective maintenance 11
Technical data 12
Appendix A
Edition 06/2021, firmware V1.04

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.
WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ${ }^{\circledR}$ are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1 Fundamental safety instructions 15
1.1 General safety instructions 15
1.2 Equipment damage due to electric fields or electrostatic discharge 21
1.3 Warranty and liability for application examples 22
1.4 Security information 23
1.5 Residual risks of power drive systems 24
2 Description 25
2.1 About the Manual 25
2.2 About the converter 26
2.2.1 Intended use 26
2.2.2 OpenSSL 26
2.2.3 Transferring OpenOSS license terms to a PC. 27
$2.3 \quad$ Scope of delivery 28
2.4 Directives and standards 32
2.5 Device disposal 34
2.6 Optional components 35
2.6.1 External RFI or EMI line filter 35
2.6.2 Line reactor 36
2.6.3 Line harmonics filter 38
2.6.4 Output reactor 40
2.6.5 Sine-wave filter 41
2.6.6 dv/dt filter plus VPL 43
2.6.7 Push-through mounting kit 55
2.6.8 Mounting grips for push-through mounted converters 58
2.6.9 IP21 top cover 58
2.6.10 Mounting kit for line-side cable connection, left (FSH only) 60
2.6.11 I/O Extension Module 60
2.6.12 Operator panel 65
2.6.13 SINAMICS G120 Smart Access 65
2.6.14 Memory card 66
2.6.15 SINAMICS FSG Adapter Set 66
2.7 Motors and multi-motor drives that can be operated 70
3 Mounting 73
3.1 Installing the label for the North American market 73
3.2 Power losses and air cooling requirements 74
3.3 Mounting the converter 76
3.3.1 Basic installation rules. 76
3.3.2 Dimension drawings and drill patterns 78
3.3.2.1 Mounting the converter on the mounting panel 79
3.3.2.2 Mounting the converter utilizing push-through technology (FSA to FSG only) 81
3.3.3 Mounting the shield connection kits 84
3.3.4 Additional mounting instructions for FSD ... FSJ 87
3.3.4.1 Additional mounting instructions, FSD ... FSG 87
3.3.4.2 Additional mounting instructions, FSH/FSJ 90
3.3.5 Mounting the optional components 91
4 Wiring 93
4.1 Line supply and motor 93
4.1.1 EMC-compliant setup of the machine or plant 93
4.1.1.1 Control cabinet 94
4.1.1.2 Cables 96
4.1.1.3 Electromechanical components 98
4.1.2 Permissible line supplies 99
4.1.2.1 TN system 99
4.1.2.2 TT system 100
4.1.2.3 IT system 102
4.1.2.4 Removing functional grounding of the converter 102
4.1.3 Requirements for the protective conductor 104
4.1.4 Operation with residual current protective device (RCD) 106
4.1.5 Maximum permissible motor cable length 108
4.1.6 Connecting the converter and converter components 113
4.1.6.1 Connection overview 114
4.1.6.2 Connnecting converters 116
4.1.6.3 Cable cross-sections and screw tightening torques 121
4.1.6.4 Cable lug 124
4.1.6.5 Connecting the cable shields (FSA ... FSG only) 124
4.1.7 Connecting the motor to the converter in a star or delta connection 127
4.2 Control interfaces 128
4.2.1 Overview of the interfaces 128
4.2.2 Terminal strips 129
4.2.3 Terminals strips of I/O Extension Module 131
4.2.4 Factory interface settings 132
4.2.5 Default setting of the interfaces (macros) 133
4.2.5.1 Overview 133
4.2.5.2 Default setting (macro) 41: "Analog control" 136
4.2.5.3 Default setting (macro) 42: "PID controller with analog control" 138
4.2.5.4 Default setting (macro) 43: "2 pumps with analog control" 140
4.2.5.5 Default setting (macro) 44: "3 pumps with analog setpoint" 142
4.2.5.6 Default setting (macro) 45: "Fixed setpoint control" 144
4.2.5.7 Default setting (macro) 46: "Al control local/remote" 146
4.2.5.8 Default setting (macro) 47: "PID controller with internal fixed setpoint" 148
4.2.5.9 Default setting (macro) 48: "2 pumps and internal fixed setpoint" 150
4.2.5.10 Default setting (macro) 49: "3 pumps and internal fixed setpoint" 152
4.2.5.11 Default setting (macro) 51: "Modbus RTU control" 154
4.2.5.12 Default setting (macro) 52: "Modbus RTU control local/remote" 156
4.2.5.13 Default setting (macro) 54: "USS control" 158
4.2.5.14 Default setting (macro) 55: "USS control local/remote". 160
4.2.5.15 Default setting (macro) 57: "PROFINET control"...... 162
4.2.5.16 Default setting (macro) 58: "MOP control" 164
4.2.5.17 Default setting (macro) 59: "Blank I/O" 165
4.2.6 Additional digital inputs and digital outputs on converters FSH and FSJ. 166
4.2.7 "Safe Torque Off" safety function 168
4.2.8 Application examples for "Safe Torque Off" 173
4.2.9 Wiring the terminal strips 180
4.2.10 Fieldbus 182
4.2.11 Connecting to PROFINET and Ethernet 182
4.2.11.1 Communication via PROFINET IO and Ethernet 182
4.2.11.2 Protocols used 184
4.2.11.3 Connecting the PROFINET cable to the converter 186
4.2.11.4 What do you have to set for communication via PROFINET? 186
4.2.11.5 Installing GSDML 187
4.2.11.6 Connect converter to EtherNet/IP 187
4.2.11.7 What do you need for communication via EtherNet/IP? 188
4.2.12 Connecting to Modbus RTU, USS or BACnet MS/TP 188
4.2.13 Connecting to PROFIBUS 189
4.2.13.1 Connecting the PROFIBUS cable to the converter 189
4.2.13.2 What do you have to set for communication via PROFIBUS? 190
4.2.13.3 Installing the GSD 191
5 Commissioning 193
5.1 Commissioning guidelines 193
5.2 Tools 194
5.3 Preparing for commissioning 195
5.3.1 Collecting motor data 195
5.3.2 Precharing the circuit (FSH/FSJ only) 197
5.3.3 Forming DC link capacitors 198
5.3.4 Converter factory setting. 200
5.4 Quick commissioning using the BOP-2 operator panel 203
5.4.1 Fitting the BOP-2 to the converter 203
5.4.2 Overview 204
5.4.3 Starting quick commissioning 205
5.4.4 Selecting an application class 205
5.4.5 Standard Drive Control 207
5.4.6 Dynamic Drive Control 209
5.4.7 Expert 212
5.4.8 Identifying the motor data and optimizing the closed-loop control 217
5.5 Restoring the factory settings 219
5.6 Series commissioning 220
5.7 Handling the BOP-2 operator panel 221
5.7.1 Switching the motor on and off 222
5.7.2 Changing parameter values 223
5.7.3 Changing indexed parameters 224
5.7.4 Entering the parameter number directly 225
5.7.5 Entering the parameter value directly 226
5.7.6 Why can a parameter value not be changed? 227
6 Upload of the converter settings 229
6.1 Memory card upload 230
6.1.1 Automatic upload 230
6.1.2 Manual upload with BOP-2 231
6.1.3 Message for a memory card that is not inserted 232
6.1.4 Safely removing a memory card using the BOP-2 233
6.2 Uploading to the BOP-2 234
6.3 More options for the upload 235
7 Protecting the converter settings 237
7.1 Write protection 237
7.2 Know-how protection 239
7.2.1 Extending the exception list for know-how protection 242
7.2.2 Activating and deactivating know-how protection 243
8 Advanced commissioning 245
8.1 Overview of the converter functions 245
8.2 Brief description of the parameters 247
8.3 Drive control 248
8.3.1 Switching the motor on and off 248
8.3.1.1 Sequence control when switching the motor on and off..... 248
8.3.1.2 Selecting the ON/OFF functions 250
8.3.1.3 Function diagram 2610 - Sequence control-sequencer 252
8.3.2 Adapt the default setting of the terminal strips 253
8.3.2.1 Digital inputs 254
8.3.2.2 Analog input as digital input 255
8.3.2.3 Digital outputs 256
8.3.2.4 Analog inputs 258
8.3.2.5 Adjusting characteristics for analog input 260
8.3.2.6 Setting the deadband 261
8.3.2.7 Analog outputs 262
8.3.2.8 Adjusting characteristics for analog output. 263
8.3.2.9 Function diagram 2221 - Digital inputs 265
8.3.2.10 Function diagram 2256 - Analog inputs as digital inputs 266
8.3.2.11 Function diagram 2244 - Digital outputs 267
8.3.2.12 Function diagram 2251 - Analog inputs 0 and 1 268
8.3.2.13 Function diagram 2252 - Analog input 2 269
8.3.2.14 Function diagram 2270 - Analog input 3 270
8.3.2.15 Function diagram 2261 - Analog outputs 271
8.3.3 Drive control via PROFINET or PROFIBUS 272
8.3.3.1 Setting the address 272
8.3.3.2 Receive data and send data 272
8.3.3.3 Telegrams 273
8.3.3.4 Parameter channel 279
8.3.3.5 Expanding or freely interconnecting telegrams 284
8.3.3.6 Acyclically reading and writing converter parameters. 286
8.3.3.7 Reading and changing parameters via data set 47 287
8.3.3.8 Slave-to-slave communication 292
8.3.4 EtherNet/IP 292
8.3.4.1 Configuring communication 292
8.3.4.2 Supported objects 294
8.3.4.3 Create generic I/O module 308
8.3.4.4 The converter as Ethernet node 309
8.3.5 Function diagrams for PROFINET, PROFIBUS and EtherNet/IP 310
8.3.5.1 Overview 310
8.3.5.2 Function diagram 2401 - Overview 311
8.3.5.3 Function diagram 2410 - Addresses and diagnostics 312
8.3.5.4 Function diagram 2420 - Telegrams and process data 313
8.3.5.5 Function diagram 2440 - PZD receive signals interconnection 314
8.3.5.6 Function diagram 2441 - STW1 control word interconnection VK-NAMUR 315
8.3.5.7 Function diagram 2442 - STW1 control word interconnection SINAMICS 316
8.3.5.8 Function diagrams 2446 - STW3 control word interconnection. 317
8.3.5.9 Function diagram 2450 - PZD send signals interconnection 318
8.3.5.10 Function diagram 2451 - ZSW1 status word interconnection VIK-NAMUR 319
8.3.5.11 Function diagram 2452 - ZSW1 status word interconnection SINAMICS 320
8.3.5.12 Function diagram 2456 - ZSW3 status word interconnection 321
8.3.5.13 Function diagram 2468 - Receive telegram free interconnection 322
8.3.5.14 Function diagram 2470 - Send telegram free interconnection 323
8.3.5.15 Function diagram 2472 - Status word free interconnection 324
8.3.5.16 Function diagram 2473 - Control word and status word interconnection 325
8.3.6 Modbus RTU 326
8.3.6.1 Activating communication via fieldbus 326
8.3.6.2 Setting the address 327
8.3.6.3 Parameters for setting communication via Modbus RTU 327
8.3.6.4 Modbus RTU telegram 330
8.3.6.5 Baud rates and mapping tables 331
8.3.6.6 Mapping tables - converter data 333
8.3.6.7 Acyclic communication via Modbus RTU 336
8.3.6.8 Write and read access using function codes 337
8.3.6.9 Reading and writing parameters acyclically via FC 16 339
8.3.6.10 Communication procedure 342
8.3.6.11 Application example 343
8.3.7 USS 344
8.3.7.1 Activating communication via fieldbus 344
8.3.7.2 Setting the address 345
8.3.7.3 Telegram structure 345
8.3.7.4 Specify user data of telegram 346
8.3.7.5 USS process data channel (PZD) 347
8.3.7.6 Telegram monitoring 350
8.3.7.7 USS parameter channel 351
8.3.8 BACnet MS/TP 357
8.3.8.1 BACnet properties 357
8.3.8.2 Activating communication via fieldbus 358
8.3.8.3 Setting the address 359
8.3.8.4 Setting communication via BACnet 360
8.3.8.5 Supported services and objects 361
8.3.8.6 Acyclic communication (general parameter access) via BACnet 371
8.3.9 Function diagrams for USS, Modbus and BACnet. 372
8.3.9.1 Overview 372
8.3.9.2 Function diagram 9310 - Configuration, addresses and diagnostics 373
8.3.9.3 Function diagram 9342 - Control word 374
8.3.9.4 Function diagram 9352 - Status word 375
8.3.9.5 Function diagram 9360 - Receive telegram 376
8.3.9.6 Function diagram 9370 - Send telegram 377
8.3.9.7 Function diagram 9372 - Status word free interconnection 378
8.3.10 Jogging 379
8.3.11 Switching over the drive control (command data set) 381
8.3.12 Selecting physical units 383
8.3.12.1 Motor standard 383
8.3.12.2 Unit system 383
8.3.12.3 Technological unit of the technology controller 385
8.3.13 Safe Torque Off (STO) safety function 386
8.3.13.1 Safe Torque Off (STO) safety function 386
8.3.13.2 Setting the feedback signal for Safe Torque Off 388
8.3.14 Free function blocks 389
8.3.14.1 Overview 389
8.3.14.2 Runtime groups and run sequence 390
8.3.14.3 List of free function blocks 391
8.3.14.4 Activating free function blocks 398
8.3.14.5 Function diagram 7200 - Sampling times of the runtime groups 400
8.3.14.6 Function diagram 7210 - Logic block AND 401
8.3.14.7 Function diagram 7212 - Logic block OR 402
8.3.14.8 Function diagram 7214 - Logic block EXCLUSIVE OR 403
8.3.14.9 Function diagram 7216 - Logic block INVERTER. 404
8.3.14.10 Function diagram 7220 - Arithmetic blocks ADDER and SUBTRACTOR 405
8.3.14.11 Function diagram 7222 - Arithmetic blocks MULTIPLIER and DIVIDER 406
8.3.14.12 Function diagram 7225 - Arithmetic block COMPARATOR 407
8.3.14.13 Function diagram 7230 - Timer block PULSE GENERATOR 408
8.3.14.14 Function diagram 7232 - Timer blocks SWITCH-ON DELAY 409
8.3.14.15 Function diagram 7233 - Timer blocks SWITCH-OFF DELAY 410
8.3.14.16 Function diagram 7240 - Memory block RS flip-flop 411
8.3.14.17 Function diagram 7250 - Switch block NUMERICAL SWITCHOVER 412
8.3.14.18 Function diagram 7260 - Control block LIMITER 413
8.3.14.19 Function diagram 7270 - Block LIMIT MONITOR 414
8.3.15 Controlling clockwise and counter-clockwise rotation via digital inputs 415
8.3.15.1 Two-wire control, On/reverse 415
8.3.15.2 Two-wire control, clockwise/counter-clockwise rotation 1 416
8.3.15.3 Two-wire control, clockwise/counter-clockwise rotation 2 418
8.3.15.4 Three-wire control, enable/clockwise/counter-clockwise rotation. 419
8.3.15.5 Three-wire control, enable/ON/reverse 421
8.3.15.6 Function block diagram 2272 - Two-wire control 423
8.3.15.7 Function block diagram 2273 - Three-wire control 424
8.4 Pump control 425
8.4.1 Multi-pump control 425
8.4.1.1 Pump switch-in/switch-out 428
8.4.1.2 Stop mode 432
8.4.1.3 Pump switchover 435
8.4.1.4 Service mode 437
8.4.2 Frost protection 440
8.4.3 Condensation protection 442
8.4.4 Cavitation protection 444
8.4.5 Deragging 446
8.4.6 Pipe filling 448
8.5 Setpoints and setpoint processing 450
8.5.1 Setpoints 450
8.5.1.1 Analog input as setpoint source 452
8.5.1.2 Specifying the setpoint via the fieldbus 453
8.5.1.3 Motorized potentiometer as setpoint source 454
8.5.1.4 Fixed speed setpoint as setpoint source 456
8.5.1.5 Function diagram 3001 - Overview setpoint channel 459
8.5.1. 6 Function diagram 3010 - Fixed speed setpoints binary selection 460
8.5.1.7 Function diagram 3011 - Fixed speed setpoints direct selection 461
8.5.1.8 Function diagram 3020 - Motorized potentiometer 462
8.5.1.9 Function diagram 3030 - Setpoint scaling, jogging 463
8.5.2 Setpoint processing 464
8.5.2.1 Overview 464
8.5.2.2 Invert setpoint 465
8.5.2.3 Enable direction of rotation 466
8.5.2.4 Skip frequency bands and minimum speed 467
8.5.2.5 Speed limitation 469
8.5.2.6 Ramp-function generator 470
8.5.2.7 Dual ramp function 472
8.5.2.8 Function diagram 3040 - Direction limitation and direction reversal 474
8.5.2.9 Function diagram 3050 - Skip frequency bands 475
8.5.2.10 Function diagram 3070 - Extended ramp-function generator 476
8.5.2.11 Function diagram 3080 - Ramp-function generator status word 477
8.6 Technology controller 478
8.6.1 PID technology controller 478
8.6.1.1 Autotuning the PID technology controller 485
8.6.1.2 Function diagram 7950 - Technology controller fixed setpoints binary selection 488
8.6.1.3 Function diagram 7951 - Technology controller fixed setpoints direct selection 489
8.6.1.4 Function diagram 7954 - Technology controller motorized potentiometer 490
8.6.1.5 Function diagram 7958 - Technology controller closed-loop control 491
8.6.1.6 Function diagram 7959 - Technology controller Kp/Tn adaptation 492
8.6.2 Free technology controllers 493
8.6.3 Cascade control 494
8.6.4 Real time clock (RTC) 499
8.6.5 Time switch (DTC) 501
8.6.6 Function diagram 7030 - Technology functions, free technology controller 502
8.6.7 Function diagram 7036 - Technology functions, free technology controller 503
8.7 Motor control 504
8.7.1 Reactor, filter and cable resistance at the converter output 504
8.7.2 Setting the saturation characteristic of the permanent magnet synchronous motor (third- party motor) 505
8.7.3 V/f control. 507
8.7.3.1 U/f control 507
8.7.3.2 Optimizing motor starting 510
8.7.3.3 U/f control with Standard Drive Control application class 512
8.7.3.4 Optimizing motor starting using Standard Drive Control 514
8.7.3.5 Function diagram 6300 - U/f control, overview 516
8.7.3.6 Function diagram 6301 - U/f control, characteristic and voltage boost. 517
8.7.3.7 Function diagram 6310 - U/f control, resonance damping and slip compensation 518
8.7.3.8 Function diagram 6320 - U/f control, Vdc_max and Vdc_min controllers 519
8.7.3.9 Function diagram 6850 - Standard Drive Control, overview 520
8.7.3.10 Function diagram 6851 - Standard Drive Control, characteristic and voltage boost 521
8.7.3.11 Function diagram 6853 - Standard Drive Control, resonance damping and slip compensation 522
8.7.3.12 Function diagram 6854 - Standard Drive Control, Vdc_max and Vdc_min controllers 524
8.7.3.13 Function diagram 6855 - Standard Drive Control, DC quantity control 525
8.7.3.14 Function diagram 6856 - Standard Drive Control, interface to the Power Module 526
8.7.4 Encoderless vector control 527
8.7.4.1 Structure of vector control without encoder (sensorless) 527
8.7.4.2 Optimizing the speed controller 528
8.7.4.3 Optimizing operation of the permanent magnet synchronous motor 531
8.7.4.4 Function diagram 6020 - Vector control, overview 533
8.7.4.5 Function diagram 6030 - Vector control, speed setpoint 534
8.7.4.6 Function diagram 6031 - Vector control, acceleration model 535
8.7.4.7 Function diagram 6040 - Vector control, speed controller 536
8.7.4.8 Function diagram 6050 - Vector control, Kp and Tn adaptation 537
8.7.4.9 Function diagram 6060 - Vector control, torque setpoint 538
8.7.4.10 Function diagram 6220 - Vector control, Vdc_max and Vdc_min controllers 539
8.7.4.11 Function diagram 6490 - Vector control, closed-loop speed control configuration. 540
8.7.4.12 Function diagram 6491 - Vector control, flux control configuration 541
8.7.4.13 Function diagram 6630 - Vector control, upper and lower torque limits 542
8.7.4.14 Function diagram 6640 - Vector control, current/power/torque limits 543
8.7.4.15 Function diagram 6700 - Vector control, closed-loop current control overview 544
8.7.4.16 Function diagram 6710 - Vector control, current setpoint filter 545
8.7.4.17 Function diagram 6714 - Vector control, Iq and Id controllers 546
8.7.4.18 Function diagram 6721 - Vector control, Id setpoint 547
8.7.4.19 Function diagram 6722 - Vector control, field weakening characteristic flux setpoint 548
8.7.4.20 Function diagram 6723 - Vector control, field weakening controller flux controller 549
8.7.4.21 Function diagram 6724 - Vector control, field weakening controller 550
8.7.4.22 Function diagram 6730 - Vector control, interface to the induction motor 551
8.7.4.23 Function diagram 6731 - Vector control, interface to the synchronous motor 552
8.7.4.24 Function diagram 6790 - Vector control, flux setpoint reluctance motor 553
8.7.4.25 Function diagram 6791 - Vector control, Id setpoint reluctance motor 554
8.7.4.26 Function diagram 6792 - Vector control, interface to the reluctance motor 555
8.7.4.27 Function diagram 6797 - Vector control, closed-loop DC quantity control 556
8.7.4.28 Function diagram 6799 - Vector control, display signals 557
8.7.4.29 Function diagram 6820 - Dynamic Drive Control, overview 558
8.7.4.30 Function diagram 6821 - Dynamic Drive Control, closed-loop current control 559
8.7.4.31 Function diagram 6822 - Dynamic Drive Control, acceleration model 560
8.7.4.32 Function diagram 6824 - Dynamic Drive Control, speed controller 561
8.7.4.33 Function diagram 6826 - Dynamic Drive Control, torque setpoint 562
8.7.4.34 Function diagram 6827 - Dynamic Drive Control, Vdc_max and Vdc_min controller 563
8.7.4.35 Function diagram 6828 - Dynamic Drive Control, current/power/torque limits 564
8.7.4.36 Function diagram 6832 - Dynamic Drive Control, current setpoint filter 565
8.7.4.37 Function diagram 6833 - Dynamic Drive Control, Iq and Id controllers 566
8.7.4.38 Function diagram 6834 - Dynamic Drive Control, flux setpoint 567
8.7.4.39 Function diagram 6835 - Dynamic Drive Control, Id setpoint reluctance motor 568
8.7.4.40 Function diagram 6836 - Dynamic Drive Control, Id setpoint synchronous motor 569
8.7.4.41 Function diagram 6837 - Dynamic Drive Control, field weakening characteristic 570
8.7.4.42 Function diagram 6838 - Dynamic Drive Control, field weakening controller induction motor 571
8.7.4.43 Function diagram 6839 - Dynamic Drive Control, field weakening controller synchronous motor 573
8.7.4.44 Function diagram 6841 - Dynamic Drive Control, interface to the induction motor 575
8.7.4.45 Function diagram 6842 - Dynamic Drive Control, interface to the synchronous motor 576
8.7.4.46 Function diagram 6843 - Dynamic Drive Control, interface to the reluctance motor 577
8.7.4.47 Function diagram 6844 - Dynamic Drive Control, DC quantity control 578
8.7.5 Electrically braking the motor. 579
8.7.5.1 DC braking 580
8.7.5.2 Compound braking 583
8.7.5.3 Function diagram 7017 - Technology functions, DC braking 585
8.7.6 Pulse frequency wobbling 586
8.7.7 Pole position identification 586
8.8 Drive protection 588
8.8.1 Overcurrent protection 588
8.8.2 Converter protection using temperature monitoring 589
8.8.3 Motor protection with temperature sensor 592
8.8.4 Motor protection by calculating the temperature 595
8.8.5 How do I achieve a motor overload protection in accordance with IEC/UL 61800-5-1? 596
8.8.6 Motor and converter protection by limiting the voltage 598
8.8.7 Function diagram 6220 - Vector control, Vdc_max and Vdc_min controllers 600
8.8.8 Function diagram 6320 - U/f control, Vdc_max and Vdc_min controllers 601
8.8.9 Function diagram 6854 - Standard Drive Control, Vdc_max and Vdc_min controllers 602
8.8.10 Function diagram 8017 - motor temperature model 1 604
8.8.11 Function diagram 8018 - motor temperature model 2 605
8.9 Monitoring the driven load 606
8.9.1 Stall protection 607
8.9.2 No-load monitoring 607
8.9.3 Blocking protection 608
8.9.4 Torque monitoring 609
8.9.5 Blocking protection, leakage protection and dry-running protection 611
8.9.6 Rotation monitoring 614
8.9.7 Function diagram 8005 - Monitoring, overview 615
8.9.8 Function diagram 8010 - Monitoring, speed signals $1 / 2$ 616
8.9.9 Function diagram 8011 - Monitoring, speed signals $2 / 2$ 617
8.9.10 Function diagram 8012 - Monitoring, motor blocked 618
8.9.11 Function diagram 8013 - Monitoring, load monitoring $1 / 2$ 619
8.9.12 Function diagram 8014 - Monitoring, load monitoring $2 / 2$ 620
8.10 Drive availability 621
8.10.1 Flying restart - switching on while the motor is running 621
8.10.2 Automatic restart 623
8.10.3 Kinetic buffering (Vdc min control) 626
8.10.4 Essential service mode 627
8.10.5 Function diagram 7033 - Technology functions, essential service mode 631
8.11 Energy saving 632
8.11.1 Efficiency optimization 632
8.11.2 ECO mode 635
8.11.3 Bypass 637
8.11.4 Hibernation mode 641
8.11.5 Line contactor control 645
8.11.6 Calculating the energy saving for fluid flow machines 647
8.11.7 Flow meter 649
8.11.8 PROFIenergy 650
8.11.8.1 Control commands 651
8.11.8.2 Status queries 652
8.11.8.3 Error values and measured values 652
8.11.9 Function diagram 7035 - Technology functions, bypass 654
8.11.10 Function diagram 7038 - Technology functions, hibernation mode 655
8.12 Switchover between different settings 656
8.13 Explanations of the function diagrams 658
8.13.1 Symbols in the function diagrams 658
8.13.2 Interconnecting signals in the converter 660
9 Parameters 663
9.1 Explanation of the detailed parameter list 663
9.2 Parameter list 666
9.3 ASCII table 1176
10 Warnings, faults and system messages 1179
10.1 Operating states indicated via LEDs 1180
10.2 System runtime 1183
10.3 Identification \& maintenance data (I\&M) 1184
10.4 Alarms, alarm buffer, and alarm history 1185
10.5 Faults, alarm buffer and alarm history 1188
10.6 List of fault codes and alarm codes 1191
10.6.1 Overview of faults and alarms 1191
10.6.2 Fault codes and alarm codes 1191
11 Corrective maintenance 1273
11.1 Replacing the converter 1274
11.1.1 Replacing the converter hardware 1274
11.1.2 Download of the converter settings 1276
11.1.2.1 Automatic download from the memory card 1276
11.1.2.2 Manual downloading from the memory card with the BOP-2 1276
11.1.2.3 Download from BOP-2 operator panel 1277
11.1.2.4 Download from IOP-2 operator panel 1279
11.1.2.5 Download from Smart Access 1280
11.1.2.6 Download with active know-how protection with copy protection 1282
11.2 Replacing spare parts 1285
11.2.1 Spare parts compatibility 1285
11.2.2 Spare parts overview 1285
11.2.3 Replacing the Control Unit 1287
11.2.4 Fan units 1288
11.2.4.1 Replacing the fan unit, FSA ... FSC 1289
11.2.4.2 Replacing the fan unit, FSD ... FSG 1290
11.2.4.3 Replacing the fan unit, FSH/FSJ 1291
11.2.4.4 Replacing the internal fan, FSH/FSJ only 1292
11.2.5 Assemblies for FSH and FSJ 1295
11.2.5.1 Replacing the power supply board 1295
11.2.5.2 Replacing the free programmable interface (FPI) 1298
11.2.5.3 Replacing the current sensor 1301
11.3 Firmware upgrade and downgrade 1305
11.3.1 Preparing the memory card 1306
11.3.2 Upgrading the firmware 1307
11.3.3 Firmware downgrade 1309
11.3.4 Correcting an unsuccessful firmware upgrade or downgrade 1311
11.4 Reduced acceptance test after component replacement and firmware change 1312
12 Technical data 1313
12.1 Technical data of inputs and outputs 1313
12.2 Load cycles and overload capability 1316
12.3 General converter technical data 1318
12.4 Technical data dependent on the power 1321
12.5 1 AC input supply for the unfiltered 200 V and 400 V converters 1332
12.6 Current rating for DC terminals 1337
12.7 Derating data 1338
12.7.1 Current derating as a function of the installation altitude. 1338
12.7.2 Current derating as a function of the ambient temperature 1339
12.7.3 Current derating as a function of the line voltage 1340
12.7.4 Current derating as a function of the pulse frequency 1342
12.8 Low frequency performance 1345
12.9 Data regarding the power loss in partial load operation 1347
12.10 Electromagnetic compability of the converter 1348
12.10.1 Overview 1348
12.10.2 Operation in the Second EMC environment 1349
12.10.2.1 High-frequency interference emissions EMC category C3 1349
12.10.2.2 High-frequency interference emissions EMC category C2 1350
12.10.2.3 Current harmonics 1350
12.10.3 Operation in the First EMC environment 1351
12.10.3.1 General information 1351
12.10.3.2 High-frequency, conducted and radiated interference emissions, EMC category C2 1351
12.10.3.3 High-frequency, conducted interference emissions, EMC category C1 1352
12.10.3.4 Current harmonics of individual devices 1354
12.10.3.5 Harmonics at the power supply connection point acc. to IEC 61000-2-2 1356
12.10.3.6 Harmonics at the power supply connection point acc. to IEEE 519 1356
12.11 Protecting persons from electromagnetic fields 1357
A Appendix 1359
A. $1 \quad$ Manuals and technical support 1359
A.1.1 Overview of the manuals 1359
A.1.2 Configuring support 1360
A.1.3 Product Support 1361
Index 1363

Fundamental safety instructions

1.1 General safety instructions

! WARNING

Electric shock and danger to life due to other energy sources
Touching live components can result in death or severe injury.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, the following steps apply when establishing safety:

1. Prepare for disconnection. Notify all those who will be affected by the procedure.
2. Isolate the drive system from the power supply and take measures to prevent it being switched back on again.
3. Wait until the discharge time specified on the warning labels has elapsed.
4. Check that there is no voltage between any of the power connections, and between any of the power connections and the protective conductor connection.
5. Check whether the existing auxiliary supply circuits are de-energized.
6. Ensure that the motors cannot move.
7. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water. Switch the energy sources to a safe state.
8. Check that the correct drive system is completely locked.

After you have completed the work, restore the operational readiness in the inverse sequence.

! WARNING

Risk of electric shock and fire from supply networks with an excessively high impedance
Excessively low short-circuit currents can lead to the protective devices not tripping or tripping too late, and thus causing electric shock or a fire.

- In the case of a conductor-conductor or conductor-ground short-circuit, ensure that the short-circuit current at the point where the converter is connected to the line supply at least meets the minimum requirements for the response of the protective device used.
- You must use an additional residual-current device (RCD) if a conductor-ground short circuit does not reach the short-circuit current required for the protective device to respond. The required short-circuit current can be too low, especially for TT supply systems.

WARNING

Risk of electric shock and fire from supply networks with an excessively low impedance
Excessively high short-circuit currents can lead to the protective devices not being able to interrupt these short-circuit currents and being destroyed, and thus causing electric shock or a fire.

- Ensure that the prospective short-circuit current at the line terminal of the converter does not exceed the breaking capacity (SCCR or Icc) of the protective device used.

WARNING
Electric shock if there is no ground connection
For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

- Ground the device in compliance with the applicable regulations.

WARNING

Electric shock due to connection to an unsuitable power supply
When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage. Contact with hazardous voltage can result in severe injury or death.

- Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.

```
WARNING
Electric shock due to equipment damage
Improper handling may cause damage to equipment. For damaged devices, hazardous
voltages can be present at the enclosure or at exposed components; if touched, this can result
in death or severe injury.
- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged devices.
```

WARNING
Electric shock due to unconnected cable shield
Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected
cable shields.
- As a minimum, connect cable shields and the conductors of power cables that are not used
(e.g. brake cores) at one end at the grounded housing potential.

! WARNING

Arcing when a plug connection is opened during operation
Opening a plug connection when a system is operation can result in arcing that may cause serious injury or death.

- Only open plug connections when the equipment is in a voltage-free state, unless it has been explicitly stated that they can be opened in operation.

\ WARNING
Electric shock due to residual charges in power components
Because of the capacitors, a hazardous voltage is present for up to 5 minutes after the power supply has been switched off. Contact with live parts can result in death or serious injury.
- Wait for 5 minutes before you check that the unit really is in a no-voltage condition and start work.

NOTICE

Damage to equipment due to unsuitable tightening tools.
Unsuitable tightening tools or fastening methods can damage the screws of the equipment.

- Be sure to only use screwdrivers which exactly match the heads of the screws.
- Tighten the screws with the torque specified in the technical documentation.
- Use a torque wrench or a mechanical precision nut runner with a dynamic torque sensor and speed limitation system.

NOTICE

Property damage due to loose power connections

Insufficient tightening torques or vibration can result in loose power connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections to the prescribed torque.
- Check all power connections at regular intervals, particularly after equipment has been transported.

WARNING

Spread of fire from built-in devices
In the event of fire outbreak, the enclosures of built-in devices cannot prevent the escape of fire and smoke. This can result in serious personal injury or property damage.

- Install built-in units in a suitable metal cabinet in such a way that personnel are protected against fire and smoke, or take other appropriate measures to protect personnel.
- Ensure that smoke can only escape via controlled and monitored paths.

A. WARNING
Active implant malfunctions due to electromagnetic fields
Converters generate electromagnetic fields (EMF) in operation. Electromagnetic fields may
interfere with active implants, e.g. pacemakers. People with active implants in the immediate
vicinity of an converter are at risk.
- As the operator of an EMF-emitting installation, assess the individual risks of persons with
active implants.
- Observe the data on EMF emission provided in the product documentation.

WARNING

Unexpected movement of machines caused by radio devices or mobile phones
Using radio devices or mobile telephones in the immediate vicinity of the components can result in equipment malfunction. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.

- Therefore, if you move closer than 20 cm to the components, be sure to switch off radio devices or mobile telephones.
- Use the "SIEMENS Industry Online Support app" only on equipment that has already been switched off.

NOTICE

Damage to motor insulation due to excessive voltages

When operated on systems with grounded line conductor or in the event of a ground fault in the IT system, the motor insulation can be damaged by the higher voltage to ground. If you use motors that have insulation that is not designed for operation with grounded line conductors, you must perform the following measures:

- IT system: Use a ground fault monitor and eliminate the fault as quickly as possible.
- TN or TT systems with grounded line conductor: Use an isolating transformer on the line side.

WARNING

Fire due to inadequate ventilation clearances
Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

- Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

NOTICE

Overheating due to inadmissible mounting position
The device may overheat and therefore be damaged if mounted in an inadmissible position.

- Only operate the device in admissible mounting positions.

U WARNING
Unrecognized dangers due to missing or illegible warning labels
Dangers might not be recognized if warning labels are missing or illegible. Unrecognized
dangers may cause accidents resulting in serious injury or death.
- Check that the warning labels are complete based on the documentation.
- Attach any missing warning labels to the components, where necessary in the national
language.
- Replace illegible warning labels.

NOTICE

Device damage caused by incorrect voltage/insulation tests
Incorrect voltage/insulation tests can damage the device.

- Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.

WARNING

Unexpected movement of machines caused by inactive safety functions
Inactive or non-adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.

Note

Important safety notices for Safety Integrated functions
If you want to use Safety Integrated functions, you must observe the safety notices in the Safety Integrated manuals.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Equipment damage due to electric fields or electrostatic discharge

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.

NOTICE

Equipment damage due to electric fields or electrostatic discharge

Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
- Wearing an ESD wrist strap
- Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).
1.3 Warranty and liability for application examples

1.3 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.4 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity (https://www.siemens.com/industrialsecurity).
Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under
https://www.siemens.com/industrialsecurity (https://new.siemens.com/global/en/products/ services/cert.html\#Subscriptions).
Further information is provided on the Internet:
Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/ view/108862708)

! WARNING

Unsafe operating states resulting from software manipulation
Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.

1.5 Residual risks of power drive systems

When assessing the machine- or system-related risk in accordance with the respective local regulations (e.g., EC Machinery Directive), the machine manufacturer or system installer must take into account the following residual risks emanating from the control and drive components of a drive system:

1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,

- Hardware and/or software errors in the sensors, control system, actuators, and cables and connections
- Response times of the control system and of the drive
- Operation and/or environmental conditions outside the specification
- Condensation/conductive contamination
- Parameterization, programming, cabling, and installation errors
- Use of wireless devices/mobile phones in the immediate vicinity of electronic components
- External influences/damage
- X-ray, ionizing radiation and cosmic radiation

2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:

- Component failure
- Software errors
- Operation and/or environmental conditions outside the specification
- External influences/damage

3. Hazardous shock voltages caused by, for example:

- Component failure
- Influence during electrostatic charging
- Induction of voltages in moving motors
- Operation and/or environmental conditions outside the specification
- Condensation/conductive contamination
- External influences/damage

4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly
6. Influence of network-connected communication systems, e.g. ripple-control transmitters or data communication via the network

For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

Description

2.1 About the Manual

Who requires the operating instructions and what for?

These operating instructions primarily address fitters, commissioning engineers and machine operators. The operating instructions describe the devices and device components and enable the target groups being addressed to install, connect-up, set, and commission the converters safely and in the correct manner.

What is described in the operating instructions?

These operating instructions provide a summary of all of the information required to operate the converter under normal, safe conditions.
The information provided in the operating instructions has been compiled in such a way that it is sufficient for all standard applications and enables drives to be commissioned as efficiently as possible. Where it appears useful, additional information for entry level personnel has been added.

The operating instructions also contain information about special applications. Since it is assumed that readers already have a sound technical knowledge of how to configure and parameterize these applications, the relevant information is summarized accordingly. This relates, e.g. to operation with fieldbus systems.

What is the meaning of the symbols in the manual?

4 Reference to further information in the manual
(3) Download from the Internet

- DVD that can be ordered

End of a handling instruction.
\square

2.2 About the converter

2.2.1 Intended use

Use for the intended purpose

The converter described in this manual is a device to control a three-phase motor. The converter is designed for installation in electrical installations or machines.

The converter cannot return regenerative energy to the line supply or convert it to heat via a Braking Module and braking resistor. The converter is therefore suitable for applications with low dynamic requirements, e.g. for pumps, fans or similar passive load machines.
It has been approved for industrial and commercial use on industrial networks. Additional measures have to be taken when connected to public grids.

The technical specifications and information about connection conditions are indicated on the rating plate and in the operating instructions.

Use of third-party products

This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products.

You can use equivalent products from other manufacturers.
Siemens does not accept any warranty for the properties of third-party products.

2.2.2 OpenSSL

Use of OpenSSL

This product contains software developed in the OpenSSL project for use within the OpenSSL toolkit.

This product contains cryptographic software created by Eric Young.
This product contains software developed by Eric Young.
Further information is provided on the Internet:
(2) OpenSSL (https://www.openssl.org/)
(3) Cryptsoft (mailto:eay@cryptsoft.com)

2.2.3 Transferring OpenOSS license terms to a PC

Requirement

You have an empty memory card and a reader for the memory card.

Procedure

Procedure

To transfer OpenOSS license terms to a PC, proceed as follows:

1. Switch off the converter power supply.
2. Insert an empty memory card into the card slot of the converter.

U] Overview of the interfaces (Page 128)
3. Switch on the converter power supply.
4. The converter writes file "Read_OSS.ZIP" to the memory card within approximately 30 seconds.
5. Switch off the converter power supply.
6. Withdraw the memory card from the converter.
7. Insert the memory card into the card reader of a PC.
8. Please read the license terms.

$2.3 \quad$ Scope of delivery

The delivery comprises at least the following components:

- A ready-to-run converter with loaded firmware. Each converter comprises a Power Module and a Control Unit.
Options for upgrading and downgrading the firmware can be found on the Internet:
Firmware (https://support.industry.siemens.com/cs/ww/en/view/109771049)
- One set of connectors for connecting the I/O control terminals.
- One set of shield connection kit (for FSA to FSC); or two sets of shield connection kits for the Control Unit and the Power Module respectively (for FSD to FSG).
- Compact Installation Instructions in German and English.
- A printed full-size drill pattern (for FSD to FSG only) which allows the easy drilling of the necessary mounting holes.
- The converter contains open-source software (OSS). The OSS license terms are saved in the converter.

3-phase 200 V AC to 240 V AC (article number: 6SL32...)

200 V ... 240 V	Rated output power - kW (hp)	Rated output current kW - A (hp - A)	Article number	
Frame size	Based on a low overload		Without filter	With filter
FSA	0.75 (1)	4.2 (4.2)	6SL32 $\square 0-\square \mathrm{YC10}-\square \mathrm{U} \square 0$	-
	1.1 (1.5)	6 (6)	6SL32П0-ПYC12-ПU \square^{\square}	-
	1.5 (2)	7.4 (7.4)	6SL32 $\square 0-\square \mathrm{YC14-} \mathrm{\square U} \mathrm{\square 0}$	-
FSB	2.2 (3)	10.4 (10.4)	6SL32 $\square 0-\square \mathrm{YC16-} \mathrm{\square U} \mathrm{\square 0}$	-
	3 (4)	13.6 (13.6)	6SL32 $\square 0-\square \mathrm{YC18-} \mathrm{\square U} \mathrm{\square 0}$	-
	4 (5)	17.5 (17.5)	6SL32 $\square^{0-\square \mathrm{YC} 20-\square \mathrm{U}} \mathrm{\square}^{0}$	-
FSC	5.5 (7.5)	22 (22)		-
	7.5 (10)	28 (28)	6SL32 $\square 0-\square \mathrm{YC24-} \mathrm{\square U} \mathrm{\square 0}$	-
FSD	11 (15)	42 (42)	6SL32П0-ПYC26-ПU \square^{\square}	-
	15 (20)	54 (54)	6SL32 $\square^{0-\square \mathrm{YC} 28-\square \mathrm{U}} \mathrm{l}^{0}$	-
	18.5 (25)	68 (68)	6SL32 $\square 0-\square \mathrm{YC30}-\square \mathrm{U} \square 0$	-
FSE	22 (30)	80 (80)	6SL32 $\square 0-\square \mathrm{YC32-} \mathrm{\square U} \mathrm{\square 0}$	-
	30 (40)	104 (104)	6SL32П0-ПYC34-ПU $\square^{\square} 0$	-
FSF	37 (50)	130 (130)	6SL32 $\square 0-\square \mathrm{YC36-} \mathrm{\square U} \mathrm{\square 0}$	-
	45 (60)	154 (154)	6SL32 $\square 0-\square \mathrm{YC38-} \mathrm{\square U} \mathrm{\square 0}$	-
	55 (75)	192 (192)	6SL32 $\square 0-\square \mathrm{YC40}-\square \mathrm{U} \square 0$	-
Environment class 3C2			2	-
Environment class 3C3			3	-
Without operator panel			1	-
With Operator Panel BOP-2			2	-
With Operator Panel IOP-2			3	-
Without I/O Extension Module			0	-
With I/O Extension Module			1	-
Fieldbus - USS/Modbus RTU			B	-
Fieldbus - PROFINET, Ethernet/IP			F	-
Fieldbus - PROFIBUS			P	-

3－phase 380 V AC to 480 V AC（article number：6SL32．．．）

380 V ．．． 480 V	Rated output power－kW（hp）	Rated output current $\mathrm{kW}-\mathrm{A}(\mathrm{hp}-\mathrm{A})$	Article number		
Frame size	Based on a low overload		Without filter	With filter	
FSA	0.75 （1）	2.2 （2．1）	6SL32П0－ПYE10－ПUП0	6SL32 $\square 0-\square$ YE10－\square A $\square 0$	
	1.1 （1．5）	3.1 （3．0）			
	1.5 （2）	4.1 （3．4）	6SL32 $\square 0-\square \mathrm{YE} 14-\square \mathrm{U} \square 0$		A口0
	2.2 （3）	5.9 （4．8）	6SL32 $\square^{0-\square Y E 16-\square U \square 0 ~}$	$\begin{array}{\|l\|} \text { 6SL32 } \square 0-\square Y E 14-\square \\ \hline \text { 6SL32 } \square 0-\square Y E 16-\square \\ \hline \end{array}$	A \square^{0}
	3 （4）	7.7 （6．2）	6SL32 $\square 0-\square \mathrm{YE} 18-\square \mathrm{U} \square 0$	6SL32 $\square^{\text {a }}$－\square YE18－\square	A \square°
FSB	4 （5）	10.2 （7．6）	6SL32 $\square^{0-\square \text { YE20－} \square \text { U } \square 0}$	6SL32口0－■YE20－■	A $\square 0$
	5.5 （7．5）	13.2 （11）		6SL32口0－ПYE22－■	A \square°
	7.5 （10）	18 （14）	6SL32 $\square 0-\square$ YE24－\square U $\square 0$	6SL32■0－■YE24－■	A $\square^{\text {a }}$
FSC	11 （15）	26 （21）	6SL32 $\square 0-\square$ YE26－\square U $\square 0$	6SL32 $\square^{\text {a－}}$ Y YE26－\square	A口0
	15 （20）	32 （27）	6SL32 $\square 0-\square \mathrm{YE} 28-\square \mathrm{U} \square 0$	6SL32 $\square^{\text {a－}}$－ $\mathrm{YE} 28-\square$	A口0
FSD	18.5 （25）	38 （34）	6SL32 $\square^{0-\square \text { YE30－} \square \text { U } \square 0}$	6SL32 ${ }^{\text {a }}$－\square YE30－\square	A \square^{0}
	22 （30）	45 （40）	6SL32 $\square 0-\square$ YE32－\square U $\square 0$	6SL32 $\square^{0-\square Y E 32-\square}$	A \square°
	30 （40）	60 （52）	6SL32 $\square 0-\square$ YE34－\square U $\square 0$	6SL32 $\square^{0-\square Y E 34-\square}$	A \square^{0}
	37 （50）	75 （65）	6SL32 $\square 0-\square$ YE36－\square U $\square 0$	6SL32 ${ }^{\text {0－}}$ YYE36－\square	A $\square^{\text {a }}$
FSE	45 （60）	90 （77）	6SL32 $\square 0-\square$ YE38－\square U $\square 0$	6SL32口0－ Y YE38－$^{\text {a }}$	A \square°
	55 （75）	110 （96）	6SL32 $\square 0-\square$ YE40－\square U $\square 0$	6SL32 $\square^{0-\square \text { YE40－} \square}$	A \square^{0}
FSF	75 （100）	145 （124）	6SL32 $\square^{0-\square \text { YE42－} \square \text { U } \square 0}$	6SL32 ${ }^{\text {a－}}$ Y YE42－\square	A \square°
	90 （125）	178 （156）	6SL32 $\square 0-\square$ YE44－\square U $\square 0$	6SL32口0－■YE44－	A $\square^{\text {a }}$
	110 （150）	205 （180）	6SL32 $\square 0-\square$ YE46－\square U $\square 0$	6SL32 $\square 0-\square$ YE46－\square	A \square^{0}
	132 （200）	250 （240）	6SL32 $\square 0-\square \mathrm{YE48-} \mathrm{\square U} \mathrm{\square 0}$		A \square^{\square}
FSG	160 （250）	302 （302）	－	6SL32 $\square 0-\square$ YE48－\square 6SL32 $\square 0-\square$ YE50－	$\square \square^{\square}$
	200 （300）	370 （361）	－		$\square \square 0$
	250 （400）	477 （477）	－	$\text { 6SL32 } \square 0-\square \text { YE54- }$	$\square \square^{\square}$
FSH	315 （n／a）	570 （477）	－	6SL32 $20-\square$ YE56－	C口0
	355 （450）	640 （515）	－	6SL32 20－■YE58－	C口0
	400 （500）	720 （590）	－		C口0
FSJ	450 （n／a）	820 （663）	－	6SL32 $20-\square$ YE62－${ }^{\text {a }}$	C口0
	500 （600）	890 （724）	－	6SL32 20 －\square YE64－${ }^{\text {a }}$	C口0
	560 （700）	1000 （830）	－	6SL32 20 －\square YE66－\square	C口0
Environment class 3C2			2	2	
Environment class 3C3			3	3	
Without operator panel			1	1	
With Operator Panel BOP－2			2	2	
With Operator Panel IOP－2			3	3	
Without I／O Extension Module			0	0	
With I／O Extension Module			1	1	
Fieldbus－USS／Modbus RTU			B		B
Fieldbus－PROFINET，Ethernet／IP			F		F
Fieldbus－PROFIBUS			P		P
Filter C2				A	
Filter C3				C	

3－phase 500 V AC to 690 V AC（article number：6SL32．．．）

500 V ．．． 690 V ＊	Rated output power－kW（hp）	Rated output current kW－A（hp－A）	Article number		
Frame size	Based on a low overload		Without filter	With filter	
FSD	3 （3）	5 （5）	6SL32 $\square^{0-\square \mathrm{YH} 18-\square \mathrm{U}} \mathrm{\square}^{0}$	6SL32 $\square 0-\square \mathrm{YH} 18-\square \mathrm{A} \square^{0}$	
	4 （5）	6.3 （6．3）	6SL32 $0^{0-\square \mathrm{YH} 20-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square^{0-\square \mathrm{YH} 20-\square}$	A $\square 0$
	5.5 （7．5）	9 （9）	6SL32 $0^{0-\square \mathrm{YH} 22-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square 0-\square \mathrm{YH} 22-\square$	A $\square 0$
	7.5 （10）	11 （11）	6SL32 $\square^{0-\square \mathrm{YH} 24-\square \mathrm{U}} \mathrm{O}^{0}$	6SL32 $\square^{0-\square \mathrm{YH} 24-\square}$	A $\square 0$
	11 （n／a）	14 （14）	6SL32 $0^{0-\square \mathrm{YH} 26-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square^{0-\square \mathrm{YH} 26-\square A}$	A $\square 0$
	15 （15）	19 （19）	6SL32 $\square^{0-\square \mathrm{YH} 28-\square \mathrm{U}} \mathrm{\square}^{0}$	6SL32 $\square^{0-\square \mathrm{YH} 28-\square A}$	A $\square 0$
	18.5 （20）	23 （23）	6SL32 $\square^{0-\square \mathrm{YH} 30-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square 0-\square \mathrm{YH} 30-\square$	A $\square 0$
	22 （25）	27 （27）	6SL32 $0^{0-\square \mathrm{YH} 32-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square^{0-\square \mathrm{YH} 32-\square \mathrm{A}}$	A $\square 0$
	30 （30）	35 （35）	6SL32 $\square^{0-\square \mathrm{YH} 34-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32口0－ПYH34－口	A $\square 0$
	37 （40）	42 （42）	6SL32 $\square^{0-\square \mathrm{YH} 36-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32－0－ПYH36－口	A $\square 0$
FSE	45 （50）	52 （52）	6SL32 $\square^{0-\square \mathrm{YH} 38-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32］0－ПYH38－口	A $\square 0$
	55 （60）	62 （62）	6SL32 $\square^{0-\square \mathrm{YH} 40-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square^{0-\square Y H 40-\square A}$	A $\square 0$
FSF	75 （75）	80 （80）	6SL32 $\square^{0-\square \mathrm{YH} 42-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32】0－ПYH42－口C	C口0
	90 （100）	100 （100）	6SL32 $\square^{0-\square \mathrm{YH} 44-\square \mathrm{U}} \mathrm{\square} 0$		C口0
	110 （125）	125 （125）	6SL32 ${ }^{0-\square \mathrm{OH} 46-\square \mathrm{U}} \mathrm{D}^{0}$	6SL32 $\square^{0-} \square^{\text {YH44－}}$	C口0
	132 （150）	144 （144）	6SL32 $\square^{0-\square \mathrm{YH} 48-\square \mathrm{U}} \mathrm{\square}^{0}$	6SL32 $\square^{0-\square \mathrm{YH} 48-\square \mathrm{C}}$	C口0
FSG	160 （n／a）	171 （171）	－		C口0
	200 （200）	208 （208）	－	6SL32口0－口YH52－口	C口0
	250 （250）	250 （250）	－	6SL32口0－口YH54－口C	C口0
FSH	315 （350）	330 （345）	－	6SL32 2 0－ $\mathrm{\square}^{\text {YH56－}}$－	C口0
	355 （400）	385 （388）	－	6SL32 20 －${ }^{\text {PYH58－口C }}$	C口0
	400 （450）	420 （432）	－		C口0
	450 （500）	470 （487）	－	6SL32 20 － $\mathrm{YHH62-口C}_{\text {－}}$	C口0
FSJ	500 （n／a）	520 （546）	－		C口0
	560 （600）	580 （610）	－	6SL32 $20-\square \mathrm{YH} 66-\square \mathrm{D}$	C口0
	630 （700）	650 （679）	－	6SL32 20 －\square YH68－ПC口0	
Environment class 3C2			2	2	
Environment class 3C3			3	3	
Without operator panel			1	1	
With Operator Panel BOP－2			2	2	
With Operator Panel IOP－2			3	3	
Without I／O Extension Module			0	0	
With I／O Extension Module			1	1	
Fieldbus－USS／Modbus RTU			B		B
Fieldbus－PROFINET，Etherne／IP			F		F
Fieldbus－PROFIBUS			P		P
Filter C2				A	
Filter C3					

＊For systems according to UL： 500 V ．．． 600 V

Rating plate

You will find the rating plate at the side of the converter.

Figure 2-1 Example for a rating plate

2.4 Directives and standards

Relevant directives and standards

The following directives and standards are relevant for the converters:

European Machinery Directive

The converters fulfill the requirements stipulated in the Machinery Directive 2006/42/EC, if they are covered by the application area of this directive.

However, the use of the converters in a typical machine application has been fully assessed for compliance with the main regulations in this directive concerning health and safety.

Directive 2011/65/EU

The converters fulfill the requirements stipulated in Directive 2011/65/EU relating to the restriction of the use of certain hazardous substances in electrical and electronic devices (RoHS).

European EMC Directive

The compliance of the converter with the regulations of the Directive 2014/30/EU has been demonstrated by full compliance with the IEC/EN 61800-3.

UKCA marking

The converter complies with the requirements for the British market (England, Scotland and Wales).

EMC requirements for South Korea

Converters with the KC marking on the nameplate fulfill the EMC requirements for South Korea.

EMC limiting values in South Korea

```
이 기기느ᄂ 어ᄇ무요ᄋ(A그ᄇ) 저ᄂ자퐈저ᄀ하ᄇ기기로서 파ᄂ매자 또느ᄂ 사요ᄋ자느ᄂ 이 저ᄆ으ᄅ 주의하시기 바라며,
가저ᄋ외의 지여ᄀ에서 사요ᄋ하느ᄂ 거ᄉ으ᄅ 모ᄀ저ᄀ으로 하ᄇ니다.
For sellers or other users, please bear in mind that this device is an A-grade electromagnetic wave device. This device is intended to be used in areas other than at home.
```

The EMC limiting values to be observed for South Korea correspond to the limiting values of the EMC product standard for adjustable speed electrical power drive systems EN 61800-3 Category C2 or to the limiting value Class A, Group 1 to KN11. By implementing appropriate additional measures, the limiting values according to category C2 or Class A, Group 1, are adhered to. Such supplementary measures could include the use of an additional EMC filter, for example.
Measures for proper drive system design which meet EMC requirements are described in detail in the converter operating instructions and in the "EMC Installation Guidelines" Configuration Manual.

[^0]Underwriters Laboratories (North American market)
Converters provided with one of the test symbols displayed fulfill the requirements stipulated for the North American market as a component of drive applications, and are appropriately listed.

Eurasian conformity

The converters fulfill the requirements of the Russia/Belarus/Kazakhstan customs union (EAC).

Australia and New Zealand (RCM formerly C-Tick)

The converters showing the test symbols fulfill the EMC requirements for Australia and New Zealand.

Immunity to voltage drop of semiconductor process equipment.
The converters fulfill the requirements of standard SEMI F47-0706.
Directive of the European Union on Waste Electrical and Electronic Equipment (WEEE)
The converters fulfill the requirements stipulated in Directive 2012/19/EU with regard to the return and recycling of waste electrical and electronic equipment.

Quality systems

Siemens AG employs a quality management system that meets the requirements of ISO 9001 and ISO 14001.

Certificates for download

- EC Declaration of Conformity: (https://support.industry.siemens.com/cs/us/en/view/ 109767762)
- 25 Certificates for the relevant directives, prototype test certificates, manufacturers declarations and test certificates for functions relating to functional safety ("Safety Integrated"): (http://support.automation.siemens.com/WW/view/en/22339653/134200)
- Certificates for products that were certified by UL: (http://database.ul.com/cgi-bin/XYV/ template/LISEXT/1FRAME/index.html)
- $\sqrt{3}$ Certificates for products that were certified by TÜV SÜD: (https://www.tuev-sued.del industrie konsumprodukte/zertifikatsdatenbank)

Standards that are not relevant

China Compulsory Certification

The converters do not fall in the area of validity of the China Compulsory Certification (CCC).

2.5 Device disposal

Recycling and disposal

For environmentally-friendly recycling and disposal of your old device, please contact a company certified for the disposal of waste electrical and electronic equipment, and dispose of the old device as prescribed in the respective country of use.

2.6 Optional components

The following optional components are available so that you can adapt the converter to different applications and ambient conditions:

- External RFI or EMI line filter (Page 35)
- Line reactor (Page 36)
- Output reactor (Page 40)
- Sine-wave filter (Page 41)
- Line harmonics filter (Page 38)
- dv/dt filter plus VPL (Page 43)
- Push-through mounting kit (Page 55)
- Mounting grips for push-through mounted converters (Page 58)
- IP21 top cover (Page 58)
- Mounting kit for line-side cable connection, left (FSH only) (Page 60)
- I/O Extension Module (Page 60)
- Operator panel (Page 65)
- SINAMICS G120 Smart Access (Page 65)
- Memory card (Page 66)
- SINAMICS FSG Adapter Set (Page 66)

Further information

Further information about the technical specifications and installing of these optional components is described in the documentation provided.

2.6.1 External RFI or EMI line filter

With a line filter, the converter achieves a higher radio interference class. The converters of frame sizes FSA to FSF are available with and without integrated line filter. The converters of frame sizes FSG to FSJ are available with integrated line filter only. External line filters are available as optional components for the converters FSA to FSF (without integrated filters) as well as FSH and FSJ.

When using the line filter, observe the following restrictions:

- For line filters used for 400 V converter, the permissible line voltage is 380 V to 480 V ; for line filters used for 690 V converter, the permissible line voltage is 500 V to 690 V .

NOTICE

Overloading the line filter when connected to line supplies that are not permissible
The line filter is only suitable for operation on TN or TT line supplies with a grounded neutral point. If operated on other line supplies, the line filter will be thermally overloaded and will be damaged.

- For converters equipped with line filter, only connect to TN or TT line supplies with a grounded neutral point.

Article number

Converter		Line filter	
Frame size	Rated power (kW)	Article number	Category
400 V converters			
FSA ${ }^{1)}$	0.75 ... 3	$\begin{aligned} & \text { 6SL3203-0BE17-7BAO }{ }^{2)} \\ & \text { 6SL3203-0BE17-7BA1 } \end{aligned}$	C1
FSB ${ }^{1)}$	$4 . . .7 .5$	6SL3203-0BE21-8BAO ${ }^{2)}$	
FSC ${ }^{1)}$	$11 . . .15$	6SL3203-0BE23-8BAO ${ }^{2)}$	
FSD	18.5 ... 22	6SL3203-0BE23-8BAO ${ }^{2)}$	
	30... 37	6SL3203-0BE27-5BAO ${ }^{2)}$	
FSE	$45 . .55$	6SL3203-0BE31-1BAO ${ }^{2)}$	
FSF	$75 . .90$	6SL3000-0BE31-2DAO ${ }^{2)}$	
	110	6SL3203-OBE31-8BAO ${ }^{\text {3) }}$	
	132	-	-
FSG	160 ... 250	-	-
FSH	315 ... 400	6SL3760-0MR00-0AAO	C2
FSJ	450 ... 560		
690 V converters			
FSH	315 ... 450	6SL3760-OMS00-0AAO	C2
FSJ	500 ... 630		

1) Footprint mounting is possible for FSA ... FSC
2) An unfiltered converter is required for operation with the line filter
${ }^{3)}$ A converter with integrated C2 line filter is required for operation with the line filter

2.6.2 Line reactor

Note

Line reactors are available as optional components for converters of frame sizes FSH and FSJ only. As the converters of frame sizes FSA to FSG have integrated DC-link chokes, line reactors are thus not required.

A line reactor is needed for high short-circuit power levels, partly to protect the actual converter against excessive harmonic currents, and thus against overload, and partly to limit line harmonics to the permitted values. The harmonic currents are limited by the total inductance comprising the line reactor and mains supply cable inductance. Line reactors can be omitted if the mains supply cable inductance is increased sufficiently, i.e., the value of $R_{s c}$ must be sufficiently small.
$\mathrm{R}_{\mathrm{SC}}=$ Relative Short-Circuit power: ratio of short-circuit power $\mathrm{S}_{\mathrm{k} \text { Line }}$ at the supply connection point to the fundamental apparent power $S_{\text {inv }}$ of the connected converters (to IEC 60146-1-1).

Requirements for line reactors

Rated power of converter (kW)	Line reactor can be omitted for $\mathbf{R}_{\mathbf{s c}}$	Line reactor is required for $R_{\text {sc }}$
$315 \ldots 500$	≤ 33	>33
>500	≤ 20	>20

It is recommended that a line reactor is always connected on the line side of the converter, as in practice, it is often not known on which supply configuration individual converters are to be operated, i.e. which supply short-circuit power is present at the converter connection point.

A line reactor can only be dispensed with when the value for $R_{S C}$ is less than that in the above table. This is the case, when the converter, as shown in the following figure, is connected to the line through a transformer with the appropriate rating.

Note

A line reactor is always needed if an EMI or RFI line filter is used.

In this case, the line short-circuit power $\mathrm{S}_{\mathrm{k} 1}$ at the connection point of the converter is approximately:

$\mathrm{S}_{\mathrm{k} 1}$	$=\mathrm{S}_{\text {transf }} /\left(\mathrm{U}_{\mathrm{k} \text { transf }}+\mathrm{S}_{\text {trans }} / \mathrm{S}_{\mathrm{k} 2 \text { line }}\right)$
$\mathrm{S}_{\text {transf }}$	$=$ Transformer rated power
$\mathrm{S}_{\mathrm{k} 2 \text { ine }}$	$=$ Short-circuit power of the higher-level voltage level
$\mathrm{U}_{\mathrm{k} \text { transf }}$	$=$ Relative short-circuit voltage

When using the line reactor, observe the following restrictions:

- For line reactors used for 400 V converter, the permissible line voltage is 380 V to 480 V ; for line reactors used for 690 V converter, the permissible line voltage is 500 V to 690 V .

Article number

Converter frame size	Rated power (kW)	Line reactor
		Article number
400 V converters		
FSH	315	6SL3000-0CE36-3AA0
	355... 400	6SL3000-0CE37-7AA0
FSJ	450	6SL3000-0CE38-7AA0
	500 ... 560	6SL3000-0CE41-0AAO
690 V converters		
FSH	315 ... 400	6SL3000-0CH34-8AA0
	450	6SL3000-0CH36-0AAO
FSJ	500	
	560 ... 630	6SL3000-0CH38-4AAO

2.6.3 Line harmonics filter

Note

Line harmonics filters are available as optional components for 400 V converters of frame sizes FSB to FSG. When using the line harmonics filter, a line reactor is not required.

The line harmonics filters reshape the distorted current back to the desired sinusoidal waveform. With the line harmonics filters, the converter fulfills the IEEE 519 standards.
When using the line harmonics filter, observe the following restrictions:

- The permissible line voltage is $380 \mathrm{~V} \ldots 415 \mathrm{~V} 3 \mathrm{AC} \pm 10 \%$.
- The maximum permissible output frequency is 150 Hz .

For technical details refer to the following link:
(2) Line harmonics filter (https://www.schaffner.com/products/download/product/datasheet/ fn-3440-ecosine-50hz-passive-harmonic-filters/)

For applications in the USA and Canada, you can also use the output reactors recommended by Siemens Product Partner for Drive Options. For more information, see the link below:

Siemens Product Partner for Drive Options (https://new.siemens.com/global/en/companyl topic-areas/partners/product-partners-industry.html)

Article number

400 V Converter frame size	Rated power (kW)	Line harmonics filter Manufacturer: Schaffner EMV AG
FSB	5.5	UAC:FN34406112E2XXJRX
	7.5	UAC:FN34408112E2XXJRX
FSC	11	UAC:FN344011113E2FAJRX
	15	UAC:FN344015113E2FAJRX
FSD	18.5	UAC:FN344019113E2FAJRX
	22	UAC:FN344022115E2FAJRX
	30	UAC:FN344030115E2FAJRX
	37	UAC:FN344037115E2FAJRX
FSE	45	UAC:FN344045115E2FAJRX
	55	UAC:FN344055115E2FAJRX
FSF	75	UAC:FN344075116E2FAJRX
	90	UAC:FN344090116E2FAJRX
	110	UAC:FN3440110118E2FAJRX
	132	UAC:FN3440132118E2FAJXX
FSG	160	UAC:FN3440160118E2FAJXX
	200	UAC:FN3440200118E2FAJXX
	250	2x UAC:FN3440132118E2FAJXX *)

*) Parallel connection between two line harmonics filters with 132 kW each
The converters FSA are not assigned with a line harmonics filter. If the rated power of the line harmonics filter is not exceeded, you may operate several convertors FSA on a common line harmonics filter.

Special restrictions for converter FSG

When connecting 400 V converter FSG with line harmonics filters, parameter p1300 must be set to 20 .

For converter FSG with line harmonics filter, operation is only permissible in the vector control mode. It is not permissible for U/f mode to be used.

2.6.4 Output reactor

Note

Output reactors are available as optional components for converters of frame sizes FSD to FSJ.

The output reactor reduces the voltage rate of rise and dampens transient voltage peak at the converter output, and enable longer motor cables to be connected.
\checkmark Maximum permissible motor cable length (Page 108)
When using the output reactor, observe the following restrictions:

- For output reactors used for 400 V converter, the permissible line voltage is 380 V to 480 V ; for output reactors used for 690 V converter, the permissible line voltage is 500 V to 690 V .
- The maximum permissible output frequency is 150 Hz .

For applications (FSH and FSJ excluded) in the USA and Canada, you can also use the output reactors recommended by Siemens Product Partner for Drive Options. For more information, see the link below:

Siemens Product Partner for Drive Options (https://new.siemens.com/global/en/companyl

 topic-areas/partners/product-partners-industry.html)
NOTICE

Damage to the output reactor by exceeding the maximum pulse frequency

The maximum permissible pulse frequency when using the output reactor is 4 kHz . The output reactor can be damaged if the pulse frequency is exceeded.

- When using an output reactor, the pulse frequency of the converter must not exceed 4 kHz .

NOTICE

Damage to the output reactor if it is not activated during commissioning
The output reactor may be damaged if it is not activated during commissioning.

- Activate the output reactor during commissioning via parameter p0230.
- Activate the output reactor during commissioning according to the electric specifications.

Article number

Converter frame size	Rated power (kW)	Output reactor	Inductance (mH)
400 V converters			
FSD	18.5	6SL3202-0AE23-8CA0	1
	$22 \ldots 37$	6SE6400-3TC07-5ED0	1

Converter frame size	Rated power (kW)	Output reactor	Inductance (mH)
FSE	45... 55	6SE6400-3TC14-5FD0	1
FSF	75... 90		
	110	6SL3000-2BE32-1AAO	1
	132	6SL3000-2BE32-6AAO	1
FSG	160	6SL3000-2BE33-2AAO	1
	200	6SL3000-2BE33-8AAO	1
	250	6SL3000-2BE35-0AAO	1
FSH	315	6SL3000-2AE36-1AAO	1
	355 ... 400	6SL3000-2AE38-4AAO	1
FSJ	450 ... 500	6SL3000-2AE41-0AAO	1
	560	6SL3000-2AE41-4AAO	1
690 V converters			
FSD	3 ... 18.5	JTA:TEU2532-0FP00-4EAO ${ }^{1)}$	1.5
	22... 37	JTA:TEU9932-0FP00-4EAO ${ }^{1)}$	1.2
FSE	$45 \ldots 55$	JTA:TEU9932-OFS00-OEAO ${ }^{1)}$	0.9
FSF	75... 90	JTA:TEU9932-1FC00-1BAO ${ }^{1)}$	0.53
	110... 132	JTA:TEU9932-0FV00-1BAO ${ }^{1)}$	0.37
FSG	160... 250	JTA:TEU4732-0FA00-OBAO ${ }^{1)}$	0.22
FSH	315... 355	6SL3000-2AH34-7AAO	1
	400	6SL3000-2AH35-8AAO	1
	450	6SL3000-2AH38-1AAO	1
FSJ	500... 630		

1) Manufacturer: mdexx Magnetronic Devices s.r.o.

2.6.5 Sine-wave filter

Overview

The sine-wave filter limits the voltage gradient and the capacitive recharging currents which generally occur in converter operation. Therefore, when a sine-wave filter is used, longer screened motor cables are possible and the motor lifetime reaches the same values which are achieved when the motor is connected directly to the mains.
$\xrightarrow[4]{ }$ Maximum permissible motor cable length (Page 108)

Precondition

NOTICE

Damage to the sine-wave filter if it is not activated during commissioning
The sine-wave filter may be damaged if it is not activated during commissioning.

- Activate the sine-wave filter during commissioning via parameter p0230.
- Activate the sine-wave filter during commissioning according to the electric specifications.

When using sine-wave filters, observe the following restrictions:

- Installing the filter in an enclosure is required.
- For rated power up to 90 kW , the pulse frequency must not exceed 8 kHz ; for rated power above 90 kW , the pulse frequency must be 4 kHz .

Note

Restriction when using the sine-wave filter for converters ≥ 110 kW
The sine-wave filter can only be operated at 4 kHz . This means that for converters with rated power $\geq 110 \mathrm{~kW}$ only 70% of the current and power is available due to derating.

Current derating as a function of the pulse frequency (Page 1342)

- The maximum permissible output frequency is 150 Hz .
- The maximum output voltage is limited to approx. 85% of the input voltage.
- For converter FSG with sine-wave filter, operation is only permissible in the vector control mode. It is not permissible for V/f mode to be used.
- The operation of the sine-wave filter with a permanent magnet synchronous motor is prohibited.

For applications in the USA and Canada, you can also use the Sine-wave filters recommended by Siemens Product Partner for Drive Options. For more information, see the link below:
(3) Siemens Product Partner for Drive Options (https://new.siemens.com/global/en/company/ topic-areas/partners/product-partners-industry.html)

Article number

Converter frame size	Rated power (kW)	Sine-wave filter
400 V converters		
FSA	0.75	6SL3202-0AE20-3SAO
	1.1... 1.5	6SL3202-0AE20-6SA0
	2.2 ... 3	6SL3202-0AE21-1SA0
FSB	4	6SL3202-0AE21-4SAO
	5.5 ... 7.5	6SL3202-0AE22-0SAO
FSC	11... 15	6SL3202-0AE23-3SA0

Converter frame size	Rated power (kW)	Sine-wave filter
FSD	18.5... 22	6SL3202-0AE24-6SA0
	30	6SL3202-0AE26-2SA0
	37	6SL3202-0AE28-8SAO
FSE	45	
	55	6SL3202-OAE31-5SA0
FSF	75	
	90	6SL3202-0AE31-8SA0
	110... 132	6SL3000-2CE32-3AA0
FSG ${ }^{1)}$	160	6SL3000-2CE32-8AAO
	200	6SL3000-2CE33-3AAO
	250	6SL3000-2CE34-1AAO

${ }^{1)}$ For converter FSG with sine-wave filter, operation is only permissible in the vector control mode. It is not permissible for V/f mode to be used.

2.6.6 dv/dt filter plus VPL

Note

dv/dt filters plus VPL are available as optional components for 400 V/690 V converters of frame sizes FSD to FSJ.

A combination of dv/dt filter and a voltage peak limiter (VPL) - dv/dt filter plus VPL - are available to suppress voltage peaks and enable longer motor cables to be connected.
4] Maximum permissible motor cable length (Page 108)
When using the dv/dt filter plus VPL, observe the following restrictions:

- For dv/dt filter plus VPL used for 400 V converter, the permissible line voltage is 380 V to 480 V ; for dv/dt filter plus VPL used for 690 V converter, the permissible line voltage is 500 V to 690 V.
- The maximum output frequency is 150 Hz .
- The maximum pulse frequency is 4 kHz .

For applications in the USA and Canada, you can also use the dv/dt filters plus VPL recommended by Siemens Product Partner for Drive Options. For more information, see the link below:
(2) Siemens Product Partner for Drive Options (https://new.siemens.com/global/en/companyl topic-areas/partners/product-partners-industry.html)

NOTICE

Damage to the dv/dt filter plus VPL if it is not activated during commissioning
The dv/dt filter plus VPL may be damaged if it is not activated during commissioning.

- Activate the dv/dt filter plus VPL during commissioning via parameter p0230.
- Activate the dv/dt filter plus VPL during commissioning according to the electric specifications.

NOTICE

Device damage due to improper connection
The dv/dt filter plus VPL and the converter may be damaged if they are not connected properly.

- Make sure that the connection between the dv/dt filter plus VPL and the converter is correct.

Further information is provided on the Internet:

- N dv/dt filter plus VPL for G120X (https://support.industry.siemens.com/cs/ww/en/view/ 109766019)
- 0 Functional principle and application cases (https:/l support.industry.siemens.com/cs/ww/en/view/109748645)

Article number

Converter frame size	Rated power (kW)	dv/dt filter plus VPL
400 V converters		
FSD	18.5	JTA:TEF1203-0HB ${ }^{1)}$
	22... 30	JTA:TEF1203-0JB ${ }^{1)}$
	37	JTA:TEF1203-OKB ${ }^{1)}$
FSE	45	
	55	JTA:TEF1203-0LB ${ }^{1)}$
FSF	75	
	90... 132	JTA:TEF1203-0MB ${ }^{1)}$
FSG	160... 250	6SL3000-2DE35-0AAO
FSH	315... 400	6SL3000-2DE38-4AAO
FSJ	450... 560	6SL3000-2DE41-4AAO
690 V converters		
FSD	3 ...18.5	JTA:TEF1203-0GB ${ }^{1)}$
	22... 37	JTA:TEF1203-0HB ${ }^{1)}$
FSE	$45 . .55$	JTA:TEF1203-OJB ${ }^{1)}$
FSF	75... 90	JTA:TEF1203-0KB ${ }^{1)}$
	110... 132	JTA:TEF1203-OLB ${ }^{1)}$
FSG	160... 250	JTA:TEF1203-0MB ${ }^{1)}$
FSH	315... 400	6SL3000-2DH35-8AA0
	450	6SL3000-2DH38-1AAO
FSJ	500... 630	

1) Manufacturer: mdexx Magnetronic Devices s.r.o.

Dimensions

Figure 2-2 Dimensions for JTA:TEF1203-0GB

Figure 2-3 Dimensions for JTA:TEF1203-0HB

Figure 2-5 Dimensions for JTA:TEF1203-0KB

Figure 2-6 Dimensions for JTA:TEF1203-0LB

Technical data

Article number JTA: TEF1203	-0 GB	- OHB	-0 JB
Rated power	18.5 kW	37 kW	55 kW
Rated voltage (phase to phase)	$690 \mathrm{~V} \mathrm{(+10} \mathrm{\%)}$	$690 \mathrm{~V} \mathrm{(+10} \mathrm{\%)}$	$690 \mathrm{~V} \mathrm{(+10} \mathrm{\%)}$
Rated output current (rms)	24 A	44 A	64 A
Maximum output current (rms)	38 A	70 A	104 A
Inductance (Tolerance $\pm 5 \%)$	1.5 mH	1.2 mH	0.9 mH
Winding resistance	$3 \times 20.9 \mathrm{~m} \Omega$	$3 \times 14.6 \mathrm{~m} \Omega$	$3 \times 10.24 \mathrm{~m} \Omega$
Nominal pulse frequency	2 kHz	2 kHz	2 kHz
Maximum pulse frequency	4 kHz	4 kHz	4 kHz
Output current maximum pulse fre- quency	14.4 A	26.4 A	38.4 A
Maximum output frequency	150 Hz	150 Hz	150 Hz

Description

2.6 Optional components

Article number JTA: TEF1203		-0GB	-0HB	-0JB
Voltage drop		17.15 V	17.13 V	17.97 V
Rated DC link voltage		935 V	935 V	935 V
Maximum voltage rise at motor terminals ${ }^{1)}$		< $500 \mathrm{~V} / \mu \mathrm{s}$	< $500 \mathrm{~V} / \mathrm{\mu}$	< $500 \mathrm{~V} / \mathrm{\mu} \mathrm{~s}$
Maximum peak voltage at motor terminals (phase to phase) ${ }^{2)}$	@ 400 V	800 V	800 V	800 V
	@ 690 V	1350 V	1350 V	1350 V
Maximum peak voltage at motor terminals (phase to earth) ${ }^{2)}$	@ 400 V	650 V	650 V	650 V
	@ 690 V	1100 V	1100 V	1100 V
Maximum cable length filter - motor (screened / unscreened)		$350 \mathrm{~m} / 525 \mathrm{~m}$	$350 \mathrm{~m} / 525 \mathrm{~m}$	$350 \mathrm{~m} / 525 \mathrm{~m}$
Terminal type		Screw terminals	Screw terminals	Screw terminals
Rated terminal cross section (load circuit)		16 mm ${ }^{2}$	35 mm ${ }^{2}$	50 mm ${ }^{2}$
Rated terminal cross section (DC link feedback) ${ }^{3)}$		16 mm ${ }^{2}$	16 mm ${ }^{2}$	16 mm ${ }^{2}$
Degree of protection ${ }^{4)}$		IP00	IP00	IP00
Ambient temperature ${ }^{5)}$		$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Weight		20 kg	29 kg	46 kg
Connection		Metrical ($\mathrm{mm}^{2} / \mathrm{Nm}$) Imperial (AWG / Ibf.in) Stripping length (mm)		
Line / motor cable		$\begin{aligned} & 16 / 1.2 \\ & 6 / 11.0 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 35 / 2.5 \\ & 2 / 22 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 70 / 6.0 \\ & 2 / 0 / 53 \\ & 24 \end{aligned}$
DC link		$\begin{aligned} & 16 / 1.2 \\ & 6 / 11.0 \\ & 13 \end{aligned}$	$\begin{aligned} & 16 / 1.2 \\ & 6 / 11 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 16 / 1.2 \\ & 6 / 11 \\ & 13 \end{aligned}$
Ground		$\begin{aligned} & 16 / 1.2 \\ & 6 / 11.0 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 35 / 2.5 \\ & 2 / 22 \\ & 17 \end{aligned}$	$\begin{array}{\|l} \hline 70 / 10.0 \\ 2 / 0 / 86 \\ 24 \end{array}$

1) Voltage rise according IEC/TS 60034-17
2) Under nominal DC link voltage
3) Short-circuit-proof wiring is required
4) Installing the filter in an enclosure is required
5) Higher ambient temperatures up to $60^{\circ} \mathrm{C}$ allowed with current derating at $40^{\circ} \mathrm{C}$, in the range $40 \ldots 50^{\circ} \mathrm{C}$ with 1.5% per 1 K and in the range $50 \ldots 60^{\circ} \mathrm{C}$ with 1.9% per 1 K

Article number JTA: TEF1203	-OKB	- OLB	- OMB
Rated power	90 kW	132 kW	250 kW
Rated voltage (phase to phase)	$690 \mathrm{~V}(+10 \%)$	$690 \mathrm{~V} \mathrm{(+10} \mathrm{\%)}$	$690 \mathrm{~V}(+10 \%)$
Rated output current (rms)	103 A	230 A	416 A
Maximum output current (rms)	160 A	70 A	104 A

Article number JTA: TEF1203		-0KB	-OLB	-0MB
Inductance (Tolerance $\pm 5 \%$)		0.53 mH	0.37 mH	0.22 mH
Winding resistance		$3 \times 4.9 \mathrm{~m} \Omega$	$3 \times 3.25 \mathrm{~m} \Omega$	$3 \times 1.4 \mathrm{~m} \Omega$
Nominal pulse frequency		2 kHz	2 kHz	2 kHz
Maximum pulse frequency		4 kHz	4 kHz	4 kHz
Output current maximum pulse frequency		61.8 A	87.6 A	156 A
Maximum output frequency		150 Hz	150 Hz	150 Hz
Voltage drop		17.2 V	17.1 V	18.0 V
Rated DC link voltage		935 V	935 V	935 V
Maximum voltage rise at motor terminals ${ }^{1)}$		< $500 \mathrm{~V} / \mu \mathrm{s}$	< $500 \mathrm{~V} / \mu \mathrm{s}$	< $500 \mathrm{~V} / \mathrm{\mu s}$
Maximum peak voltage at motor terminals (phase to phase) ${ }^{2) 3)}$	@ 400 V	800 V	800 V	800 V
	@ 690 V	1350 V ... 1500 V	1350 V ... 1500 V	1350 V ... 1500 V
Maximum peak voltage at motor terminals (phase to earth) ${ }^{2)}$	@ 400 V	650 V	650 V	650 V
	@ 690 V	1100 V	1100 V	1100 V
Maximum cable length filter - motor (screened / unscreened) ${ }^{3)}$		$\begin{aligned} & 450 \mathrm{~m} / 650 \mathrm{~m} \\ & 525 \mathrm{~m} / 800 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 450 \mathrm{~m} / 650 \mathrm{~m} \\ & 525 \mathrm{~m} / 800 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 450 \mathrm{~m} / 650 \mathrm{~m} \\ & 525 \mathrm{~m} / 800 \mathrm{~m} \end{aligned}$
Terminal type		Busbar M8	Busbar M10	Busbar M10
Rated terminal cross section (load circuit)		95 mm²	$120 \mathrm{~mm}^{2}$	$\begin{array}{\|l\|} \hline 2 \times 120 \mathrm{~mm}^{2} \\ 1 \times 185 \mathrm{~mm}^{2} \\ \hline \end{array}$
Rated terminal cross section (DC link feedback) ${ }^{4)}$		$25 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$
Degree of protection ${ }^{5}$		IPOO	IPOO	IPOO
Ambient temperature ${ }^{6}$		$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Weight		77 kg	97 kg	172 kg
Connection		Metrical ($\mathrm{mm}^{2} / \mathrm{Nm}$) Imperial (AWG / Ibf.in)		
Line / motor cable		$\begin{array}{\|l\|l\|l\|} \hline 95 & 13.0 \\ 3 / 0 / 115 \end{array}$	$\begin{aligned} & 120 / 13.0 \\ & 4 / 0 / 115 \end{aligned}$	$\begin{array}{\|l} \hline 2 \times 120 / 13.0 \\ 2 \times 4 / 0 / 115 \\ 185 / 13.0 \\ 6 / 0 / 13.0 \end{array}$
DC link		$\begin{aligned} & 25 / 9.0 \\ & 4 / 80 \end{aligned}$	$\begin{aligned} & \hline 25 / 9.0 \\ & 4 / 80 \end{aligned}$	$\begin{aligned} & \hline 50 / 9.0 \\ & 1 / 80 \end{aligned}$
Ground		$\begin{array}{\|l\|} \hline 50 / 6.0 \\ 1 / 53 \\ \hline \end{array}$	$\begin{aligned} & 70 / 6.0 \\ & 210 / 53 \end{aligned}$	$\begin{aligned} & 95 / 6.0 \\ & 3 / 0 / 53 \end{aligned}$

1) Voltage rise according IEC/TS 60034-17
2) Under nominal DC link voltage
3) Maximum peak voltage at motor terminals $<1350 \mathrm{~V}$ at cable length up to 450 m screened or 650 m unscreened Maximum peak voltage at motor terminals $<1500 \mathrm{~V}$ at cable length up to 525 m screened or 800 m unscreened
4) Short-circuit-proof wiring is required
5) Installing the filter in an enclosure is required

2.6 Optional components

6) Higher ambient temperatures up to $60^{\circ} \mathrm{C}$ allowed with current derating at $40^{\circ} \mathrm{C}$, in the range $40 \ldots 50^{\circ} \mathrm{C}$ with 1.5% per 1 K and in the range $50 \ldots 60^{\circ} \mathrm{C}$ with 1.9% per 1 K

Article number 6SL3000	-2DE35-0AA0	-2DE38-4AA0	-2DE41-4AA0
Maximum output	490 A	840 A	1405 A
Degree of protection	IPOO	IPOO	IPOO
Output frequency	0 ... 150 Hz	0 ... 150 Hz	0 ... 150 Hz
dv/dt filter			
Power loss - at 50 Hz - at 60 Hz - at 150 Hz	$\begin{aligned} & 0.874 \mathrm{~kW} \\ & 0.904 \mathrm{~kW} \\ & 0.963 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.106 \mathrm{~kW} \\ & 1.115 \mathrm{~kW} \\ & 1.226 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 1.111 \mathrm{~kW} \\ & 1.154 \mathrm{~kW} \\ & 1.23 \mathrm{~kW} \end{aligned}$
Connections - Power Module - Load - Ground	M12 M12 M6	M12 M12 M6	$\begin{array}{\|l} 2 \times \mathrm{M} 12 \\ 2 \times \mathrm{M} 12 \\ \mathrm{M} 6 \end{array}$
Maximum cable length between filter and motor (screened / unscreened) ${ }^{6)}$	$300 \mathrm{~m} / 450 \mathrm{~m}$		
Weight	122 kg	149 kg	158 kg
Voltage peak limiter			
Power loss - at 50 Hz - at 60 Hz - at 150 Hz	$\begin{aligned} & 0.042 \\ & 0.039 \\ & 0.036 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.077 \\ 0.072 \\ 0.066 \end{array}$	$\begin{array}{\|l\|l} 0.134 \\ 0.125 \\ 0.114 \end{array}$
Connections - dv/dt filter - DC - Ground	Terminal $70 \mathrm{~mm}^{2}$ Terminal $70 \mathrm{~mm}^{2}$ Terminal $35 \mathrm{~mm}^{2}$	$\begin{aligned} & \text { M8 } \\ & \text { M8 } \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & \text { M10 } \\ & \text { M10 } \\ & \text { M8 } \end{aligned}$
Weight	16 kg	48 kg	72 kg

Article number 6SL3000	-2DH35-8AAO	-2DH38-1AAO
Maximum output	575 A	810 A
Degree of protection	IP00	IP00
Output frequency	$0 \ldots 150 \mathrm{~Hz}$	$0 \ldots 150 \mathrm{~Hz}$
dv/dt filter		
Power loss	0.862 kW	0.828 kW
- at 50 Hz	0.902 kW	0.867 kW
- at 60 Hz	0.964 kW	
- at 150 Hz		$2 \times \mathrm{M} 12$
Connections	M12	$2 \times \mathrm{M} 12$
- Power Module	M12	M6
- Load	M6	
- Ground		

Article number 6SL3000	-2DH35-8AA0	-2DH38-1AA0
Maximum cable length between filter and motor (screened / unscreened) ${ }^{6)}$	$300 \mathrm{~m} / 450 \mathrm{~m}$	
Weight	172 kg	160 kg
Voltage peak limiter		
Power loss - at 50 Hz - at 60 Hz - at 150 Hz	$\begin{aligned} & 0.063 \mathrm{~kW} \\ & 0.059 \mathrm{~kW} \\ & 0.054 \mathrm{~kW} \end{aligned}$	$\begin{array}{\|l} 0.106 \mathrm{~kW} \\ 0.1 \mathrm{~kW} \\ 0.091 \mathrm{~kW} \end{array}$
Connections - dv/dt filter - DC - Ground	$\begin{aligned} & \text { M8 } \\ & \text { M8 } \\ & \text { M8 } \end{aligned}$	M10 M10 M8
Weight	48 kg	72 kg

2.6.7 Push-through mounting kit

Overview

The optional push-through mounting kit is used to mount a converter in a control cabinet with its heatsink passing through the cabinet panel. The push-through mounted converters can fulfill a degree of protection of IP20. The back side of the converter must be enclosed adequately.

Note

Push-through mounting kits are available for converters of frame sizes FSA to FSG.

! WARNING

Spread of fire from the back side of the converter

Component failures can cause spread of fire and smoke from the back side of a converter installed with a push-through mounting kit. This can result in serious personal injury or property damage.

- Cover the back side of the converter sufficiently with a metallic cover or a separate metallic air duct or similar.

Article number

Converter frame size	Push-through mounting kit
FSA	6SL3261-6GA00-OBAO
FSB	6SL3261-6GB00-0BAO
FSC	6SL3261-6GC00-OBAO
FSD	6SL3261-6GD00-OBAO

Converter frame size	Push-through mounting kit
FSE	6SL3261-6GE00-0BA0
FSF	6SL3261-6GFO0-0BA0
FSG	6SL3261-6GG00-0BA0

Mounting the converter with the push-through mounting kit

The push-through mounting kit comprises one piece of frame for converter FSA to FSC, and four pieces of frames for converter FSD to FSG.

Mount the converter with push-through mounting kit on the uncoated panel of the control cabinet. Further information about EMC-compliant installation is available in the following section:
EMC-compliant setup of the machine or plant (Page 93)
Procedure, FSA ... FSC

1. Prepare a cutout and holes in the control cabinet panel for the push-through mounting kit. D] Dimension drawings and drill patterns (Page 81)
2. Fix the U-shape frame to the converter using screws ($4 \times \mathrm{M} 4-2.5 \mathrm{Nm}$) (step (1)).
3. Push the converter heatsink through the cutout of the control cabinet.
4. Fix the converter to the cabinet panel with screws (FSA/FSB: $6 \times$ M6-2.5 Nm; FSC: $6 \times$ M63 Nm) (step (2).
You have correctly installed the converter with the push-through mounting kit.
\square

Procedure, FSD ... FSG

1. Prepare a cutout and holes in the control cabinet panel for the push-through mounting kit. Dimension drawings and drill patterns (Page 81)
2. Fix the top and bottom frames (bearing "TOP" and "BOTTOM" marks respectively) to the converter using screws (FSD/FSE: $8 \times$ M5-3Nm; FSF/FSG: $8 \times \mathrm{M} 8-25 \mathrm{Nm}$) (step (1)).
3. For converter FSD to FSF, first attach the left and right frames (bearing "LEFT" and "RIGHT" marks respectively) to the rear of the converter, and then fix them together with the top and bottom frames using screw nuts (FSD/FSE: $8 \times$ M5-3 Nm; FSF: $8 \times \mathrm{M} 8-25 \mathrm{Nm}$) (step (2)). For converter FSG, after attaching the left and right frames, you also need to attach four additional support clips from the front of the converter, and fix the clips with all mounting frames together using the screw nuts (see below) $(8 \times \mathrm{M} 8-25 \mathrm{Nm})$.

4. Fix the mounting frames in place with screws (FSD: $4 \times \mathrm{M} 5-6 \mathrm{Nm} ; \mathrm{FSE}: 4 \times \mathrm{M} 6-10 \mathrm{Nm} ; \mathrm{FSF}$: $4 \times$ M8-25 Nm; FSG: $4 \times$ M10-50 Nm) at the mounting holes of the converter (step (3).
5. Push the heatsink through the cutout of the control cabinet.
6. Fix the converter with the fixing screws (FSD/FSE: $6 \times \mathrm{M} 5-6 \mathrm{Nm}$; FSF/FSG: $8 \times \mathrm{M} 8-25 \mathrm{Nm}$) to the cabinet panel (step (4).

You have correctly installed the converter with the push-through mounting kit.
\square

Mounting the shield connection kit for the Power Module, push-through mounted FSD ... FSG
The push-through mounting kits for converters of frame sizes FSD to FSG provide separate shielding plates for the power connections. In order to connect the line supply and motor cable shields for a push-through mounted converter FSD to FSG, you must use the shielding plate provided in the push-through mounting kit.

Procedure, FSD ... FSG

1. Remove the four screws at the bottom of the converter.
2. Attach the shielding plate to the converter and fix it in place by fastening the four screws. For converter FSG, use two additional screws to fix the shielding plate to the cabinet panel.
FSD ... FSF

3. If the converter has an integrated line filter, mount the EMC connecting bracket provided in the scope of delivery of the converter. For more information about mounting the EMC connecting bracket, see the following section:
4] Mounting the shield connection kits (Page 84)
You have now mounted the shield connection kit.
\square

2.6.8 Mounting grips for push-through mounted converters

For the push-through mounted converters FSD to FSG, the optional mounting grips can be used to mount the converters without hoisting gear.

Article number: 6SL3200-0SM22-0AAO
For more information about the installation of this optional component, see the following section:
A] Additional mounting instructions, FSD ... FSG (Page 87)

2.6.9 IP21 top cover

Overview

The optional IP21 top cover provides extra protection for the converter. The IP21 top cover is mounted above the converter and includes the necessary seals to ensure compliance with degree of protection IP21.

Note

IP21 top covers are available for converters of frame sizes FSA to FSG.

Mounting

Mounting instructions:

- Mount the IP21 top cover in a tightly controlled electrical room using two screws.
- Mount the IP21 top cover right above the converter so that the cover and converter are aligned by their centers.
- Maintain the clearance to the converter.

Table 2-1 IP21 top cover dimensions - mm (inch)

Frame size	Clearance	A	B	C	D	\emptyset	Tightening torque
FSA	100 (3.9)	25 (1.0)	120 (4.7)	80 (3.15)	306 (12.0)	4.5 (0.18)	$\begin{array}{\|l} 3 \mathrm{Nm} \\ \text { (27 Ibf.in) } \end{array}$
FSB			160 (6.3)	118 (4.6)		5.5 (0.22)	
FSC		29 (1.1)	260 (10.2)	170 (6.7)	323 (12.7)	6.0 (0.24)	6 Nm (53 lbf.in)
FSD	300 (11.8)						
FSE			335 (13.2)	230 (9.1)			
FSF, FSG			365 (14.4)	270 (10.6)	443 (17.4)		

Article number

Converter frame size	Article number
FSA	6 SL3266-1PA00-OBAO
FSB	6SL3266-1PB00-OBAO
FSC, FSD	6SL3266-1PD00-OBAO
FSE	6 SL3266-1PE00-OBAO
FSF, FSG	6SL3266-1PF00-OBAO

2.6.10 Mounting kit for line-side cable connection, left (FSH only)

Alternatively, for converters of frame size FSH, the line supply cables can be connected on the left side of the converter using this optional mounting kit. The converter can then be installed higher in the control cabinet, allowing more efficient use of the available cabinet space. In many cases, use of this installation kit also helps in the implementation of effective cabinet cooling. For converters of frame size FSJ, the line supply cables can only be connected from the top.

Article number: 6SL3366-1LH00-OPAO

2.6.11 I/O Extension Module

The SINAMICS G120X I/O Extension Module is available as an optional component. It expands the number of the I/O terminals on the converter, enabling more converter control functions. It also provides connection to the operator panel (BOP-2 or IOP-2) or SINAMICS G120 Smart Access.

Article number: 6SL3255-OBEOO-OAAO

Note

The SINAMICS G120X I/O Extension Module is only supported on the G120X converter that meets the following restrictions:

- FS version ≥ 0202 (FSA ... FSG)/02 (FSH/FSJ)
- FW version ≥ 1.01

You can find the FS version of your converter on the rating plate.

Scope of delivery

The delivery contains the following components:

- I/O Extension Module
- Front cover for the Control Unit
- Ferrite core (used only when the I/O Extension Module connects an operator panel that is mounted via the door mounting kit)
- Compact installation instructions

Outline dimensions

Mounting

NOTICE

Device damage due to installation with power supply switched on

Installing or removing the SINAMICS G120X I/O Extension Module when the converter is in the power-on state can cause damage to the device.

- Make sure that the converter is powered off before installing or removing the SINAMICS G120X I/O Extension Module.

To mount the I/O Extension Module, you must first open the cover of X21 interface (Page 128) at the front of the Control Unit of the converter, and then proceed as follows:

1. Locate the lower edge of the I/O Extension Module into the matching recess of the Control Unit.
2. Plug the module onto the converter until the latch audibly engages.
3. Open the cover of the terminal strips at the front of the I/O Extension Module, and fix the module with the provided M3 screw.
4. Open the front cover of the converter and pull it out manually. Wire the terminal strips based on your actual application.
5. Fit the provided front cover in place until the latch audiably engages.

You have now mounted the I/O Extension Module.
\square

Special restrictions

When using the I/O Extension Module to connect the operator panel that is mounted via the door mounting kit, attach the delivered ferrite core to the cable (connecting the I/O Extension Module and the operator panel) in the vicinity of the I/O Extension Module to meet the electrical fast transient/burst immunity Class A (according to IEC 61800-3).

Interface overview

To access the interfaces at the front of the I/O Extension Module, you must open the front cover.

(1) Interface to an operator panel or SINAMICS G120 Smart Access
(2) Switch for AI 2 (temperature/current)

(3) Terminal strip X202
(4) Hole for fixing screw
(5) Terminal strips X203 and X204
(6) Interface to converter

Wiring the terminal strips

See the following for the wiring example of the I/O Extension Module:

Note

In the following wiring diagram, the DIs of the I/O Extension Module and those of the converter are used as one group, because the DI COM of the module and that of the converter are connected. You can choose not to connect the two DI COMs so that the DIs of the module and the converter can be used in two separate groups.

Max. DO current (for 30 V DC) dependent on the surrounding air temperature

For systems according to ULIEC		
Frame size	DO $2 \ldots$ DO 3	DO $4 \ldots$ DO 5
FSA \ldots FSC	2 A @ max. $55^{\circ} \mathrm{C}$	$2 \mathrm{~A} @ \operatorname{max.} 55^{\circ} \mathrm{C}$
FSD \ldots FSG	3 A @ max. $55^{\circ} \mathrm{C}$	
FSH/FSJ	3 A @ max. $45^{\circ} \mathrm{C} ; 2 \mathrm{~A} \mathrm{@} \mathrm{max}. 55^{\circ} \mathrm{C}$	

WARNING

Electric shock due to DO connection to dual power supply
When connecting the digital outputs of the I/O Extension Module to DC and AC power supplies at the same time, exposed components may carry a hazardous voltage that might result in serious injury or death.

- Do not mix live parts with control signals (PELV/SELV) when connecting the DO terminals of the I/O Extension Module; for example, it is not allowed to connect DO 2 to an AC 220 V power supply while connecting DO 3 to a DC 24 V power supply at the same time.

WARNING

Electric shock due to terminal strips not installed in place
Terminal strips not installed in place may carry a hazardous voltage that might result in serious injury or death.

- If you need to do the wiring with the terminal strip pulled-out, after you finish the wiring, make sure that you install it back properly by plugging it in place with a click.

Wiring example of connecting an external power supply

The following diagram shows you how to connect the digital inputs and digital outputs of the I/O Extension Module with an external power supply.

Figure 2-8 Connecting P -switching contacts

Figure 2-9 Connecting M-switching contacts

Permissible wire and wiring options

When wiring the terminal strip X204, use only $1.5 \mathrm{~mm}^{2}$ solid or finely-stranded wires. For terminal strips X202/X203, refer to the table below:

Solid or finely-stranded	Finely stranded with non-insulated end sleeve	Finely stranded with partially insulated end sleeve	Two finely-stranded with partially insulated twin end sleeves
	$\rightarrow \begin{array}{ll} 8 \mathrm{~mm} & 0.5 \ldots \\ 1.0 \mathrm{~mm}^{2} \end{array}$		

2.6.12 Operator panel

An operator panel can be ordered either together with the converter or separately as an optional component. It has been designed to enhance the interface and communications capabilities of the converter. You can use an operator panel to commission, troubleshoot, and control the converter, as well as to back up and transfer the converter settings.
The operator panels (BOP-2 and IOP-2) can be mounted either directly on the converter or in a control cabinet door using a door mounting kit. When you use the door mounting kit to mount the operator panel in a motor control cabinet door for FSA ... FSG converters, you must use a specific MCC cable.

Article number

Basic Operator Panel 2 (BOP-2)	6SL3255-0AA00-4CA1
Intelligent Operator Panel 2 (IOP-2)	6SL3255-0AA00-4JA2
SIPLUS IOP-2 (with 3C4 class coating)	6AG1255-0AA00-2JA2
IOP-2 Handheld	6SL3255-0AA00-4HA1
Door mounting kit for the operator panel	6SL3256-0AP00-OJAO
MCC cable for the operator panel in FSA ... FSG converters	6SL3266-4HA00-OAC0

2.6.13 SINAMICS G120 Smart Access

The SINAMICS G120 Smart Access is a Wi-Fi-based Web server module and an engineering tool. It has been designed for quick commissioning, parameterization, and maintenance of the converters.

Article number: 6SL3255-0AA00-5AAO

FAQ (https://support.industry.siemens.com/cs/ww/en/view/109765499)

2.6.14 Memory card

Function description

Table 2-2 Memory card to back up converter settings

Scope of delivery	Article number
Memory card without firmware	6SL3054-4AG00-2AAO

More information

Using memory cards from other manufacturers

If you use a different SD memory card, then you must format it as follows:

- Insert the card into your PC's card reader.
- Command to format the card: format x : Ifs:fat or format x : Ifs:fat32 (x : Drive code of the memory card on your PC.)

Functional restrictions with memory cards from other manufacturers

The following functions are either not possible - or only with some restrictions - when using memory cards from other manufacturers:

- Know-how protection is only possible with one of the recommended memory cards.
- In certain circumstances, memory cards from other manufacturers do not support writing or reading data from/to the converter.

2.6.15 SINAMICS FSG Adapter Set

With the SINAMICS FSG Adapter Set, you can use cables with a maximum cross-section of 4×120 mm^{2} per phase for line and motor connections on the G120X FSG converters.

Article number: 6SL3266-2HG00-OBAO

Note

After installation, the FSG Adapter Set does not affect the technical specifications of the G120X FSG converters.

Scope of delivery

Applicable products

Product	Voltage (V)	Rated power (kW)	Article number
G120X FSG	400	160	6SL32 .0-.YE50- . . 0
		200	6SL32 .0-.YE52- . . 0
		250	6SL32 .0-.YE54- . . . 0
	690	160	6SL32 .0-.YH50- .C . 0
		200	6SL32 .0-.YH52- .C . 0
		250	6SL32 .0-.YH54- .C. 0

Dimensions (Unit: mm)

Cable cross-sections and screw tightening torques

Cable lug	Cross-section	Tightening torque
	$35 \ldots 4 \times 120 \mathrm{~mm}^{2}$ $\leq 40 \mathrm{~mm}$ UL approved ring-type cable lug (ZMVV) for M10 screws	$22 \ldots 25 \mathrm{Nm}$

2.6 Optional components

Installation

Note

To ensure correct and safe connections, crimp the cable lugs with a hexagon crimping tool.

Note

To install the cover in place, do not use shrink-on sleeves if the cable cross-section is $120 \mathrm{~mm}^{2}$.
Note
Re-install the insulating plates in place after connecting the cables.

2.7 Motors and multi-motor drives that can be operated

Siemens motors that can be operated

You can operate the following motors with the converter:

- Standard asynchronous motors
- Synchronous reluctance motors
- Permanent magnet synchronous motor with moderate saturation

You can find information about more motors on the Internet:
(3) Motors that can be operated (https://support.industry.siemens.com/cs/ww/en/view/ 100426622)

Third-party motors that can be operated

You can also operate the following non-Siemens motors with the converter:

- Standard asynchronous motors
- Most permanent magnet synchronous motors designed for converter operation with moderate saturation:
- Surface-mounted permanent magnet synchronous motors
- Integrated permanent magnet synchronous motors

Restrictions

NOTICE

Insulation failure due to unsuitable third-party motor
A higher load occurs on the motor insulation in converter mode than with line operation.
Damage to the motor winding may occur as a result.

- Contact your local Siemens contact person
- Please observe the notes in the System Manual "Requirements for third-party motors"

The following standard induction motors are permissible:

- 200 V converter

Motor power in the range of 25% to 125% of the converter power

- 400 V converter

Motor power in the range of 25% to 125% of the converter power

- 690 V converter

Motor power in the range of 50% to 125% of the converter power

Restrictions for permanent magnet synchronous motors:

- Continuous operation of a permanent magnet synchronous motor at speeds $<15 \%$ of the rated speed is not possible.
- Load moment of inertia > 20\% of the motor moment of inertia Operation with a low inertia motor is not possible.
- Cogging torque $<4 \%$ of the rated torque
- Sinusoidal EMF generator voltage with THD $\leq 2 \%$
- EMF generator voltage \leq rated voltage of the converter
- Rated motor voltage ≤ 0.9 mains voltage

Additional information

More information is provided on the Internet:

(3) Requirements for third-party motors (https://support.industry.siemens.com/cs/ww/en/ view/79690594)

Additions to the System Manual "Requirements placed on third-party motors":

- The System Manual largely applies to the SINAMICS G120X converter, even though the latter is not explicitly mentioned in the System Manual.
- Instead of Chapter 4.5 of the System Manual, "Magnetizing current", the following chapter of these operating instructions applies:
\checkmark Setting the saturation characteristic of the permanent magnet synchronous motor (third-party motor) (Page 505)
- The pulse frequency of the converter varies between 2 kHz and 4 kHz , depending on the rated power of the converter. The losses in the motor are greater with a pulse frequency of 2 kHz than with a pulse frequency of 4 kHz . If you operate a motor on the converter with a pulse frequency of 2 kHz , the motor must be designed for this purpose.

Multi-motor operation

Multi-motor operation involves simultaneously operating several identical motors on one converter. For standard induction motors, multi-motor operation is generally permissible.
Additional preconditions and restrictions relating to multi-motor operation are available on the Internet:

Multi-motor drive (http://support.automation.siemens.com/WW/view/en/84049346)
2.7 Motors and multi-motor drives that can be operated

3.1 Installing the label for the North American market

Description

DANGER
tension danger ans isque de électrique. Une星 minutes après avoir coupé l'alimentation.

ATTENTION - Le déclenchement du dispositif de protection du circuit de dérivation peut être dû à une coupure qui résulte d'un courant de défaut. Pour limiter le risque d'incendie ou de choc électrique, examiner les pieces porteuses de courant et les autres eléments du contrôleur et les remplacer s'ils sont endommages. En cas de grillages de l'élément traversé par le courant dans un relais de surcharge, le relais tout entier doit être remplacé.

Le courant nominal de court-circuit du circuit d'alimentation et sa tension assignée dépendent du type et des caractéristiques assignées du dispositif de protection contre les surcharges. Pour plus de détails, voir manuel.

La protection intégrée contre les courts-circuits n'assure pas la protection de la dérivation. La protection de la dérivation doit être exécutée conformément au le National Electrical Code (NEC) ou le Code Canadien de L'électricité, première partie, et dans le respect des prescriptions locales et des instructions du fabricant.

Protection de surcharge moteur incluse. Voir manuel pour les paramètres d'origine et les réglages.

Figure 3-1 Adhesive label with danger and warning notes for North America
The converter is supplied with an adhesive label with danger and warning notes for the North American market.

Attach the adhesive label in the required language to the inside of the control cabinet where it is clearly visible at all times.

3.2 Power losses and air cooling requirements

Overview

To protect the components from overheating, the control cabinet requires a cooling air flow, which depends on the power loss of the individual components.

Measures in order to ensure that the components are adequately cooled

- Add the power losses of the individual components.
- Technical data dependent on the power (Page 1321)
- Use the manufacturers' data for components, for example reactors or filters.
- Calculate the air flow required:
airflow [1/s] = power loss [W] * 0.86/ $\Delta \mathrm{T}[\mathrm{K}]$
Power loss: Total of the power losses of the individual components.
ΔT : Permissible temperature rise in the control cabinet.
- Ensure that the control cabinet is appropriately ventilated and equipped with suitable air filters.
- Ensure that the components maintain the specified clearances with respect to one another.
- Ensure that the components are provided with adequate cooling air through the cooling openings.
- Use appropriate air barriers to prevent cooling air short circuits.
- Ensure that the electrical cabinet is adequately ventilated and is equipped with suitable air filters.
Comply with the replacement intervals of the air filter.

Further measures

Air barriers can prevent converters from overheating each other. Such measures are only necessary in extreme cases when the cooling air temperature reaches the maximum ambient temperature of the converter.

3.3 Mounting the converter

3.3.1 Basic installation rules

General installation conditions

When installing the converters carefully observe the conditions listed below in order to guarantee reliable, continuous and disturbance-free operation.

- The converters are designed for installation in a control cabinet.
- The converters are suitable for mounting on non-combustible surfaces only, for example, on an uncoated metal mounting plate.
- The converters are of IEC/UL Open Type and comply with degree of protection IP20 according to IEC 60529. The converters utilizing push-through technology fulfill a degree of protection of IP20.
- The converters are certified for use in environments with degree of pollution 2 without condensation, that is in environments where no conductive pollution/dirt occurs. Condensation is not permissible.
- Ensure that the device is free of dust and dirt. When using a vacuum cleaner, this must comply with ESD equipment rules.
- Keep the device away from water, solvents and chemicals. Take care to install it away from potential water hazards, for example, do not install it beneath pipes that are subject to condensation. Avoid installing it where excessive humidity and condensation may occur.
- Keep the device within the maximum and minimum operating temperatures. At temperatures $>40^{\circ} \mathrm{C}$ and installation altitudes $>1000 \mathrm{~m}$, the devices must be derated.
- Ensure that the correct level of ventilation and air flow is provided.
- Fast temperature changes of the air drawn in (for example, by using cooling units) are not permitted due to the danger of condensation.
- Ensure that all converters and the cabinet are grounded according to the EMC guidelines D] EMC-compliant setup of the machine or plant (Page 93)

Installation in the United States and Canada (UL or CSA)

Converters for systems in the United States/Canada (UL/cUL)

- For a system configuration in conformance with UL/cUL, use the UL/cUL-approved fuses or circuit breakers under the following Internet address:
(2.) Fuses and circuit breakers (https://support.industry.siemens.com/cs/ww/en/view/ 109762895)
- The converter of frame size FSA has to be mounted in an enclosure sized min. 500 mm (height) $\times 400 \mathrm{~mm}$ (depth) $\times 255 \mathrm{~mm}$ (width).
- The integrated solid-state short-circuit protection does not provide branch circuit protection.
- UL: Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.
- CSA: Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I
- On the system side, provide branch circuit protection in conformance with NEC or CEC, Part 1, and the local regulations.
- The converters provide internal motor protection corresponding to UL 61800-5-1. The protection threshold is 115% of the converter full load current. When commissioning, you can adapt the motor overload protection using parameter p0640.
- For frame sizes FSF and FSG, to connect the line supply and motor only use UL approved ringtype cable lugs (ZMVV), which are certified for the particular voltage, with a permissible current of at least 125% of the input and output current. Use the higher value as basis.
- The line and output voltage may not be lower than 400 V or higher than 600 V .
- Only use copper cables rated for $60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$. For converters FSA to FSC, only use copper cables rated for $75^{\circ} \mathrm{C}{ }^{1}$.
${ }^{1)}$ When connecting a cable with a higher rated temperature, do not reduce the cable crosssection.
Example: If a cable with a rated temperature of $60^{\circ} \mathrm{C}$ is specified, the cable cross-section must also be rated according to $60^{\circ} \mathrm{C}$. When connecting a cable with a higher rated temperature, e.g. $90^{\circ} \mathrm{C}$, you must determine the cable cross-section as if the cable had a rated temperature of 60 ${ }^{\circ} \mathrm{C}$.

WARNING

Risk of explosion or spread of fire from built-in devices
Short circuits in the converter or its components may cause explosion or fire in the control cabinet, which can result in serious personal injury or property damage.

- Install built-in devices in a suitable and robust metal cabinet in such a way that personnel are protected against the explosive shock and fire, or take other appropriate protection measures, for example, using five safety cabinet locks additionally.

Additional measures for CSA conformity

Converter FSA ... FSC

- Install the converter on a surge protection device with the following features:
- Rated voltage 3-phase 480 V AC
- Overvoltage category III
- Overvoltage VPR $\leq 500 \mathrm{~V}$
- Applications, type 1 or type 2 Frame

Converter FSD ... FSG

- Operate the converter under the following ambient conditions:
- Pollution degree 2
- Overvoltages category III

Protection against the spread of fire

The device may be operated only in closed housings or in control cabinets with protective covers that are closed, and when all of the protective devices are used. The installation of the device in a metal control cabinet or the protection with another equivalent measure must prevent the spread of fire and emissions outside the control cabinet.

Protection against condensation or electrically conductive contamination

Protect the device, e.g. by installing it in a control cabinet with degree of protection IP54 according to IEC 60529 or NEMA 12. Further measures may be necessary for particularly critical operating conditions.

If condensation or conductive pollution can be excluded at the installation site, a lower degree of control cabinet protection may be permitted.

Mounting position

Figure 3-2 Only mount in the vertical position with the line connection at the bottom

3.3.2 Dimension drawings and drill patterns

Overview

The converters are designed to be mounted in accordance with the dimension drawings, in a cabinet using screws, nuts and washers.

Note

To comply with EMC specifications, it is recommended to mount the converter on an electrically conductive mounting panel in the cabinet. This mounting panel should be connected to the cabinet PE.

3.3.2.1 Mounting the converter on the mounting panel

Dimensions and clearance distances - mm (in)

Fram e size	Height	Height including shield plate	Width	Depth	Depth with additional module			Clearance ${ }^{2)}$			
					With operator panel	With G120 Smart Ac- cess	With I/O Extension Module	A	B	lateral	front
FSA	$\begin{aligned} & 232 \\ & (9.1) \end{aligned}$	330 (13.0)	73 (2.8)	$\begin{aligned} & 209 \\ & (8.2) \end{aligned}$	218 (8.6)	216 (8.5)	$\begin{array}{\|l\|} \hline 236 \\ (9.3)^{1)} \end{array}$	80 (3.1)	$\begin{aligned} & 100 \\ & (3.9) \end{aligned}$	$0^{3)}$	-
FSB	$\begin{aligned} & \hline 275 \\ & (10.8) \end{aligned}$	383 (15.1)	$\begin{aligned} & 100 \\ & (3.9) \end{aligned}$	$\begin{aligned} & \hline 209 \\ & (8.2) \end{aligned}$	218 (8.6)	216 (8.5)	$\begin{array}{\|l\|} \hline 236 \\ (9.3)^{1)} \end{array}$	80 (3.1)	$\begin{array}{\|l\|} \hline 100 \\ (3.9) \end{array}$	$0^{3)}$	-
FSC	$\begin{aligned} & 295 \\ & (11.6) \end{aligned}$	423 (16.7)	$\begin{aligned} & 140 \\ & (5.5) \end{aligned}$	$\begin{aligned} & \hline 209 \\ & (8.2) \end{aligned}$	218 (8.6)	216 (8.5)	$\begin{array}{\|l\|} \hline 236 \\ (9.3)^{1)} \end{array}$	80 (3.1)	$\begin{array}{\|l\|} \hline 100 \\ (3.9) \end{array}$	$0^{3)}$	-
FSD	$\begin{aligned} & \hline 472 \\ & (18.6) \end{aligned}$	625 (24.6)	$\begin{aligned} & 200 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 239 \\ & (9.4) \end{aligned}$	248 (9.8)	246 (9.7)	$\begin{array}{\|l\|} \hline 266 \\ (10.5)^{11} \end{array}$	$\begin{array}{\|l\|} \hline 300 \\ (11.8) \end{array}$	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \end{array}$	$0^{3)}$	-
FSE	$\begin{aligned} & 551 \\ & (21.7) \end{aligned}$	729 (28.7)	$\begin{aligned} & 275 \\ & (10.8) \end{aligned}$	$\begin{aligned} & \hline 239 \\ & (9.4) \end{aligned}$	248 (9.8)	246 (9.7)	$\begin{array}{\|l} 266 \\ (10.5)^{11} \end{array}$	$\begin{array}{\|l\|} \hline 300 \\ (11.8) \end{array}$	$\begin{aligned} & 350 \\ & (13.8) \end{aligned}$	$0^{3)}$	-
FSF	$\begin{aligned} & \hline 709 \\ & (27.9) \end{aligned}$	969 (38.1)	$\begin{aligned} & 305 \\ & (12) \end{aligned}$	$\begin{array}{\|l\|} \hline 360 \\ (14.2) \end{array}$	369 (14.5)	367 (14.4)	$\begin{array}{\|l\|} \hline 387 \\ (15.2)^{11} \end{array}$	$\begin{array}{\|l\|} \hline 300 \\ (11.8) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 350 \\ (13.8) \end{array}$	$0^{3)}$	-
FSG	$\begin{aligned} & \hline 999 \\ & (39.3) \end{aligned}$	$\begin{aligned} & \hline 1255 \\ & (49.4) \end{aligned}$	$\begin{aligned} & 305 \\ & (12) \end{aligned}$	$\begin{array}{\|l\|} \hline 360 \\ (14.2) \end{array}$	369 (14.5)	367 (14.4)	$\begin{array}{\|l\|} \hline 387 \\ (15.2)^{11} \end{array}$	$\begin{array}{\|l\|} \hline 300 \\ (11.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 350 \\ (13.8) \end{array}$	$0^{3)}$	-

Fram e size	Height	Height including shield plate	Width	Depth	Depth with additional module			Clearance ${ }^{\text {2) }}$			
					With operator panel	With G120 Smart Access	With I/O Extension Module	A	B	lateral	front
FSH	$\begin{aligned} & \hline 1696 \\ & (66.7) \end{aligned}$	-	$\begin{aligned} & \hline 548 \\ & (21.6) \end{aligned}$	$\begin{aligned} & \hline 393 \\ & (15.5) \\ & \hline \end{aligned}$	-	-	-	0	$\begin{aligned} & 250 \\ & (9.8) \end{aligned}$	30 (1.2)	$\begin{array}{\|l\|} \hline 100 \\ (3.9) \end{array}$
FSJ	$\begin{aligned} & \hline 1621 \\ & (63.8) \end{aligned}$	-	$\begin{aligned} & \hline 801 \\ & (31.5) \end{aligned}$	$\begin{aligned} & \hline 393 \\ & (15.5) \end{aligned}$	-	-	-	0	$\begin{array}{\|l\|} \hline 250 \\ (9.8) \end{array}$	30 (1.2)	$\begin{array}{\|l\|} \hline 100 \\ (3.9) \end{array}$

1) Additional depth of $11.8 \mathrm{~mm} / 9.8 \mathrm{~mm}$ is required with an operator panel/G120 Smart Access mounted onto the I/O Extension Module.
2) The cooling air clearances A and B refer to the converter without shield plate.
${ }^{3)}$ For tolerance reasons, we recommend a lateral clearance of approx. 1 mm . For converters FSA ... FSC, the side-by-side mounting (with 0 mm lateral clearance) allows a maximum surrounding air temperature during operation of $50^{\circ} \mathrm{C}$; in case of the surrounding air temperature higher than $50^{\circ} \mathrm{C}$, a lateral clearance of 50 mm or greater is required.

Drill patterns - mm (in)

Table 3-1 FSA ... FSG

Note: For the converters FSD to FSG, a printed full-size drill pattern is supplied with each converter. This can be used to easily drill the necessary mounting holes.

Table 3-2 FSH and FSJ

Drill pattern	Dimensions	FSH	FSJ
	A1	160 (6.3)	200 (7.9)
	A2	150 (5.9)	290 (11.4)
	A3	160 (6.3)	200 (7.9)
	A4	225 (8.9)	345 (13.6)
	A5	225 (8.9)	345 (13.6)
	B	1419 (55.9)	1399 (55.1)
	G1	39 (1.5)	60.5 (2.4)
	G2	49 (1.9)	60.5 (2.4)
	\varnothing	8.5 (0.3)	8.5 (0.3)
	Fixings (bolts, washers, nuts)	$7 \times \mathrm{M} 8$	$7 \times \mathrm{M} 8$
	Tightening torque - Nm (Ibf. in)	25 (221.3)	25 (221.3)

3.3.2.2 Mounting the converter utilizing push-through technology (FSA to FSG only)

Use the optional mounting kit to mount a converter in push-through technology in a control cabinet. Mounting instructions are provided in the following section:
4] Push-through mounting kit (Page 55)
The following dimension drawings and drilling patterns are not to scale.
Panel thickness of the control cabinet $\leq 3.5 \mathrm{~mm}$
3.3 Mounting the converter

Mounting dimensions - mm (in)

Frame size	Width (W)	Height			Depth
		H (with shield plate)	H1 (wthout shield plate)	T1	T2
FSA	$127(5.0)$	$324(12.7)$	$234(9.2)$	$160(6.3)$	$57(2.2)$
FSB	$154(6.1)$	$384(15.1)$	$279(10.9)$	$153(6.0)$	$66(2.6)$
FSC	$192(7.6)$	$407(16.0)$	$295(11.6)$	$154(6.1)$	$65(2.5)$
FSD	$271(10.6)$	$647(25.5)$	$514(20.2)$	$142(5.6)$	$98(3.9)$
FSE	$360(14.2)$	$773(30.4)$	$600(23.6)$	$145(5.7)$	$93(3.7)$
FSF	$396(15.6)$	$1003(39.5)$	$749(29.5)$	$185(7.3)$	$185(7.3)$
FSG	$384(15.1)$	$1275(50.2)$	$1026(40.4)$	$184(7.2)$	$188(7.4)$

Cutouts and drilling patterns - mm (in)

Frame size	Drilling dimensions - mm (in)								Fixings	Tightening torque - Nm (lbf.in)
	a	b	b1	b2	C	d	e	\varnothing		
FSA	$\begin{aligned} & 105.5 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 102.5 \\ & (4.0) \end{aligned}$	-	-	233 (9.2)	82 (3.2)	$\begin{array}{\|l\|} \hline 18.5 \\ (0.72) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.5 \\ (0.26) \end{array}$	$6 \times \mathrm{M} 6$	$\begin{array}{\|l\|} \hline 2.5 \\ (22.1) \end{array}$
FSB	$\begin{aligned} & 132.5 \\ & (5.2) \end{aligned}$	117 (4.6)	-	-	280 (11)	109 (4.3)	28 (1.1)	$\begin{aligned} & \hline 6.5 \\ & (0.26) \end{aligned}$	$6 \times \mathrm{M} 6$	$\begin{aligned} & \hline 2.5 \\ & (22.1) \end{aligned}$
FSC	$\begin{aligned} & 170.5 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 120.5 \\ & (4.7) \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 296 \\ (11.6) \end{array}$	149 (5.9)	$\begin{aligned} & \hline 32 \\ & (1.26) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (0.26) \end{aligned}$	$6 \times \mathrm{M} 6$	3 (26.6)
FSD	246 (9.7)	235 (9.3)	241 (9.5)	-	$\begin{array}{\|l\|} \hline 497 \\ (19.6) \end{array}$	216 (8.5)	$\begin{aligned} & 10.5 \\ & (0.4) \end{aligned}$	7 (0.3)	$6 \times \mathrm{M} 5$	6 (53.1)
FSE	$\begin{array}{\|l\|} \hline 323 \\ (12.7) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 275 \\ (10.8) \end{array}$	$\begin{array}{\|l\|} \hline 281 \\ (11.1) \\ \hline \end{array}$	-	588 (23)	$\begin{array}{\|l\|} \hline 292 \\ (11.5) \\ \hline \end{array}$	19 (0.7)	7 (0.3)	$6 \times \mathrm{M} 5$	6 (53.1)
FSF	$\begin{aligned} & \hline 350 \\ & (13.8) \end{aligned}$	220 (8.7)	250 (9.8)	226 (8.9)	$\begin{aligned} & \hline 731 \\ & (28.8) \end{aligned}$	$\begin{aligned} & \hline 324 \\ & (12.8) \end{aligned}$	$\begin{aligned} & 20.5 \\ & (0.8) \end{aligned}$	10 (0.4)	$8 \times \mathrm{M} 8$	$\begin{aligned} & \hline 25 \\ & (221.3) \end{aligned}$
FSG	$\begin{aligned} & \hline 350 \\ & (13.8) \end{aligned}$	$\begin{aligned} & \hline 328 \\ & (12.9) \end{aligned}$	330 (13)	$\begin{aligned} & \hline 328 \\ & (12.9) \end{aligned}$	$\begin{aligned} & 1015 \\ & (40) \end{aligned}$	$\begin{aligned} & \hline 324 \\ & (12.8) \end{aligned}$	$\begin{aligned} & 14.6 \\ & (0.6) \end{aligned}$	$\begin{aligned} & 10 / 11 *(0 \\ & .4) \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \times \mathrm{M} 8 \mathrm{l} \\ 4 \times \mathrm{M} 10^{*} \end{array}$	$\begin{array}{\|l\|} \hline 25 \\ (221.3) / \\ 50 \\ (442.5)^{*} \\ \hline \end{array}$

* Four holes for mounting the shielding plate

3.3.3 Mounting the shield connection kits

Overview

We recommend that you mount the shield connection kits provided. The shield connection kit makes it simpler to install the converter in compliance with EMC regulations and to provide strength relief for the connected cables.

Mounting the shield connection kit, FSA ... FSC

Procedure

1. Remove the two screws and two U clamps from the bottom of the converter (1).
2. Mount the two U clamps with the two screws on the shield plate (2).
3. Fasten the shield plate in place using two screws (3).

You have now mounted the shield connection kit.
\square

Mounting the shield connection kit, FSD . FSG

For converters FSD to FSG, two sets of shield connection kits are available for the Control Unit and the Power Module respectively.

Mounting the shield connection kit for the Control Unit, FSD ... FSG

Attach the shielding plate to the bottom of the Control Unit, and use a cross-tip screwdriver PZ to tighten the screw to fix it onto the converter.

Mounting the shield connection kit for the Power Module, FSD ... FSG

Note

For a push-through mounted converter FSD ... FSG, use the shielding plate provided in the pushthrough mounting kit.
\checkmark Push-through mounting kit (Page 55)

Procedure, FSD/FSE

1. Attach the shielding plate to the bottom of the converter and fasten it in place using four screws (1).
2. If the converter has an integrated line filter, mount the EMC connecting bracket additionally. a. Slide the EMC connecting bracket into the converter, so that it is held in the converter by the clamping spring (2).
The EMC connecting bracket is positioned correctly if you feel some resistance when pulling it out from the converter.
b. Having ensured that it is positioned correctly, fasten the EMC connecting bracket in place using three screws (3).

You have now mounted the shield connection kit.

ロ

Procedure, FSF

1. Attach the shielding plate to the bottom of the converter and fasten it in place using four screws (1).
2. If the converter has an integrated line filter, mount the EMC connecting bracket additionally by fastening it to the shielding plate with four screws (2).

You have now mounted the shield connection kit.

Procedure, FSG

1. Secure each side part to the shielding plate with two screws (1).
2. Attach the shielding plate to the bottom of the converter and fasten it in place using six screws (2).
3. If the converter has an integrated line filter, mount the EMC connecting bracket additionally by fastening it to the shielding plate with four screws (3).

You have now mounted the shield connection kit.
\square

Mounting the covers for DC-link terminals (FSA ... FSG only)

The package of the shield connection kit contains the covers for DC-link terminals (R1 and F3). Proceed as follows to install the covers:

3.3.4 Additional mounting instructions for FSD ... FSJ

3.3.4.1 Additional mounting instructions, FSD ... FSG

When mounting the converters FSD to FSG, the weight of the converter should be considered and appropriate hoisting gear for mounting should be applied.
converter weight:
Technical data dependent on the power (Page 1321)
3.3 Mounting the converter

Hoisting gear

For cabinet panel mounted converters

Use crane lifting lugs and the appropriate hoisting gear when mounting the converters on the cabinet panel.

For push-through mounted converters
Use the hoisting gear shown below when mounting the converters utilizing push-through technology.

Mounting grips

Alternatively, you can use the mounting grips to mount the push-through mounted converters without hoisting gear. Install the four mounting grips as shown below.

3.3 Mounting the converter

3.3.4.2 Additional mounting instructions, FSH/FSJ

Installing

Removing the pallet

Lifting the converter into the cabinet

The converters FSH and FSJ can be lifted into the cabinet with the lifting eyes. Use a lifting harness where the ropes or chains are maintained in a vertical position. The device must not be lifted at an angle because this can damage the housing. Rope spreaders may have to be used.

The electrical cabinet installation must be realized in accordance with the dimension drawings supplied. The minimum cabinet sizes for the installation of converters FSH and FSJ are provided as follows:

- For FSH: 800 mm (width) $\times 2000 \mathrm{~mm}$ (height) $\times 600 \mathrm{~mm}$ (depth)
- For FSJ: 1000 mm (width) $\times 2000 \mathrm{~mm}$ (height) $\times 600 \mathrm{~mm}$ (depth)

Before converter installation, remove the side, back, and top plates from the cabinet frame, and mount at least two support plates in the cabinet.

After the converter is installed in the cabinet, install the side, back, and top plates back to the cabinet frame.

3.3.5 Mounting the optional components

Depending on the particular application, converters may require optional components. For more information about optional components, refer to Section "Optional components (Page 35)".
3.3 Mounting the converter

Wiring

4.1 Line supply and motor

4.1.1 EMC-compliant setup of the machine or plant

The converter is designed for operation in industrial environments where strong electromagnetic fields are to be expected.
Reliable and disturbance-free operation is only guaranteed for EMC-compliant installation. To achieve this, subdivide the control cabinet and the machine or system into EMC zones:

EMC zones

Figure 4-1 Example of the EMC zones of a plant or machine

Inside the control cabinet

- Zone A: Line supply connection
- Zone B: Power electronics Devices in Zone B generate energy-rich electromagnetic fields.
- Zone C: Control and sensors

Devices in Zone C do not generate any energy-rich electromagnetic fields themselves, but their functions can be impaired by electromagnetic fields.
4.1 Line supply and motor

Outside the control cabinet

- Zone D: Motors

Devices in Zone D generate electromagnetic fields with a significant amount of energy

4.1.1.1 Control cabinet

- Assign the various devices to zones in the control cabinet.
- Electromagnetically uncouple the zones from each other by means of one of the following actions:
- Side clearance $\geq 25 \mathrm{~cm}$
- Separate metal enclosure
- Large-area partition plates
- Route cables of various zones in separate cable harnesses or cable ducts.
- Install filters or isolation amplifiers at the interfaces of the zones.

Control cabinet assembly

- Connect the door, side panels, top and base plate of the control cabinet with the control cabinet frame using one of the following methods:
- Electrical contact surface of several cm^{2} for each contact location
- Several screw connections
- Short, finely stranded, braided copper wires with cross-sections $\geq 95 \mathrm{~mm}^{2} / 000$ (3/0) (-2) AWG
- Install a shield support for shielded cables that are routed out of the control cabinet.
- Connect the PE bar and the shield support to the control cabinet frame through a large surface area to establish a good electrical connection.
- Mount the control cabinet components on a bare metal mounting plate.
- Connect the mounting plate to the control cabinet frame and PE bar and shield support through a large surface area to establish a good electrical connection.
- For screw connections onto painted or anodized surfaces, establish a good conductive contact using one of the following methods:
- Use special (serrated) contact washers that cut through the painted or anodized surface.
- Remove the insulating coating at the contact locations.

Measures required for several control cabinets

- Install equipotential bonding for all control cabinets.
- Screw the frames of the control cabinets together at several locations through a large surface area using serrated washers to establish a good electrical connection.
- In plants and systems where the control cabinets are lined up next to one another, and which are installed in two groups back to back, connect the PE bars of the two cabinet groups at as many locations as possible.

Figure 4-2 Grounding and high-frequency equipotential bonding measures in the control cabinet and in the plant/system

Further information

Additional information about EMC-compliant installation is available in the Internet:
(2) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)
4.1 Line supply and motor

4.1.1.2
 Cables

Cables with a high level of interference and cables with a low level of interference are connected to the converter:

- Cables with a high level of interference:
- Cable between the line filter and converter
- Motor cable
- Cable at the converter DC link connection
- Cables with a low level of interference:
- Cable between the line and line filter
- Signal and data cables

Cable routing inside the cabinet

- Route the power cables with a high level of interference so that there is a minimum clearance of 25 cm to cables with a low level of interference.
If the minimum clearance of 25 cm is not possible, insert separating metal sheets between the cables with a high level of interference and cables with a low level of interference. Connect these separating metal sheets to the mounting plate to establish a good electrical connection.
- Cables with a high level of interference and cables with a low level of interference may only cross over at right angles:
- Keep all of the cables as short as possible.
- Route all of the cables close to the mounting plates or cabinet frames.
- Route signal and data cables - as well as the associated equipotential bonding cables - parallel and close to one another.
- Twist incoming and outgoing unshielded individual conductors.

Alternatively, you can route incoming and outgoing conductors in parallel, but close to one another.

- Ground any unused conductors of signal and data cables at both ends.
- Signal and data cables must only enter the cabinet from one side, e.g. from below.
- Using shielded cables for the following connections:
- Cable between the converter and line filter
- Cable between the converter and output reactor

Figure 4-3 Routing converter cables inside and outside a control cabinet

Routing cables outside the control cabinet

- Maintain a minimum clearance of 25 cm between cables with a high level of interference and cables with a low level of interference.
- Using shielded cables for the following connections:
- Converter motor cable
- Signal and data cables
- Connect the motor cable shield to the motor enclosure using an electrically conductive cable gland.
4.1 Line supply and motor

Requirements relating to shielded cables

- Use cables with finely-stranded, braided shields.
- Connect the shield to at least both ends of the cable.

Figure 4-4 Examples for EMC-compliant shield support

- Attach the shield to the shield support directly after the cable enters the cabinet.
- Do not interrupt the shield.
- Only use metallic or metallized plug connectors for shielded data cables.

4.1.1.3 Electromechanical components

Surge voltage protection circuit

- Connect surge voltage protection circuits to the following components:
- Coils of contactors
- Relays
- Solenoid valves
- Motor holding brakes
- Connect the surge voltage protection circuit directly at the coil.
- Use RC elements or varistors for AC-operated coils and freewheeling diodes or varistors for DC-operated coils.

4.1.2 Permissible line supplies

4.1.2.1 TN system

Overview

Figure 4-5 TN system
A TN system transfers the PE protective conductor to the installed plant or system using a cable.
Generally, in a TN system the neutral point is grounded. There are versions of a TN system with a grounded line conductor, e.g. with grounded L1.

The TN system can transfer the neutral conductor N and the PE protective conductor either separately or combined.

Function description

Table 4-1 Converter operated on a TN system

Converter	Line supply with grounded neutral									Line supply with grounded phase conductor and a voltage $\leq 600 \mathrm{~V}$ phase to phase								
Frame size	A	B	C	D	E	F	G	H	J	A	B	C	D	E	F	G	H	J
Without line filter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc
Integrated line filter C2	\checkmark	\bigcirc	\bigcirc	-	-	-	-	-	-	1)	\bigcirc	\bigcirc						
Integrated line filter C3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	0	0	\bigcirc	\bigcirc	-	,	\checkmark	\checkmark

$\checkmark=$ Operation permissible
$\checkmark^{1)}$ Operation permissible once grounding screw has been removed
If the grounding screw has been removed, the converter no longer fulfills the requirements of class C3.

- Operation not permissible
o Converter not available
More information on removing the grounding connection in the converter:
Removing functional grounding of the converter (Page 102)

4.1.2.2 TT system

Overview

Figure 4-6 TT system
In a TT system, the transformer grounding and the installation grounding are independent of one another.

There are TT supplies where the neutral conductor N is either transferred - or not.

Function description

Note

Operation in IEC or UL systems
For installations in compliance with IEC, operation on TT systems is permissible. For installations in compliance with UL, operation on TT systems is not permissible.

Table 4-2 Converter operated on a TT system

Converter	Line supply with grounded neutral									Line supply with grounded phase conductor and a voltage $\leq 600 \mathrm{~V}$ phase to phase								
Frame size	A	B	C	D	E	F	G	H	J	A	B	C	D	E	F	G	H	J
Without line filter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	O	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	O	\bigcirc
Integrated line filter C2	\checkmark	\bigcirc	\bigcirc	-	-	-	-	-	-	1)	\bigcirc	\bigcirc						
Integrated line filter C3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	-	1)	\checkmark	\checkmark

$\checkmark=$ Operation permissible
$\checkmark^{1)}$ Operation permissible once grounding screw has been removed
If the grounding screw has been removed, the converter no longer fulfills the requirements of class C3.

- Operation not permissible
o Converter not available
More information on removing the grounding connection in the converter:
4.1 Line supply and motor

Removing functional grounding of the converter (Page 102)
4.1 Line supply and motor

4.1.2.3 IT system

Overview

Example: Transfer of N , impedance with

 respect to PE protective conductor

Figure 4-7 IT system
In an IT system, all of the conductors are insulated with respect to the PE protective conductor - or connected to the PE protective conductor through an impedance.

There are IT systems with and without transfer of the neutral conductor N .

Function description

Table 4-3 Converter operated on an IT system

Converter	Line supply with grounded neutral								
Frame size	A	B	C	D	E	F	G	H	J
Without line filter	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\circ	\circ	\circ
Integrated line filter C2	-	-	-	-	-	-	-	\circ	\circ
Integrated line filter C3	\circ	\circ	\circ	\circ	\circ	-	$\checkmark^{1)}$	$\checkmark^{1)}$	$\checkmark^{1)}$

$\checkmark=$ Operation permissible
$\checkmark^{1)}$ Operation permissible once grounding screw has been removed
If the grounding screw has been removed, the converter no longer fulfills the requirements of class C3.

- Operation not permissible
o Converter not available
More information on removing the grounding connection in the converter:
Removing functional grounding of the converter (Page 102)

4.1.2.4 Removing functional grounding of the converter

If you wish to use the converters with C2/C3 line filter, note the information in the following sections:

Precondition

Switch off the converter power supply before removing the functional grounding.

WARNING
Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the
converter have discharged so that the residual charge is at a non-hazardous level. Therefore,
touching the converter immediately after powering off can result in electric shock due to
residual charge in the power components.
- Check the voltage at the converter connections before you remove the functional
grounding.

Removing screw for functional grounding, FSG

Disconnecting the basic interference suppression module, FSH/FSJ

If a converter FSH or FSJ is operated from a non-grounded line supply (IT system), the connection to the basic interference suppression module of the Power Module must be opened.

Procedure

1. Open the left-hand housing flap of the converter by rotating latch (1).
2. Release the two captive screws (3) and (4).
3. Release the screws (2), (5), and (6), but do not remove the screws.
4. Swivel the connection clip upwards around the axis of rotation of screw (5).
5. Fasten the connection clip using screw (2).
6. Tighten the screws (2), (5), and (6) with 6 Nm .

You have disconnect the basic interference suppression module.

NOTICE

Device damage due to not removing the connection clip with a non-grounded line supply
When operating a converter FSH or FSJ on a non-grounded line supply (IT system), failure to open the connection to the basic interference suppression module can cause significant damage to the device.

- With a non-grounded line supply (IT system), open the connection to the basic interference suppression module.

4.1.3 Requirements for the protective conductor

Overview

A high leakage current flows through the protective conductor in converter operation. The protective conductor of the converter must not be interrupted for safe touch protection in converter operation.
This primarily results in requirements for the minimum conductor cross-section of the protective conductor.

No restriction applies to the length of the protective conductor for touch protection. However, short protective conductors are advantageous for EMC-compliant installation.

Description

! WARNING

Electric shock due to interrupted protective conductor
The drive components conduct a high leakage current via the protective conductor. Touching conductive parts when the protective conductor is interrupted can result in death or serious injury.

- Comply with the requirements for the protective conductor.

(1) Protective conductor for line feeder cables
(2) Protective conductor for converter line feeder cables
(3) Protective conductor between PE and the control cabinet
(4) Protective conductor for motor feeder cables

The minimum cross-section of the protective conductor (1) ... (4) depends on the cross-section of the line or motor feeder cable:

- Line or motor feeder cable $\leq 16 \mathrm{~mm}^{2}$
\Rightarrow Minimum cross-section of the protective conductor $=$ cross-section of the line or motor feeder cable
- $16 \mathrm{~mm}^{2}<$ line or motor feeder cable $\leq 35 \mathrm{~mm}^{2}$
\Rightarrow Minimum cross-section of the protective conductor $=16 \mathrm{~mm}^{2}$
- Line or motor feeder cable > $35 \mathrm{~mm}^{2}$
\Rightarrow Minimum cross-section of the protective conductor $=1 / 2$ cross-section of the line or motor feeder cable

Additional requirements placed on the protective conductor (1) according to IEC 60204-1:

- For permanent connection, the protective conductor must fulfill at least one of the following conditions:
- The protective conductor is routed so that it is protected against damage along its complete length.
Cables routed inside switch cabinets or enclosed machine housings are considered to be adequately protected against mechanical damage.
- As a conductor of a multi-conductor cable, the protective conductor has a cross-section \geq $2.5 \mathrm{~mm}^{2} \mathrm{Cu}$.
- For an individual conductor, the protective conductor has a cross-section $\geq 10 \mathrm{~mm}^{2} \mathrm{Cu}$.
- The protective conductor consists of 2 individual conductors with the same cross-section.
- When connecting a multi-core cable using an industrial plug connector according to EN 60309, the protective conductor must have a cross-section of $\geq 2.5 \mathrm{~mm}^{2} \mathrm{Cu}$.
- Observe the local regulations for protective conductors subject to a high leakage current at the installation site.

4.1.4 Operation with residual current protective device (RCD)

WARNING

Fire or electric shock due to unsuitable residual-current protective devices
The converter may create a current through the protective conductor. The current through the protective conductor can cause the residual current device (RCD) or residual current monitor (RCM) to incorrectly trip (nuisance trip). In the case of a ground fault, the fault current can contain a DC component, which prevents the RCD or RCM from tripping, with the risk of subsequent fire or electric shock.

- Use the protection and monitoring devices recommended in the documentation.

Protection and monitoring equipment

To provide protection against short-circuit, use the overcurrent devices listed in Technical data (fuses, circuit breakers etc.).

If the earth fault loop impedance of the line supply at the infeed point is too high to ensure that the overcurrent protective device disconnects within the stipulated time in the case of insulation failure (ground fault, fault to frame), then you must use additional residual current protective devices RCD, type B.

In order that an RCD does not unnecessarily trip as a result of operational leakage currents, the following preconditions must be fulfilled:

- The neutral point of the line supply is grounded.
- For converters with rated input currents ≤ 80 A referred to LO, use a Siemens SIQUENCE RCCB (series 5SV364.-4), type B, short-time delayed [K] with a rated residual current of 300 mA . Connect the RCCB in series with the overcurrent protective devices.
- For converters with rated input currents ≤ 160 A referred to LO, use a Siemens residual current device RCD520B (3VA9113-ORL21) mounted onto a Siemens molded case circuit breaker (series 3VA1).
Recommended settings:
- Response characteristic B
- Residual current trip level 300 mA
- Response delay ≥ 0.06 s
- For converters with rated input currents > 160 A referred to LO, use a Siemens modular RCCB device (MRCD type B 5SV8111-4KK) with a current transformer (5SV870.-2K), a circuit breaker (series 3VA1) and a trip element (3VA9988-OBL30).

Figure 4-8 MRCD

- A dedicated RCD is used for every converter.
- The motor cables are shorter than $50 \mathrm{~m}(164 \mathrm{ft})$ shielded, or $100 \mathrm{~m}(328 \mathrm{ft})$ unshielded. Additional information about motor cables:
A] AUTOHOTSPOT
4.1 Line supply and motor

4.1.5 Maximum permissible motor cable length

Overview

The longer the motor cable of the converter, the higher the line capacitances of the motor cable. Line capacitances cause an additive current in converter operation and present an additional load to the converter.

As a consequence, a maximum permissible motor cable length is specified for the converter.
Options between converter and motor, e.g. output reactors, partially compensate for the line capacitances. Certain options make the use of longer motor cables possible.
If the converter must comply with an EMC category according to EN 61800-3, additional restrictions apply to the motor cable length in order to maintain the specified conducted interference emissions.

200 V converter

EMC category according to EN 61800-3

Table 4-4 Maximum permissible motor cable length depending on EMC category ${ }^{1)}$

EMC category		Optional component	Converter frame size 200 V	Maximum motor ca- ble length
Second environ- ment	C2, C3	Converters with exter- nal filter	FSA ... FSF	50 m

1) The values apply to the factory setting pulse frequency. If you set other pulse frequencies, you must ensure that the EMC category is complied with on the plant or system side.

Without EMC category

Table 4-5 Maximum permissible motor cable length ${ }^{1)}$

Motor cable	Optional component	Converter frame size 200 V	Maximum motor cable length	
With shielded motor cable	Without output reactor or dv/dt filter	FSA ... FSC	150 m	
		FSD ... FSE	200 m	
		FSF	300 m	
With unshielded motor cable	Without output reactor or dv/dt filter	FSA ... FSC	300 m	
		FSD ... FSE	300 m	
		FSF		450 m

${ }^{1)}$ The values apply to the factory setting pulse frequency.

EMC category according to EN 61800-3

Table 4-6 Maximum permissible motor cable length depending on EMC category ${ }^{1)}$

${ }^{1)}$ The values apply to the factory setting pulse frequency. If you set other pulse frequencies, you must ensure that the EMC category is complied with on the plant or system side.
2) 2 kHz pulse frequency
3) For motor cable lengths of $100 \mathrm{~m} . . .150 \mathrm{~m}$ with additional basic interference suppression module (available on request)
4) With Siemens MOTION-CONNECT cables.

With CY cables or equivalent cables: The converter only complies with the limiting values of the EMC category with a cable length $\leq 100 \mathrm{~m}$

Additional actions are required in order to satisfy an EMC category.
\leadsto Electromagnetic compability of the converter (Page 1348)

Without EMC category

Table 4-7 Max. admissable motor cable length for a converter without filter ${ }^{1)}$

1) The values apply to the factory setting pulse frequency.

EMC category according to EN 61800-3

Table 4-8 Maximum permissible motor cable length depending on EMC category ${ }^{1)}$

EMC category		Optional component	Converter frame size 690 V	Maximum motor cable length		
Second environment	C2	Converters with integrated filter	FSD ... FSE		100 m	
		Converters with external filter	FSH ... FSJ			150 m
	C3	Converters with integrated filter	FSD ... FSE			150 m
			FSF ... FSG			150 m
			FSH ... FSJ			$150 \mathrm{~m}^{2)}$
		Converters without line filters with external C3 filter	FSD ... FSG	50 m		

1) The values apply to the factory setting pulse frequency.
2) For motor cable lengths of $100 \mathrm{~m} . .150 \mathrm{~m}$, an additional basic interference suppression module shall be provided on the line side (available on request).

Additional actions are required in order to satisfy an EMC category.
Electromagnetic compability of the converter (Page 1348)

Without EMC category

Table 4-9 Max. admissable motor cable length for a converter without filter ${ }^{1)}$

Motor cable	Optional component	Converter frame size $690 \text { V }$	Maximum motor cable length			
With shielded motor cable	Without output reactor or dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} . . . \\ & 30 \mathrm{~kW} \end{aligned}$	200 m			
		FSD 37 kW ... FSG	300 m			
		FSH ... FSJ	150 m			
	With 1 output reactor	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} . . . \\ & 30 \mathrm{~kW} \end{aligned}$	350 m			
		FSD 37 kW ... FSG	525 m			
		FSH ... FSJ	300 m			
	With dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} . . . \\ & 30 \mathrm{~kW} \end{aligned}$	350 m			
		FSD 37 kW ... FSG	$450 \mathrm{~m}^{2)}$		$650 \mathrm{~m}^{3)}$	
		FSH ... FSJ	300 m			

4.1 Line supply and motor

Motor cable	Optional component	Converter frame size 690 V	Maximum motor cable length			
With unshielded motor cable	Without output reactor or dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} . . . \\ & 30 \mathrm{~kW} \end{aligned}$	300 m			
		FSD 37 kW ... FSG	450 m			
		FSH ... FSJ	200 m			
	With 1 output reactor	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} . . . \\ & 30 \mathrm{~kW} \end{aligned}$	525 m			
		FSD 37 kW ... FSG	800 m			
		FSH ... FSJ	450 m			
	With dv/dt filter	$\begin{aligned} & \text { FSD } 18.5 \mathrm{~kW} . . . \\ & 30 \mathrm{~kW} \end{aligned}$	525 m			
		FSD 37 kW ... FSG	$625 \mathrm{~m}^{2)}$			$800 \mathrm{~m}^{3)}$
		FSH ... FSJ	450 m			

1) The values apply to the factory setting pulse frequency.
${ }^{2)}$ At a maximum voltage of 1350 V at the motor terminals
2) At a maximum voltage of 1500 V at the motor terminals

Additional information

The permissible motor cable length depends on the following conditions:

- Quality of the motor cable

The above values apply to high-quality cables, e.g. CY100.

- Pulse frequency
- Maximal 25 m for a pulse frequency $\geq 10 \mathrm{kHz}$ for the following converters: 400 V converters FSA 2.2 kW and 3.0 kW 200 V converters FSA 1.1 kW and 1.5 kW
- Maximal 10 m for a pulse frequency $=16 \mathrm{kHz}$ for the following converters: 200 V converters FSC 400 V converters FSC

Dimension the motor cable such that the resistance losses are less than 5\% of the rated converter power.

4.1.6 Connecting the converter and converter components

! WARNING

Electric shock when the motor terminal box is open
As soon as the converter is connected to the line supply, the motor connections of the converter may carry dangerous voltages. When the motor is connected to the converter, there is danger to life through contact with the motor terminals if the motor terminal box is open.

- Close the motor terminal box before connecting the converter to the line supply.

WARNING
 Electric shock due to rotating permanent magnet synchronous motor
 As soon as a permanent magnet synchronous motor rotates, the motor terminals may be subject to dangerous voltage. Touching live motor terminals can result in death or serious injury.
 - Ensure that the motor is at a standstill before working on the motor terminals or the converter.
 - Block the motor mechanically, e.g. using a holding brake.
 - Disconnect the motor cable between the converter and the motor when performing electrical work on the converter.

Fire after short-circuit in the motor current circuit caused by rotating permanent magnet synchronous motor	
In the event of a short circuit in the converter or in the motor cable, a permanent magnet synchronous motor supplies energy to the short-circuit as long as the motor is rotating. This can cause smoke and a fire, endangering people.	
- Install a contactor between the motor and the converter and as close to the motor as possible. - Use a contactor with overvoltage protection to prevent damage to the motor when separating the motor from the converter. - Use converter signal r0863.1 and a free digital output of the converter to open the contactor between motor and converter in the event of a fault.	

Note

Fault protection when insulation fails in the motor circuit at the output side
In case of insulation failure in the motor circuit, the overcurrent trip of the converter meets the requirements of IEC 60364-4-41:2005/AMD1:2017 Section 411 and Annex D for protection against electric shock.

- Observe the installation specifications for this converter.
- Ensure the continuity of the protective conductor.
- Observe the applicable installation standards.

4.1.6.1 Connection overview

The following describes how to connect the converter to 3 AC line supply.

Note

Available options

For information about available options, see Chapter "Optional components (Page 35)".

Converter	Line side option ${ }^{1)}$		Motor side option ${ }^{2)}$		
	Line harmonics filter	Line filter	Output reactor	Sine-wave filter	dv/dt filter + VPL
200 V					
FSA...FSC	--	$\sqrt{ }$	--	--	--
FSD...FSF	--	\checkmark	\checkmark	--	--
400 V					
FSA ... FSC	$\sqrt{ }{ }^{3)}$	\checkmark	--	$\sqrt{ }$	--
FSD...FSG	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
FSH ... FSJ	--	\checkmark	$\sqrt{ }$	--	$\sqrt{ }$
690 V					
FSD ... FSG	--	\checkmark	$\sqrt{ }$	--	$\sqrt{ }$
FSH ... FSJ	--	\checkmark	$\sqrt{ }$	--	$\sqrt{ }$

${ }^{1)}$ If you choose to use line harmonics filter and line filter simultaneously, the order of connection should be: Line \rightarrow Line harmonics filter \rightarrow Line filter \rightarrow Converter.
2) If you choose to use the motor side option, it is enough to use only one of the options.
3) Line harmonics filter is not provided for 400 V converters FSA.

Figure 4-9 Connecting converters FSA ... FSG and their optional components

Note

The R1 and F3 terminals are only intended to be used to connect Siemens dv/dt filters. They are not allowed to connect the braking choppers.

Figure 4-10 Connecting converters FSH/FSJ and their optional components

Note

The DCP and DCN terminals are only intended to be used to connect Siemens dv/dt filters. They are not allowed to connect the braking choppers.
4.1 Line supply and motor

4.1.6.2 Connnecting converters

Connecting converters, FSA ... FSC

Figure 4-11 Connections for the line supply, motor and DC link terminals

Connecting converters, FSD ... FSG

You must remove the connection cover from the converter in order to connect the line supply and motor to the converter.

- For FSD/FSE, remove the connection cover as shown below:

Figure 4-12 Removing the connection cover, FSD/FSE

- For FSF/FSG, remove the two screws from the cover and then remove it. In addition, you must make openings on the connection cover for the line supply and power cables. Use side cutters or a fine saw blade.

Figure 4-13 Removing the connection cover and making openings, FSF/FSG
After the cables are connected, you must re-attach the cover in order to re-establish the touch protection of the converter.
4.1 Line supply and motor

Figure 4-14 Connections for the line supply and motor

Additional information when connecting FSG converters

Remove the plastic insulating plate as shown below to gain better access to the terminals for the power connections.

! WARNING

Damage to converter as a result of operation without insulating plates
Without the insulating plates, voltage flashovers may occur between the phases.

- Replace the insulating plates after connecting the cables.

Connecting converters, FSH/FSJ

To access the line and motor terminals, release the screws (three screws on FSH, and four screws on FSJ) from the front cover, and remove the cover towards the front.

Figure 4-15 Removing the front cover
The diagram shows the layout of line and motor terminals and DC link terminals. For converter FSH, the line connections cables can be introduced from either top cable protection cover or side
cable protection cover. You must make openings on the cable entry protection cover for the line and motor connections according to the diameter of the cable to be introduced.

Figure 4-16 Connections for the line supply, motor and DC link terminals
Rules for connecting the line:

- Only use the front connections.
- You may connect 1 or 2 cables to each of the screws of the line connections.

Rules for connecting the motor:

- First use the front connections.
- If you use more than one cable per connection: Distribute the cables per connection evenly on the left and right side of the connection.
- Only use the rear connections when the front connections are occupied.

After the cables are connected, you must re-attach the covers in order to re-establish the touch protection of the converter (screw tightening torque: $6 \mathrm{Nm} / 53 \mathrm{lbf} . \mathrm{in}$).

WARNING
Electric shock if the cable entry protection cover is not cut correctly
A cable entry protection cover which is not cut correctly may lead to dangerous touch voltage which can result in serious injury or death.

- Make proper openings on the cover according to the required cable diameter in order to ensure degree of protection IP20.

4.1.6.3 Cable cross-sections and screw tightening torques

Converter	Terminal/connector type			Cable cross-section	Screw tighten-	Stripped insula-
FSA	Line, motor, PE, and DC link	Screwtype terminal	Tool: slot or pozi screwdriver	1.5 ... $2.5 \mathrm{~mm}^{2}, 16 \ldots 14$ AWG	$0.5 \mathrm{Nm}, 4.4 \mathrm{lbf} . \mathrm{in}$	$9 \ldots 10 \mathrm{~mm}$
FSB				$1.5 \ldots 6 \mathrm{~mm}^{2}, 16 \ldots 10$ AWG	$\begin{aligned} & \text { 1.3 Nm, } 11.5 \\ & \text { lbf.in } \end{aligned}$	$12 \ldots 13 \mathrm{~mm}$
FSC				$1.5 \ldots 16 \mathrm{~mm}^{2}, 16 \ldots 6$ AWG	$\begin{aligned} & \text { 1.3 Nm, } 11.5 \\ & \text { lbf.in } \end{aligned}$	$12 \ldots 13 \mathrm{~mm}$
FSD	Line, motor, and PE	Screwtype terminal	Tool: torque wrench for TX20	$10 \ldots 35 \mathrm{~mm}^{2}, 8 \ldots 2$ AWG	$\begin{aligned} & \text { 4.5 Nm, } 39.8 \\ & \text { lbf.in } \end{aligned}$	18 mm
	DC link			16 mm², 6 AWG	$1.7 \mathrm{Nm}, 15 \mathrm{lbf} . \mathrm{in}$	10 mm
FSE	Line, motor, and PE		Tool: torque wrench for TX40	$25 \ldots 70 \mathrm{~mm}^{2}, 6 \ldots 3 / 0$ AWG	$\begin{aligned} & 10 \mathrm{Nm}, 88.5 \\ & \text { lbf.in } \end{aligned}$	25 mm
	DC link		Tool: torque wrench for TX20	$26.7 \ldots 35 \mathrm{~mm}^{2}, 3 \ldots 2$ AWG	$\begin{aligned} & 3.7 \mathrm{Nm}, 33 \\ & \mathrm{lbf.in}{ }^{1)} \end{aligned}$	18 mm
FSF	Line, motor, and PE	Cable lug according to SN71322 for M10 bolts	Tool: wrench (size 17 mm)	$\begin{aligned} & 35 \ldots 2 \times 120 \mathrm{~mm}^{2} \\ & 1 \ldots 2 \times 4 / 0 \mathrm{AWG} \end{aligned}$	$\begin{aligned} & 22 \ldots 25 \mathrm{Nm} \\ & 194.7 \ldots 221.3 \\ & \text { lbf.in } \end{aligned}$	1
	DC link	Screwtype terminal	Tool: torque wrench for TX40	$25 . .70 \mathrm{~mm}^{2}, 6 \ldots 3 / 0$ AWG	$\begin{aligned} & 8 \ldots . .10 \mathrm{Nm} \\ & 71 \ldots 88.5 \mathrm{lbf} . \mathrm{in} \end{aligned}$	25 mm

4.1 Line supply and motor

Converter	Terminal/connector type			Cable cross-section	Screw tighten-	Stripped insula-
FSG	Line, motor, and PE	Cable lug according to SN71322 for M10 bolts	Tool: wrench (size 17 mm)	$\begin{aligned} & 35 \ldots 2 \times 185 \mathrm{~mm}^{2} \\ & 1 \ldots 2 \times 350 \mathrm{MCM} \end{aligned}$	$\begin{aligned} & \hline 22 \ldots 25 \mathrm{Nm} \\ & 194.7 \ldots 221.3 \\ & \text { lbf.in } \end{aligned}$	I
	DC link	Screwtype terminal	Tool: torque wrench for TX40	25 ... $70 \mathrm{~mm} 2,6 \ldots$ 3/0 AWG	$\begin{aligned} & 8 \ldots 10 \mathrm{Nm} \\ & 71 \ldots 88.5 \mathrm{lbf} . \mathrm{in} \end{aligned}$	25 mm

1) For converters FSE 690 V , the tightening torque is 4.5 Nm ($40 \mathrm{lbf} . i n$).

Converter FSH	Terminal/connector type			Cable cross-section				Screw tightening torque 50 Nm $442.5 \mathrm{lbf} . \mathrm{in}$
	Line, motor, PE, and DC link	Cable lug according to DIN 46234 for M12 bolts	 Tool: wrench (size 19 mm)	Max.		$4 \times 240 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$		50 Nm $442.5 \mathrm{lbf} . \mathrm{in}$
						@ 400 V	@ 480 V	
				Recom-	315 kW	Line $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 185 \mathrm{~mm}^{2}$	
						Motor $2 \times 185 \mathrm{~mm}^{2}$	$2 \times 150 \mathrm{~mm}^{2}$	
						DC $2 \times 185 \mathrm{~mm}^{2}$	$2 \times 150 \mathrm{~mm}^{2}$	
					355 kW	Line $3 \times 150 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
						Motor $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 185 \mathrm{~mm}^{2}$	
						DC $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 185 \mathrm{~mm}^{2}$	
					400 kW	Line $3 \times 185 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
						Motor $2 \times 240 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
						DC $3 \times 150 \mathrm{~mm}^{2}$	$2 \times 240 \mathrm{~mm}^{2}$	
FSJ	Line, motor, PE, and DC	Cable lug		Max.		Line $6 \times 240 \mathrm{~mm}^{2}, 6$	500 MCM	$\begin{aligned} & 50 \mathrm{Nm} \\ & 442.5 \mathrm{lbf} . i n \end{aligned}$
	link	according			450 kW	Motor, DC $4 \times 240 \mathrm{~mm}$, $4 \times 500 \mathrm{MCM}$	
		46234 for			$500 \text { kW, }$	Motor $8 \times 240 \mathrm{~mm}^{2}$,	$\times 500 \mathrm{MCM}$	
		M12 bolts			560 kW	DC $4 \times 240 \mathrm{~mm}^{2}, 4 \times$	00 MCM	
						@ 400 V	@ 480 V	
				Recom-	450 kW	Line $4 \times 185 \mathrm{~mm}^{2}$	$4 \times 120 \mathrm{~mm}^{2}$	
				mended		Motor $4 \times 150 \mathrm{~mm}^{2}$	$4 \times 120 \mathrm{~mm}^{2}$	
						DC $4 \times 120 \mathrm{~mm}^{2}$	$3 \times 120 \mathrm{~mm}^{2}$	
					500 kW	Line $4 \times 185 \mathrm{~mm}^{2}$	$4 \times 150 \mathrm{~mm}^{2}$	
						Motor $4 \times 185 \mathrm{~mm}^{2}$	$4 \times 150 \mathrm{~mm}^{2}$	
						DC $4 \times 150 \mathrm{~mm}^{2}$	$3 \times 150 \mathrm{~mm}^{2}$	
					560 kW	Line $4 \times 240 \mathrm{~mm}^{2}$	$4 \times 185 \mathrm{~mm}^{2}$	
						Motor $4 \times 240 \mathrm{~mm}^{2}$	$4 \times 150 \mathrm{~mm}^{2}$	
						DC $4 \times 185 \mathrm{~mm}^{2}$	$3 \times 185 \mathrm{~mm}^{2}$	

4.1 Line supply and motor

4.1.6.4
 Cable lug

For cable connections using cable lugs, the maximum dimensions of the cable lugs are listed in the table below. These cable lugs are not to exceed these dimensions, as mechanical fastening and adherence to the voltage distances is not guaranteed otherwise.

Converter frame size	Screw/bolt	Cable cross-sec- tion $\left(\mathrm{mm}^{2}\right)$	a (mm)	c (mm)	d1 (mm)	d (mm)	I (mm)
FSF	M10	120	26	22	10.5	32	59.5
		185	30	27	10.5	39	72.5
FSG	FSH/FSJ	M12	240	32	23.5	13	42

The cable lugs can be attached as shown in the following diagram if, at one connection per phase, two cable lugs can be connected.

4.1.6.5 Connecting the cable shields (FSA ... FSG only)

For EMC-compliant wiring, you must connect the cable shields to the shield plate of the converter.

Use shielded cables for the following connection:

- Communication cable
- Control cable
- Motor cable

Before connecting the cable shields, you need to strip the cable insulation.

Connecting the cable shields, FSA ... FSC converters

The shield support for converter FSB is displayed as an example.
(1) Unshielded line cable
(5) Unlacquered, good electrically conducting mounting plate
(2) Cable tie
(6) Shielded control cable
(3) Unshielded communication cable
(7) Toothed tape
(4) Shielded communication cable *
(8) Shielded motor cable

* For PROFIBUS and USS variant, connect the cable shields of the communication cable and the control cable to the same point of the shield plate using one toothed tape.
4.1 Line supply and motor

Connecting the cable shields, FSD ... FSG converters

The shield support for converter FSD is displayed as an example.
(1) Unshielded line cable
(5) Shielded control cable
(2) Shielded motor cable
(6) Unshielded communication cable
(3) Hose clamp
(7) Shielded communication cable
(4) Toothes tape

Note

Unshielded communcation cable for SIEMENS PROFINET cables
It is unnecessary to connect the cable shields if you use Siemens PROFINET cables for communication. When using communication cables from other manufacturers, make sure that you connect the cable shields with toothed tapes.

Note

Recommended connecters for PROFIBUS DP cable
We recommend Siemens connectors with the following article numbers for connecting the PROFIBUS DP cable:

- 6GK1500-0FC10
- 6GK1500-0EA02

4.1.7 Connecting the motor to the converter in a star or delta connection

Overview

Standard induction motors up to a rated power of approximately 3 kW are usually connected in star/delta connection (Y/ Δ) at $400 \mathrm{~V} / 230 \mathrm{~V}$. For a $400-\mathrm{V}$ line supply, you can connect the motor to the converter either in a star or in a delta connection.

Function description

Operating the motor in a star connection

In a star connection, the motor can provide its rated torque M_{N} in the range $0 \ldots$ rated frequency f_{N}.
Rated voltage $\mathrm{U}_{\mathrm{N}}=400 \mathrm{~V}$ is available at a rated frequency $\mathrm{f}_{\mathrm{N}}=50 \mathrm{~Hz}$.
The motor goes into field weakening above the rated frequency. In field weakening, the available motor torque decreases proportionally with $1 /$ f. In field weakening, the available power remains constant.

Operating the motor in a delta connection with 87 Hz characteristic

In a delta connection, the motor is operated with a voltage and frequency above its rated values. As a consequence, the motor power is increased by a factor $\sqrt{3} \approx 1.73$.
In the range $\mathrm{f}=0 \ldots 87 \mathrm{~Hz}$, the motor can output its rated torque M_{N}.
The maximum voltage $U=400 \mathrm{~V}$ is available at a frequency of $f=\sqrt{3} \times 50 \mathrm{~Hz} \approx$ 87 Hz .

The motor only goes into field weakening above 87 Hz .
The higher motor power when operated with an 87 Hz characteristic has the following disadvantages:

- The converter must supply approximately $1.73 x$ current. Select a converter based on its rated current - and not its rated power.
- The motor temperature increases more significantly than when operated with $\mathrm{f} \leq 50 \mathrm{~Hz}$.
- The motor must have windings that are approved for a voltage > rated voltage U_{N}.
- As the fan impeller rotates faster, the motor has a higher noise level than operation with $\mathrm{f} \leq 50 \mathrm{~Hz}$.
4.2 Control interfaces

4.2 Control interfaces

4.2.1 Overview of the interfaces

Interfaces at the front of the Control Unit

To access the interfaces on the front of the Control Unit, you must open the front cover.

(1) Terminal strip
(2) Switch for AI 0 and AI 1 (U/I)

(5) Memory card slot
(6) To secure the I/O Extension Module (7)(8) Terminal strips
(9) Fieldbus interfaces at the lower side
(4) Connection to the Operator Panel, Smart Access or I/O Extension Module

Table 4-10 Number of inputs and outputs

Digital inputs DI	Digital outputs DO	Analog inputs AI	Analog outputs AO	Input for motor temperature sen- sor
6	2	2	1	1

Converter with 3C3 certification

To meet the requirements of environmental class 3C3, you can only remove the following parts when you use the appropriate interfaces:

- Dummy for memory card slot
- Cover for fieldbus interface

4.2.2 Terminal strips

Terminal strips with wiring example

Figure 4-17 Wiring the digital inputs with p-switching contacts and an internal 24 V power supply (terminal 9)

All terminals with the "GND" reference potential are internally connected with one another.
The reference potential "DI COM" is not internally connected with "GND".
\rightarrow If, as shown above, you wish to use the 24 V supply from terminal 9 as supply for the digital inputs, a jumper is required between terminals 28 and 69.

When an optional 24 V power supply is connected at terminals 31,32 , even when the Power Module is disconnected from the line supply, the Control Unit remains in operation. The Control Unit thus maintains fieldbus communication, for example.
\rightarrow for terminals 31, 32, only use a 24 VDC power supply according to SELV (Safety Extra Low Voltage) or PELV (Protective Extra Low Voltage).
\rightarrow if you also wish to use the power supply at terminals 31,32 for the digital inputs, then you must connect "DI COM" and "GND IN" with one another at the terminals.

10 Al 1+
$11 \mathrm{Al} 1-$

You may use the internal 10 V power supply or an external power supply for the analog inputs. \rightarrow When you use the internal 10 V power supply, you must connect AI 0 or AI 1 with "GND".

Additional options for wiring the digital inputs

The following diagram shows how you supply the digital inputs and digital outputs with an external voltage.

If you wish to connect an external power supply with the GND potential of the converter, then you must connect terminals 28 and 69 together.

Figure 4-18 Connecting contacts switching to p potential with an external power supply
The following diagram shows how you use the digital inputs for the contacts that switch to m potential.

Figure 4-19 Connecting contacts switching to m potential with an external power supply
! WARNING

Electric shock due to unsuitable power supply

When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage that might result in serious injury or death.

- Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages (maximum 60 V DC briefly) for all connections and terminals of the electronics modules.

NOTICE

Damage when the 24 V output voltage is short-circuited

If the following conditions occur simultaneously, the Control Unit with PROFINET interface can be damaged:

1. The converter is operational.
2. The 24 V output voltage develops a short-circuit at terminal 9 .
3. The ambient temperature reaches the maximum permissible value.
4. The external 24 V power supply voltage at terminals 31 and 32 reaches the maximum permissible value.

- Ensure that not all of these conditions are simultaneously satisfied.

4.2.3 Terminals strips of I/O Extension Module

The optional I/O Extension Module expands the number of G120X I/O terminals. For more information about wiring the terminal strips of the I/O Extension Module, refer to the following Section:

I/O Extension Module (Page 60)

4.2.4 Factory interface settings

Function description

Converters with PROFINET or PROFIBUS interfaces:

In the factory setting, the converter switches over the following functions depending on the state of digital input DI 4:

- Fieldbus interface
- Digital input DI 0
- Digital input DI 1
- Speed setpoint

Figure 4-20 Factory setting for converters with PROFINET or PROFIBUS interfaces

Converters with RS 485 fieldbus interfaces

Figure 4-21 Factory setting for converters with RS 485 fieldbus interfaces

4.2.5 Default setting of the interfaces (macros)

4.2.5.1 Overview

Function description

The function of most of the converter terminals can be set.
In order to avoid having to successively change terminal for terminal, multiple terminals can be set jointly for quick commissioning. Parameter p0015 for quick commissioning initiates a macro that adopts the setting of the terminals.

Table 4-11 Overview of default settings, Part 1/3

	Default setting (macro)					
Terminal	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 3}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{4 6}^{1)}$
AI 0	Setpoint	Setpoint	Setpoint	Setpoint	-	Setpoint local
AI 1	-	PID actual value	PID actual value	PID actual value	-	Setpoint remote
AO 0	Actual speed val- ue					
AO 1 ${ }^{2)}$	Actual current value					
DI 0	ON/OFF2	ON/OFF2	ON/OFF2	ON/OFF2	ON/OFF2	ON/OFF2 local

	Default setting (macro)					
Terminal	41	42	43	44	45	$46{ }^{1)}$
DI 1	-	-	Service pump 1	Service pump 1	Fixed setpoint 1	ON/OFF2 remote
DI 2	-	-	Service pump 2	Service pump 2	Fixed setpoint 2	-
DI 3	-	-	-	Service pump 3	Fixed setpoint 3	-
DI 4	-	manual \leftrightarrow auto	manual \leftrightarrow auto	manual \leftrightarrow auto	-	local \leftrightarrow remote
DI 5	Acknowledge fault					
DO 0	Fault	Fault	Fault	Fault	Fault	Fault
DO 1	Operation	Operation	Operation	Pump 1	Operation	Operation
DO $2^{2)}$	Ready for operation	Ready for operation	Pump 1	Pump 2	Ready for operation	Ready for operation
DO 3 ${ }^{2)}$	Alarm	Alarm	Pump 2	Pump 3	Alarm	Alarm
Fieldbus	-	-	-	-	-	-

1) For converters with USS fieldbus interfaces
2) With I/O Extension Module

Table 4-12 Overview of default settings, Part 2/3

	Default setting (macro)				
Terminal	47	48	49	$51^{1)}$	$52^{1)}$
AI 0	-	-	-	-	Setpoint local
AI 1	PID actual value	PID actual value	PID actual value	-	
AO 0	Actual speed value				
AO 1 ${ }^{\text {2) }}$	Actual current value				
DI 0	ON/OFF2	ON/OFF2	ON/OFF2	ON/OFF2	ON/OFF2 local
DI 1	-	Service pump 1	Service pump 1	-	ON/OFF2 remote
DI 2	-	Service pump 2	Service pump 2	-	-
DI 3	-	-	Service pump 3	-	-
DI 4	-	manual \leftrightarrow auto	manual \leftrightarrow auto	-	local \leftrightarrow remote
DI 5	Acknowledge fault				
DO 0	Fault	Fault	Fault	Fault	Fault
DO 1	Operation	Operation	Pump 1	Operation	Operation
DO 2 ${ }^{\text {2) }}$	Ready for operation	Pump 1	Pump 2	Ready for operation	Ready for operation
DO 3 ${ }^{\text {2) }}$	Alarm	Pump 2	Pump 3	Alarm	Alarm
Fieldbus	-	-	-	Modbus RTU	Modbus RTU

1) For converters with USS fieldbus interfaces
2) With I/O Extension Module
3) For converters with PROFIBUS or PROFINET interfaces

Table 4-13 Overview of default settings, Part 3/3

	Default setting (macro)				
Terminal	$5^{1)}$	$\mathbf{5 5}^{1)}$	$5^{3)}$	58	59
AI 0	-	Setpoint local	-	-	-
AI 1	-	-	-	-	-
AO 0	Actual speed value	Actual speed value	Actual speed value	Actual speed value	-
AO 1 ${ }^{2)}$	Actual current value	Actual current value	Actual current value	Actual current value	-
DI 0	ON/OFF2	ON/OFF2 local	Jogging 1	ON/OFF2	ON/OFF2
DI 1	-	ON/OFF2 remote	Jogging 2	Motorized potenti- ometer, raise	-
DI 2	-	-	Motorized potenti- ometer, lower	-	
DI 3	-	-	-	-	
DI 4	-		-	-	
DI 5	Acknowledge fault	Acknowledge fault	Acknowledge fault	Acknowledge fault	-
DO 0	Fault	Fault	Fault	Fault	-
DO 1	Operation	Operation	Operation	Operation	-
DO 2 ${ }^{2)}$	Ready for operation	Ready for operation	Ready for operation	Ready for operation	-
DO 3 ${ }^{2)}$	Alarm	Alarm	Alarm	Alarm	-
Fieldbus	USS	USS	PROFINET or PROFI- BUS	-	-

1) For converters with USS fieldbus interfaces
2) With I/O Extension Module
3) For converters with PROFIBUS or PROFINET interfaces

More information

The default terminal settings can be adjusted to suit your requirements.
Adapt the default setting of the terminal strips (Page 253)

4.2.5.2 Default setting (macro) 41: "Analog control"

Function description

"Analog control" is the factory setting for converters with RS 485 fieldbus interfaces.

$\begin{array}{\|l\|l} \begin{array}{l\|l} 1 & +10 \mathrm{~V} \text { out } \\ \hline \end{array} & \begin{array}{l} \text { GND } \end{array} \\ \hline \end{array}$	
$3 \mathrm{AlO}+$	Setpoint
-4 AIGND	
-()-85AO 1+1)	Current actual value
-86 AO GND"	
-(1)-12 AO 0+	Speed actual value
13 AO GND	
-9 +24V out	
-28GND	
69/DICOM	
-5 DIO	ON/OFF2
-171DI5	Acknowledge fault
- - -18DO 0 NC	Fault
19 DO 0 NO	
-20 DO 0 COM	
23DO 1 NC	Operation
- - 24-DO 1 NO	
-25DO 1 COM	
97 DO 2 COM ${ }^{11}$	Ready for operation
- -98 DO 2 NO1)	
99DO2 ${ }^{\text {NC11 }}$	
$94 \mathrm{DO} 3 \mathrm{COM}^{11}$	Alarm
- $8-\frac{95 \text { DO } 3 \text { N0 }{ }^{11}}{96 \mathrm{DO} 3 \mathrm{NC}^{11}}$	
With I/O Extensi	odule

Table 4-14 Characteristics

Analog input	Analog outputs	

Table 4-15 Procedure for selecting the default setting

4.2 Control interfaces

Table 4-16 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 41	p0015 = 41	DI 0	p29652[0] = 722.0
AI 0	p1070[0] = 755[0]		p29650[0] = 0
		ON/OFF1	p0840[0] $=29659.0$
		OFF2	p0844[0] $=29659.1$
		DI 5	$\mathrm{p} 2104[0]=722.5$
AO 0	p0771[0] = 21	DO 0	p0730 $=52.3$
AO 1	p0771[1] = 27	DO 1	$p 0731=52.2$
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.3 Default setting (macro) 42: "PID controller with analog control"

Function description

Table 4-17 Characteristics

Analog inputs		Analog outputs	

Table 4-18 Procedure for selecting the default setting

Operator panel BOP-2	
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick commissioning \rightarrow I/O setup \rightarrow Select macro \rightarrow (42) PID controller with analog control \rightarrow Complete setup
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration $\rightarrow 42$: PID controller with analog control \rightarrow Complete quick setup

Table 4-19 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 42	p0015 = 42	DI 0	$\begin{aligned} & \mathrm{p} 29652[0]=722.0 \\ & \mathrm{p} 29650[0]=0 \\ & \mathrm{p} 0840[0]=29659.0 \\ & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 2200=722.4 \\ & \mathrm{p} 2104[0]=722.5 \end{aligned}$
AI 0	$\begin{aligned} & \mathrm{p} 2253[0]=755[0] \\ & \mathrm{p} 1070[0]=755[0] \end{aligned}$	ON/OFF1	
Al 1	p2264[0] = 755[1]	OFF2 DI 4 DI 5	
AO 0	p0771[0] = 21	DO 0	p0730 $=52.3$
AO 1	p0771[1] = 27	$\begin{aligned} & \text { DO } 1 \\ & \text { DO } 2 \\ & \text { DO } 3 \end{aligned}$	$\begin{aligned} & p 0731=52.2 \\ & p 0732=52.0 \\ & p 0733=52.7 \end{aligned}$

4.2.5.4 Default setting (macro) 43: "2 pumps with analog control"

Function description

Table 4-20 Characteristics

Analog inputs		Analog outputs	

Table 4-21 Procedure for selecting the default setting

Table 4-22 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 43	p0015 = 43	DI 0	$\begin{aligned} & \mathrm{p} 29652[0]=722.0 \\ & \mathrm{p} 29650[0]=0 \\ & \mathrm{p} 0840[0]=29659.0 \\ & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 29543[0]=722.1 \\ & \mathrm{p} 29543[1]=722.2 \\ & \mathrm{p} 2200=722.4 \\ & \mathrm{p} 2104[0]=722.5 \\ & \hline \end{aligned}$
AI 0	$\begin{aligned} & \mathrm{p} 2253[0]=755[0] \\ & \mathrm{p} 1070[0]=755[0] \end{aligned}$	ON/OFF1	
Al 1	p2264[0] = 755[1]	DI 1 DI 2 DI 4 DI 5	
AO 0	p0771[0] = 21	Multi-pump control	p29520 = 1
AO 1	p0771[1] = 27		$\begin{aligned} & \mathrm{p} 29521=2 \\ & \mathrm{p} 29539=1 \\ & \mathrm{p} 29540=1 \end{aligned}$
		$\begin{aligned} & \text { DO } 0 \\ & \text { DO } 1 \\ & \text { DO } 2 \\ & \text { DO } 3 \end{aligned}$	$\begin{aligned} & \mathrm{p} 0730=52.3 \\ & \mathrm{p} 0731=52.2 \\ & \mathrm{p} 0732=29529.0 \\ & \mathrm{p} 0733=29529.1 \end{aligned}$

4.2.5.5 Default setting (macro) 44: "3 pumps with analog setpoint"

Function description

Table 4-23 Characteristics

Analog inputs		Analog outputs	

Table 4-24 Procedure for selecting the default setting

Operator panel BOP-2	
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick commissioning \rightarrow I/O setup \rightarrow Select macro \rightarrow (44) 3 pumps with analog setpoint \rightarrow Complete setup
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration $\rightarrow 44: 3$ pumps with analog setpoint \rightarrow Complete quick setup

Table 4-25 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 44	p0015 = 44	DI 0	$\begin{aligned} & \mathrm{p} 29652[0]=722.0 \\ & \mathrm{p} 29650[0]=0 \end{aligned}$
AI 0	p2253[0] = 755[0]		
	p1070[0] = 755[0]	ON/OFF1	$\begin{aligned} & \mathrm{p} 0840[0]=29659.0 \\ & \mathrm{p} 0844[0]=29659.1 \end{aligned}$
Al 1	p2264[0] = 755[1]	OFF2	p29543[0] $=722.1$
AO 0	p0771[0] = 21	DI 2	$\begin{aligned} & \mathrm{p} 29543[1]=722.2 \\ & \mathrm{p} 29543[2]=722.3 \end{aligned}$
AO 1	p0771[1] = 27	DI 3	
		DI 4	$\begin{array}{\|l} \mathrm{p} 29543[2]=722.3 \\ \text { p2200 }=722.4 \end{array}$
		DI 5	$\mathrm{p} 2104[0]=722.5$
Multi-pump control	p29520 = 1	DO 0	p0730 = 52.3
	p29521 = 3	DO 1	p0731 $=29529.0$
	p29539 = 1	DO 2	p0732 $=29529.1$
	p29540 = 1	DO 3	$\mathrm{p} 0733=29529.2$

4.2.5.6 Default setting (macro) 45: "Fixed setpoint control"

Function description

Table 4-26 Characteristics

Analog outputs	

Table 4-27 Procedure for selecting the default setting

4.2 Control interfaces

Table 4-28 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 45	p0015 = 45	DI 0	p29652[0] = 722.0
AO 0	p0771[0] = 21		p29650[0] = 0
AO 1	p0771[1] = 27	ON/OFF1 OFF2	p0840[0] $=29659.0$ $p 0844[0]=29659.1$
Fixed setpoint	$\begin{aligned} & \mathrm{p} 1070=1024 \\ & \mathrm{p} 1016=2 \end{aligned}$	DI 1	p1020[0] $=722.1$
		DI 2	p1021[0] = 722.2
		DI 3	$\mathrm{p} 1022[0]=722.3$
		DI 5	p2104[0] = 722.5
		DO 0	p0730 $=52.3$
		DO 1	p0731 $=52.2$
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.7 Default setting (macro) 46: "Al control local/remote"

Function description

Table 4-29 Characteristics

Analog inputs		Analog outputs	

Table 4-30 Procedure for selecting the default setting

Table 4-31 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 46	p0015 = 46	DI 0	$\begin{aligned} & \mathrm{p} 29652[1]=722.0 \\ & \mathrm{p} 29650[0]=1 \end{aligned}$
AI 0	p1070[1] = 755[0]		
Al 1	p1070[0] = 755[1]	ON/OFF1 OFF2	p0840[0] = 29659.0
AO 0	p0771[0] = 21	OFF2	$\begin{aligned} & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 29652[0]=722.1 \end{aligned}$
		DI 4	p0810 $=722.4$
		DI 5	p2104[0...1] = 722.5
AO 1	p0771[1] = 27	DO 0	p0730 = 52.3
		DO 1	$p 0731=52.2$
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.8 Default setting (macro) 47: "PID controller with internal fixed setpoint"

Function description

Table 4-32 Characteristics

Analog input	Analog outputs	

Table 4-33 Procedure for selecting the default setting

4.2 Control interfaces

Table 4-34 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 47	p0015 = 47	DI 0	$\begin{aligned} & \mathrm{p} 29652[0]=722.0 \\ & \mathrm{p} 29650[0]=0 \end{aligned}$
Al 1	p2264[0] = 755[1]		
AO 0	p0771[0] = 21	ON/OFF1 OFF2	$\begin{aligned} & \mathrm{p} 0840[0]=29659.0 \\ & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 2104[0]=722.5 \end{aligned}$
AO 1	p0771[1] = 27	DI 5	
Setpoint	$\begin{aligned} & \mathrm{p} 2253[0]=2224 \\ & \mathrm{p} 2220[0]=1 \\ & \mathrm{p} 2200=1 \end{aligned}$	$\begin{aligned} & \text { DO } 0 \\ & \text { DO } 1 \\ & \text { DO } 2 \\ & \text { DO } 3 \end{aligned}$	$\begin{aligned} & \mathrm{p} 0730=52.3 \\ & \mathrm{p} 0731=52.2 \\ & \mathrm{p} 0732=52.0 \\ & \mathrm{p} 0733=52.7 \end{aligned}$

4.2.5.9 Default setting (macro) 48: "2 pumps and internal fixed setpoint"

Function description

Table 4-35 Characteristics

Analog input	Analog outputs	

Table 4-36 Procedure for selecting the default setting

Table 4-37 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 48	p0015 = 48	DI 0	$\begin{aligned} & \text { p29652[0] = 722.0 } \\ & \text { p29650[0] }=0 \end{aligned}$
Al 1	p2264[0] = 755[1]		
AO 0	p0771[0] = 21	ON/OFF1	p0840[0] $=29659.0$
AO 1	p0771[1] = 27	$\begin{array}{r} \text { OFF2 } \\ \text { DI } 1 \end{array}$	$\begin{aligned} & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 29543[0]=722.1 \end{aligned}$
		DI 2	p29543[1] = 722.2
		DI 4	p2200[0] $=722.4$
		DI 5	$\mathrm{p} 2104[0]=722.5$
Setpoint	p1070[0] = 1024	DO 0	$\mathrm{p} 0730=52.3$
	p2253[0] $=2224$	DO 1	p0731 $=52.2$
	p1020[0] = 1	DO 2	p0732 $=29529.0$
Multi-pump control	p29520 = 1	DO 3	p0733 $=29529.1$
	p29521 = 2		
	p29539 = 1		
	p29540 = 1		

4.2.5.10 Default setting (macro) 49: "3 pumps and internal fixed setpoint"

Function description

Table 4-38 Characteristics

Analog input	Analog outputs	

Table 4-39 Procedure for selecting the default setting

Operator panel BOP-2	
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick commissioning \rightarrow I/O setup \rightarrow Select macro \rightarrow (49) 3 pumps and internal fixed setpoint \rightarrow Complete setup
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration \rightarrow 49: 3 pumps and internal fixed setpoint \rightarrow Complete quick setup

Table 4-40 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 49	$p 0015=49$	DI 0	$p 29652[0]=722.0$
AI 1	$p 2264[0]=755[1]$		$p 29650[0]=0$
AO 0	$p 0771[0]=21$	ON/OFF1	$p 0840[0]=29659.0$
AO 1	$p 0771[1]=27$	OFF2	$p 0844[0]=29659.1$
Setpoint	$p 1070[0]=1024$	DI 1	$p 29543[0]=722.1$
	$p 2253[0]=2224$	DI 2	$p 29543[1]=722.2$
	$p 1020[0]=1$	DI 3	$p 29543[2]=722.3$
		DI 4	$p 2200=722.4$
Multi-pump control	$p 29520=1$	DI 5	$p 2104[0]=722.5$
	$p 29521=3$	DO 0	$p 0730=52.3$
	$p 29539=1$	DO 1	$p 0731=29529.0$
	$p 29540=1$	DO 2	$p 0732=29529.1$
DO 3	$p 0733=29529.2$		

4.2.5.11 Default setting (macro) 51: "Modbus RTU control"

Function description

Table 4-41 Characteristics

Analog outputs	

Table 4-42 Procedure for selecting the default setting

4.2 Control interfaces

Table 4-43 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 51	p0015 $=51$	DI 0	$p 29652[0]=722.0$
AO 0	$p 0771[0]=21$		$p 29650[0]=0$
AO 1	$p 0771[1]=27$	ON/OFF1	$p 0840[0]=29659.0$
		OFF2	$p 0844[0]=29659.1$
Setpoint	$p 1070[0]=2050[1]$	DI 5	$p 2104[0]=722.5$
Modbus RTU	$p 2020=8$	DO 0	$p 0730=52.3$
	$p 2030=2$	DO 1	$p 0731=52.2$
	D2040 $=65000$	$p 0732=52.0$	
	DO 3	p0733 $=52.7$	

4.2.5.12 Default setting (macro) 52: "Modbus RTU control local/remote"

Function description

Table 4-44 Characteristics

Analog input	Analog outputs	

Table 4-45 Procedure for selecting the default setting

Operator panel BOP-2	
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick commissioning \rightarrow I/O setup \rightarrow Select macro \rightarrow (52) Modbus RTU control local/remote \rightarrow Complete setup
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration $\rightarrow 52$: Modbus RTU control local/ remote \rightarrow Complete quick setup

Table 4-46 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 52	p0015 = 52	DI 0	p29652[1] = 722.0
Al 0	p1070[1] = 755[0]		p29650[1] = 0
AO 0	p0771[0] = 21	OFF2	p0840[0...1] $=29659.0$ $p 0844[0 . .1]=29659.1$
AO 1	p0771[1] = 27	DI 1	$\mathrm{p} 29652[0]=722.1$
Modbus RTU	$\begin{aligned} & \text { p2020 }=8 \\ & \text { p2030 }=2 \\ & \text { p2040 }=65000 \\ & \text { p0854[0] }=2090.10 \\ & \text { p1070[0] }=2050[1] \end{aligned}$	$\begin{aligned} & \text { DI } 4 \\ & \text { DI } 5 \end{aligned}$	$\begin{aligned} & \text { p29650[0] = } 1 \\ & \text { p0810 = 722.4 } \\ & \text { p2104[0...1] = } 722.5 \end{aligned}$
		DO 0	p0730 $=52.3$
		DO 1	p0731 $=52.2$
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.13 Default setting (macro) 54: "USS control"

Function description

Table 4-47 Characteristics

Analog outputs	

Table 4-48 Procedure for selecting the default setting

Operator panel BOP-2	
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick commissioning \rightarrow I/O setup \rightarrow Select macro \rightarrow (54) USS control \rightarrow Complete setup
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration $\rightarrow 54$: USS control \rightarrow Complete quick setup

4.2 Control interfaces

Table 4-49 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 54	$p 0015=54$	DI 0	$p 29652[0]=722.0$
AO 0	$p 0771[0]=21$		$p 29650[0]=0$
AO 1	p0771[1] $=27$	ON/OFF1	$p 0840[0]=29659.0$
USS	$p 2020=8$	OFF2	$p 0844[0]=29659.1$
	p2023 $=4$	DI 5	$p 2104[0]=722.5$
	$p 2030=1$	DO 0	$p 0730=52.3$
	$p 2040=65000$	DO 1	$p 0731=52.2$
	DO 2	$p 0732=52.0$	
		DO 3	$p 0733=52.7$

4.2.5.14 Default setting (macro) 55: "USS control local/remote"

Function description

Table 4-50 Characteristics

Analog input	Analog outputs	

Table 4-51 Procedure for selecting the default setting

Table 4-52 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 55	p0015 = 55	DI 0	p29652[1] = 722.0
Al 0	p1070[1] = 755[0]		p29650[1] = 0
AO 0	$\mathrm{p} 0771[0]=21$	OFF2	p0844[0...1] = 29659.1
AO 1	p0771[1] = 27	DI 1	$\mathrm{p} 29652[0]=722.1$
USS	$\begin{aligned} & \hline p 2020=8 \\ & \text { p2023 }=4 \\ & \text { p2030 }=1 \\ & p 2040=65000 \\ & p 1070[0]=2050[1] \\ & p 0854[0]=2090.10 \end{aligned}$	DI 4	$\begin{aligned} & \text { p29650[0] = } 1 \\ & \text { p0810 = 722.4 } \\ & \text { p2104[0...1] = } 722.5 \end{aligned}$
		DO 0	$\mathrm{p} 0730=52.3$
		DO 1	p0731 = 52.2
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.15 Default setting (macro) 57: "PROFINET control"

Function description

"PROFINET control" is the factory setting for converters with PROFINET or PROFIBUS interfaces.

Table 4-53 Characteristics

Analog outputs	

Table 4-54 Procedure for selecting the default setting

Operator panel BOP-2	
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick commissioning \rightarrow I/O setup \rightarrow Select macro \rightarrow (57) PROFINET control \rightarrow Complete setup
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration \rightarrow 57: PROFINET control \rightarrow Complete quick setup

Table 4-55 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 57	p0015 = 57	DI 0	p1055[1] = 722.0
AO 0	p0771[0] = 21	DI 1	$p 1056[1]=722.1$
AO 1	p0771[1] = 27	DI 4	p0810 = 722.4 p2104[0...1] = 722.5
		ON/OFF1	p0840[0] = 29659.0
			$\begin{aligned} & \text { p29650 }=-1 \\ & \text { p29651 }=2090.0 \end{aligned}$
PROFINET or PROFIBUS	$\begin{aligned} & \hline \text { p0922 = } 999 \\ & \text { p1070[0] = 2050[1] } \end{aligned}$	DO 0	p0730 = 52.3
		DO 1	$p 0731=52.2$
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.16 Default setting (macro) 58: "MOP control"

Function description

Actual current value

Actual speed value

ON/OFF2
Motorized potentiometer, raise
Motorized potentiometer, lower Acknowledge fault Fault

Operation

Ready for operation

Alarm

Table 4-56 Characteristics

Analog outputs	

Table 4-57 Procedure for selecting the default setting

Table 4-58 Parameters that define the functions of the inputs and outputs

Setting	Parameter	Setting	Parameter
Default setting 58:	p0015 = 58	DI 0	p29652[0] = 722.0
AO 0	p0771[0] = 21		p29650[0] = 0
AO 1	p0771[1] = 27	ON/OFF1 OFF2 DI 1 DI 2	$\begin{aligned} & \mathrm{p} 0840[0]=29659.0 \\ & \mathrm{p} 0844[0]=29659.1 \\ & \mathrm{p} 1035[0]=722.1 \end{aligned}$
		DO 0	p0730 = 52.3
		DO 1	p0731 $=52.2$
		DO 2	p0732 $=52.0$
		DO 3	p0733 $=52.7$

4.2.5.17 Default setting (macro) 59: "Blank I/O"

Function description

Table 4-59 Procedure for selecting the default setting

Operator panel BOP-2		5ETUP - binis $\text { - } 59$			
Operator panel IOP-2	\rightarrow Setup \rightarrow Quick setup \rightarrow I/O setup \rightarrow Select macro \rightarrow (59): Blank I/O \rightarrow Complete setup				
Smart Access	\rightarrow Quick setup \rightarrow I/O configuration \rightarrow 59: Blank I/O \rightarrow Complete quick setup				

Table 4-60 Parameters which define the digital input function

Setting	Parameter	Setting	Parameter
Default setting 59	p0015 $=59$	DI 0	p29652[0] $=722.0$
			p29650[0] =0
		ON/OFF1	p0840[0] $=29659.0$
		OFF2	p0844[0] $=29659.1$

4.2 Control interfaces

4.2.6 Additional digital inputs and digital outputs on converters FSH and FSJ

Overview

Converters FSH and FSJ have 4 additional digital inputs and 2 digital outputs at terminal strip X9.

Figure 4-22 Terminal strip X9

Function description

External supply 20.1 V ... 28.8 V, max. 2 A
Reference for terminals 1,3,4,5, 6 and 8
External alarm Digital inputs
External fault
OFF2
OFF3
low $<5 \mathrm{~V}$, high $>15 \mathrm{~V}$, max. 30 V , input current 6.4 mA at 24 V

Reference for terminals $1,3,4,5,6$ and 8
Message " $U_{\text {Dc link }}$ is loaded", 24 VDC, max. 500 mA

Connection cross-section: $0.2 \mathrm{~mm}^{2} \ldots 2.5 \mathrm{~mm}^{2}$, tightening torque: 0.5 Nm ($5 \mathrm{lb} . \mathrm{in}$)
Use insulated end sleeves according to DIN 46228-4.
Terminals Remark
1 You may either connect an external 24 V supply or use the internal 24 V supply.
$3 \ldots 6$ The function of the digital inputs is shown in the factory setting.
You can change the function of the digital inputs subsequently.
The digital inputs are low-active in the factory setting. If you do not use one of the digital inputs, you must connect the digital input with 24 V .
8, 11, 12 The function of the digital outputs cannot be changed.
8

11, 12 A device to protect against overload and short-circuit is required for the power supply to the line contactor control, e.g. a 4 A / 250 V fuse.
Connect the excitation coil of the line contactor to a surge suppressor, e.g. an RC element.
Figure 4-23 Terminal strip X9 with external 24 V supply

Figure 4-24 Terminal strip X9 with internal 24 V supply

4.2.7 "Safe Torque Off" safety function

Overview

The "Safe Torque Off" (STO) safety function can be implemented using a failsafe digital input of the converter.

Requirements

- Both switches on the converter for enabling/disabling STO are in the ON position.
- The higher-level control system monitors the selection of STO and the feedback from the converter. \checkmark Application examples for "Safe Torque Off" (Page 173)

Function description

Use an SELV or PELV power supply with 24 V DC (20.4 V ... 28.8 V , maximum 60 V briefly).
Use a shielded cable with the following properties:

- Cable length $\leq 30 \mathrm{~m}$
- Cross section $0.5 \mathrm{~mm}^{2}$... $+1.5 \mathrm{~mm}^{2}$ (20 ... 16 AWG)
- Insulated for 600 V
- Conductor end sleeves, stripping length 7 mm

Tightening torque: 0.2 Nm (2 lbf in)

Procedure for converters in frame sizes FSA ... FSC

The description of the switch setting printed on the housing applies. The description on the switch itself is irrelevant.
Both switches = ON: STO is enabled
Both switches = OFF: STO is locked
Two switches different: not permissible
Figure 4-25 Terminals and switches for the "STO" function, frame sizes FSA ... FSC

1. Connect the cables for selecting STO to terminals STO_A and STO_B.
2. Connect the cables for STO feedback to 2 digital outputs of terminal block X134.

3. Attach the shield to the shield plate of the converter through the largest possible surface area.

You have connected all cables for the STO safety function.

Procedure for converters in frame sizes FSD ... FSG

Both switches $=$ ON: STO is enabled
Both switches = OFF: STO is locked
Two switches different: not permissible
Figure 4-26 Terminals and switches for the "STO" function, frame sizes FSD ... FSG

1. Remove the Control Unit.

2. Connect the cable for selecting STO to terminals STO_A and STO_B.
3. Plug in the Control Unit.

4. Connect the cables for STO feedback to 2 digital outputs of terminal block X134.

5. Attach the shield to the shield plate of the Control Unit through the largest possible surface area.
You have connected all cables for the STO safety function.
\square
Procedure for converters in frame sizes FSH ... FSJ

Both switches = STO ON: STO is enabled
Both switches = STO OFF: STO is locked
Two switches different: not permissible
Figure 4-27 Terminals and switches for the "STO" function, frame sizes FSH and FSJ

The switch setting on the adhesive label is valid for the enable of STO. The description on the switch itself is irrelevant.
Figure 4-28 Adhesive label with description of switch setting

1. Connect the cable for selecting STO to terminals $X 41:$ STO_A and $X 41: S T O _B$.
2. Connect the cables for STO feedback to terminals X41:FB_A and X41:FB_B.
3. Attach the shield to the shield plate through the largest possible surface area.

You have connected all cables for the STO safety function.

Further information

In order to prevent inadvertent inhibition of the "STO" function in the FSA ... FSC converter, we recommend protecting the associated switch with a cable tie.

Figure 4-29 Protection against inadvertent inhibition of the "STO" function, FSA ... FSC

4.2.8 Application examples for "Safe Torque Off"

Overview

A higher-level control system is required to select the STO safety function.

Preconditions

Basic prerequisites

- The digital outputs for the feedback of STO are correctly parameterized. 4 Setting the feedback signal for Safe Torque Off (Page 388)
- The higher-level control system monitors the selection of the STO safety function and the feedback from the converter.
- Forced checking procedure (test stop):

The higher-level control system regularly selects the STO safety function and evaluates the converter feedback signal.
We recommend that you implement a time monitoring function in the higher-level control system, which issues an alarm if a test stop is overdue.

Prerequisites for SIL 2/PL d

- Suitable higher-level controllers
- SIRIUS 3SK1: Single-channel static feedback circuit
- SIRIUS 3SK2: Two-channel dynamic feedback circuit
- MSS 3RK3: Two-channel dynamic feedback circuit
- SIMATIC: Feedback circuit monitoring in the safety program
- Forced checking procedure (test stop) once per year

Prerequisites for SIL 3/PLe

- Suitable higher-level controllers
- SIRIUS 3SK1: Single-channel static feedback circuit Permissible for converters FSH and FSJ, not permissible for FSA ... FSG
- SIRIUS 3SK2: Two-channel dynamic feedback circuit
- MSS 3RK3: Two-channel dynamic feedback circuit
- SIMATIC: Feedback circuit monitoring in the safety program
- Forced checking procedure (test stop) every 3 months

Function description

SIRIUS 3SK1 safety relay

Figure 4-30 Connection 3SK1 inside a control cabinet for FSA ... FSG
You can achieve SIL 2/PL d with a SIRIUS 3SK1 safety relay and the converter FSA ... FSG.

Figure 4-31 Connection 3SK1 inside a control cabinet for FSH, FSJ
You can achieve SIL 3/PL e with a SIRIUS 3SK1 safety relay and the converter FSH or FSJ.

SIRIUS 3SK2 safety relay

The wiring examples are implemented using safety relays with relay enable circuits. Safety relays with semiconductor enable circuits can also be used.

Figure 4-32 Connection 3SK2 inside a control cabinet for FSA ... FSG

$\begin{array}{ll}T_{1} \geq 30 \mathrm{~ms} & \text { In case of deviating feedback, the safety relay must select the STO function and } \\ \mathrm{T}_{2} \geq 20 \mathrm{~ms} & \text { indicate an error. }\end{array}$
Figure 4-33 Dynamic monitoring of STO feedback for FSA ... FSG

Figure 4-34 Connection 3SK2 inside a control cabinet for FSH and FSJ
Static monitoring of STO feedback at start-up is sufficient for the converters FSH and FSJ.

Modular 3RK3 safety system

You can use the following outputs to control the failsafe digital inputs in the converter:

- The failsafe digital outputs in the central units of the 3RK3 modular safety system
- The failsafe digital outputs in the EM $2 / 4 \mathrm{~F}-\mathrm{DI} 2 \mathrm{~F}-\mathrm{DO}$ expansion module
- The failsafe digital outputs in the EM 4F-DO expansion module.
- The failsafe relay outputs in the EM 4/8F-RO expansion module
- 2 individual relay contacts of the EM $2 / 4 \mathrm{~F}-\mathrm{DI} 1 / 2 \mathrm{~F}-\mathrm{RO}$ expansion module

Figure 4-35 Connection 3RK3 inside a control cabinet for FSA ... FSG

$\mathrm{T}_{1} \geq 30 \mathrm{~ms} \quad$ In case of deviating feedback, the Modular Safety System must select the STO $\mathrm{T}_{2} \geq 20 \mathrm{~ms} \quad$ function and indicate an error
Figure 4-36 Dynamic monitoring of STO feedback for FSA ... FSG

Figure 4-37 Connection 3RK3 inside a control cabinet for FSH and FSJ
Static monitoring of STO feedback at start-up is sufficient for the converters FSH and FSJ.

SIMATIC I/O modules

Figure 4-38 Connecting the SIMATIC S7-1500 in a control cabinet for FSA ... FSG

$\begin{array}{ll}\mathrm{T}_{1} \geq 30 \mathrm{~ms} & \text { In case of deviating feedback, the SIMATIC must select the STO function and } \\ \mathrm{T}_{2} \geq 20 \mathrm{~ms} & \text { indicate an error. }\end{array}$
$\mathrm{T}_{2} \geq 20 \mathrm{~ms}$
Figure 4-39 Dynamic monitoring of STO feedback for FSA ... FSG

Figure 4-40 Connection of the SIMATIC S7-1500 inside a control cabinet for FSH and FSJ
Static monitoring of STO feedback for STO selection is sufficient for the converters FSH and FSJ.

More information

Further information is provided on the Internet:
2 SIRIUS 3SK1 safety relays (https://support.industry.siemens.com/cs/ww/en/ps/16381/man)
(2) SIRIUS 3SK2 Safety Relays (https://support.industry.siemens.com/cs/ww/en/view/ 109444336)
(2) SIRIUS 3RK3 modular safety system manual (https://support.industry.siemens.com/cs/ww/ en/view/26493228)
(3) S7-1500 (https://support.industry.siemens.com/cs/ww/en/view/86140384)
(3) ET 200SP (https://support.industry.siemens.com/cs/ww/en/view/84133942)
(2) ET 200pro (https://support.industry.siemens.com/cs/ww/en/view/22098524)
(2) ET 200S (https://support.industry.siemens.com/cs/ww/en/view/12490437)
(3) S7-300 (https://support.industry.siemens.com/cs/ww/en/view/19026151)

4.2.9 Wiring the terminal strips

WARNING

Electric shock due to unsuitable motor temperature evaluation system
Voltage flashovers to the electronics of the converter can occur in motors without safe electrical separation of the temperature sensors in accordance with IEC 61800-5-1 when the motor develops a fault.

- Install a temperature monitoring relay 3 RS1... or 3RS2...
- Evaluate the temperature monitoring relay output using a digital input of the converter, e.g. using the "External fault" function.

You can find additional information about the temperature monitoring relay on the Internet:
Manual 3RS1 / 3RS2 temperature monitoring relays (https://support.industry.siemens.com/ cs/ww/en/view/54999309)

Note

Malfunction caused by incorrect switching states as the result of diagnostic flows in the off state (logical state "0")

In contrast to mechanical switching contacts, e.g. emergency stop switches, diagnostic flows can also flow with semiconductor switches in the off state. If interconnection with digital inputs is faulty, the diagnostic flows can lead to incorrect switching states and thus to a malfunction of the drive.

- Observe the conditions for digital inputs and digital outputs specified in the relevant manufacturers documentation.
- Check the conditions of the digital inputs and digital outputs in regard to the flows in off state. If applicable, connect the digital inputs with suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

WARNING
 Electric shock due to damaged insulation
 Damaged insulation of cables carrying hazardous voltages can cause a short circuit with cables carrying non-hazardous voltages. This can have the effect that parts of the converter or the installation carry an unexpectedly high voltage.
 - Use only cables with double insulation for 230 V cables which you connect to the digital outputs of the converter.

NOTICE

Overvoltages for long signal cables

Using > 30 m long cables at the converter's digital inputs and 24 V power supply or inductive circuits at the digital inputs can lead to overvoltage. Overvoltages can damage the converter.

- Connect an overvoltage protection device between the terminal and the associated reference potential.
We recommend using the Weidmüller overvoltage protection terminal with designation MCZ OVP TAZ DIODE 24VDC.

Table 4-61 Permissible cable and wiring options

Solid or finely-stranded conductor	Finely stranded conduc- tor with non-insulated end sleeve	Finely stranded conduc- tor with partially insula- ted end sleeve	Two finely-stranded con- ductors with the same cross-section with parti- ally insulated twin end sleeves

Wiring the terminal strip in compliance with EMC

If you use shielded cables, then you must connect the shield to the mounting plate of the control cabinet or with the shield support of the converter through a good electrical connection and a large surface area.
Use the shield connection plate of the Control Unit as strain relief.
Mounting the shield connection kits (Page 84)

EMC-compliant wiring of failsafe inputs

Use shielded signal lines. Connect the shield at both cable ends.
In order to connect two or more converter terminals, use the shortest possible jumpers directly at the terminals themselves.

Further information

Further information about EMC-compliant wiring is available on the Internet:
(2) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)

4.2.10 Fieldbus

Interfaces at the lower side of the Control Unit

PROFINET

1 RX+, receive data +
2 RX-, receive data 3 TX+, transmit data +
4 ---
5 ---
6 TX-, transmit data -
7 ---
8 ---

PROFIBUS

1 Shield, ground
2 ---
3 RxD/TxD-P, receive and transmit (B/B')
4 CNTR-P, control signal
5 DGND, reference potential for data (C/C')
6 VP, supply voltage
7 ---
$8 \mathrm{RxD} / \mathrm{TxD}-\mathrm{N}$, receive and transmit (A/A')
9 ---

RS485

10 V , reference potential
2 RS 485P, receive and transmit (+)
3 RS 485N, receive and transmit (-)
4 Shield
5 ---

4.2.11 Connecting to PROFINET and Ethernet

4.2.11.1 Communication via PROFINET IO and Ethernet

You can either integrate the converter in a PROFINET network or communicate with the converter via Ethernet.

The converter in PROFINET IO operation

Figure 4-41 The converter in PROFINET IO operation (examples)
The converter supports the following functions:

- RT
- IRT: The converter forwards the clock synchronism, but does not support clock synchronism.
- MRP: Media redundancy, impulsed with 200 ms. Precondition: Ring topology With MRP, you get an uninterrupted switchover if you set the failure monitoring time to a value > 200 ms .
- MRPD: Media redundancy, bumpless. Precondition: IRT and the ring topology created in the control
- Diagnostic alarms in accordance with the error classes specified in the PROFIdrive profile.
- Device replacement without removable data storage medium: The replacement converter is assigned the device name from the IO controller, not from its memory card or from the programming device.
- Shared Device for converters that support PROFIsafe.

The converter as Ethernet node

Figure 4-42 The converter as Ethernet node (examples)

Note

When using a cable longer than 3 m to connect the Control Unit to the PROFINET or Ethernet interface, electromagnetic interference may occur. Use appropriate ferrite clamps, cabinet feedthrough, or fiber optic transceivers to minimize the interference emission.

Further information on PROFINET

Further information on PROFINET can be found on the Internet:

- (5) PROFINET system description (https://support.industry.siemens.com/cs/ww/en/view/ 19292127)
- 8ROFINET - the Ethernet standard for automation (http://w3.siemens.com/mcms/ automation/en/industrial-communications/profinet/Pages/Default.aspx)

4.2.11.2 Protocols used

The converter supports the protocols listed in the following tables. The address parameters, the relevant communication layer as well as the communication role and the communication direction are specified for each protocol.
You require this information to set the appropriate safety measures to protect the automation system, e.g. in the firewall.
As the security measures are limited to Ethernet and PROFINET networks, no PROFIBUS protocols are listed in the table.

Table 4-62 PROFINET protocols

$\left.$| Protocol | Port
 number | Layer
 (2) Link layer
 (4) Transport layer | Function/description |
| :--- | :--- | :--- | :--- |
| DCP:
 Discovery and
 configuration
 protocol | Not rele-
 vant | (2) Ethernet II and
 IEEE 802.1Q and
 Ethertype 0x8892 (PRO-
 FINET) | Accessible stations, PROFINET Discovery and configuration
 DCP is used by PROFINET to determine PROFINET devices and to make
 basic settings.
 DCP uses the special multicast MAC address:
 xx-xx-xx-01-0E-CF,
 xx-xx-xx = Organizationally Unique Identifier |
| LLDP:
 Link Layer Dis-
 covery Protocol | Not rele-
 vant | (2) Ethernet II and
 IEEE 802.1Q and
 Ethertype 0x88CC (PRO-
 FINET) | PROFINET Link Layer Discovery protocol
 LLDP is used by PROFINET to determine and manage neighborhood
 relationships between PROFINET devices.
 LLDP uses the special multicast MAC address: |
| MRP:
 Media Redun-
 dancy Protocol | Not rele-
 vant | (2) Ethernet II and
 IEEE 802.1Q and
 Ethertype 0x88E3 (PRO-00-00-0E | |
| FINET) | | | | | PROFINET medium redundancy |
| :--- |
| MRP enables the control of redundant routes through a ring topology. |
| MRP uses the special multicast MAC address: |
| xx-xx-xx-01-15-4E, |
| xx-xx-xx = Organizationally Unique Identifier | \right\rvert\,

Protocol	Port number	Layer (2) Link layer (4) Transport layer	Function/description
PROFINET IO da- ta	Not rele- vant	(2) Ethernet II and IEEE 802.1Q and Ethertype 0x8892 (PRO- FINET)	PROFINET Cyclic IO data transfer The PROFINET IO telegrams are used to transfer IO data cyclically be- tween the PROFINET IO controller and IO devices via Ethernet.
PROFINET Con- text Manager	34964	(4) UDP	PROFINET connection less RPC The PROFINET context manager provides an endpoint mapper in order to establish an application relationship (PROFINET AR).

Table 4-63 EtherNet/IP protocols

Protocol	Port number	Layer (2) Link layer (4) Transport layer	Function/description
Implicit mes- saging	2222	(4) UDP	Used for exchanging I/O data. This is inactive when delivered. Is activated when selecting EtherNet/IP.
Explicit messag- ing	44818	(4) TCP (4) UDP	Used for parameter access (writing, reading). This is inactive when delivered. Is activated when selecting EtherNet/IP.

Table 4-64 Connection-oriented communication protocols

Protocol	Port number	Layer (2) Link layer (4) Transport layer	Function/description
ISO on TCP (ac- cording to RFC 1006)	102	(4) TCP	ISO-on-TCP protocol ISO on TCP (according to RFC 1006) is used for the message-oriented data exchange to a remote CPU, WinAC or devices of other suppliers. Communication with ES, HMI, etc. is activated in the factory setting, and is always required.
SNMP Simple Net- work Manage- ment Protocol	161	(4) UDP	Simple network management protocol SNMPenables network management data to be read out and set (SNMP managed objects) by the SNMP manager. It is activated in the factory setting, and is always required
Reserved	$49152 \ldots$ 65535	(4) TCP (4) UDP	Dynamic port area that is used for the active connection endpoint if the application does not specify the local port.

4.2.11.3 Connecting the PROFINET cable to the converter

Procedure

1. Integrate the converter in the bus system (e.g. ring topology) of the control using PROFINET cables and the two PROFINET sockets X150-P1 and X150-P2.
Overview of the interfaces (Page 128)
The maximum permitted cable length from the previous station and to the next one is 100 m .
2. Externally supply the converter with 24 VDC through terminals 31 and 32 .

The external 24 V supply is only required if communications with the control should also run when the line voltage is switched off.

You have connected the converter to the control system via PROFINET.
\square

4.2.11.4 What do you have to set for communication via PROFINET?

Configuring PROFINET communication in the I/O controller

You require the appropriate engineering system for the IO controller to configure PROFINET communication in the IO controller.

If required, load the GSDML file of the converter into the engineering software.
Installing GSDML (Page 187)

Device name

In addition to the MAC address and IP address, PROFINET also uses the device name to identify PROFINET devices (Device name). The device name must be unique across the PROFINET network.

You assign the device name with the IO controller engineering software.
The converter saves the device name on the memory card plugged into the converter.

IP address

In addition to the device name, PROFINET also uses an IP address.
The IO Controller assigns an IP address to the converter.

Telegram

Set the same telegram in the converter as in the IO Controller. Interconnect the telegrams in the control program of the IO Controller with the signals of your choosing.
Drive control via PROFINET or PROFIBUS (Page 272)

Application examples

You can find application examples for PROFINET communication on the Internet:

Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/60441457)
(8) Controlling the speed of a SINAMICS G110M / G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:/I support.industry.siemens.com/cs/ww/en/view/78788716)

4.2.11.5 Installing GSDML

Procedure

1. Save the GSDML to your PC.

- With Internet access:
(3) GSDML (https://support.industry.siemens.com/cs/ww/en/view/109763250)
- Without Internet access: Insert a memory card into the converter. Set p0804 = 12 . The converter writes the GSDML as a zipped file (*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.

2. Unzip the GSDML file on your computer.
3. Import the GSDML into the engineering system of the controller.

You have now installed the GSDML in the engineering system of the controller.

4.2.11.6 Connect converter to EtherNet/IP

Overview

To connect the converter to a control system via Ethernet, proceed as follows:

Procedure

1. Connect the converter to the control system via an Ethernet cable.
2. Create an object for data exchange.

You have the following options:

- Load the EDS file into your controller if you want to use the ODVA profile. You can find the EDS file on the Internet: (3) EDS (https://support.industry.siemens.com/cs/ww/de/view/78026217)
- If your controller does not accept the EDS file, or if you wish to use the SINAMICS profile, you must create a generic module in your controller:
Create generic I/O module (Page 308)
You have connected the converter to the control system via EtherNet/IP.
\square

Example

You can find an example showing how to connect a converter to the control system via Ethernet/ IP on the Internet:

Application example (https://support.industry.siemens.com/cs/ww/en/view/82843076)

4.2.11.7 What do you need for communication via EtherNet/IP?

Check the communication settings using the following questions. If you answer "Yes" to the questions, you have correctly set the communication settings and can control the converter via the fieldbus.

- Is the converter correctly connected to the EtherNet/IP?
- Is the EDS file installed in your control system?
- Have the bus interface and IP address been correctly set?
- Have the signals that the converter and the control system exchange been correctly interconnected?

4.2.12 Connecting to Modbus RTU, USS or BACnet MS/TP

Function description

Figure 4-43 Connection with the fieldbus via RS485
The RS485 ports of the converter are short-circuit proof and isolated.
You must switch-in the bus-terminating resistor for the first and last nodes.
The bus terminating resistor is located next to the terminal strips behind the front door of the converter.

Table 4-65 Maximum cable length

Modbus RTU	USS	BACnet MS/TP
1200 m	1200 m for a baud rate up to $38400 \mathrm{bit} / \mathrm{s}$ and maximum of 32 nodes	1200 m
	1000 m for a baud rate of $187500 \mathrm{bit} / \mathrm{s}$ and a maximum of 30 nodes	

Additional information

The precondition for error-free communications is that the first and last station are supplied with power.
Communication is maintained if you withdraw individual slaves from the fieldbus without interrupting the cable.

4.2.13 Connecting to PROFIBUS

The PROFIBUS DP interface has the following functions:

- Cyclic communication
- Acyclic communication
- Diagnostic alarms

General information on PROFIBUS DP can be found in the Internet:

- PROFIBUS user organization (http://www.profibus.com/downloads/installation-guidel)
- Information about PROFIBUS DP (http://www.automation.siemens.com/net/html_76/ support/printkatalog.htm)

4.2.13.1 Connecting the PROFIBUS cable to the converter

Procedure

1. Connect the converter to socket X 126 via a PROFIBUS cable with the higher-level control. N Overview of the interfaces (Page 128)
The maximum permitted cable length to the previous station or the subsequent one is 100 m at a baud rate of $12 \mathrm{Mbit} / \mathrm{s}$.
Recommended PROFIBUS connectors:

- 6GK1500-0FC10
- 6KG1500-0EA02

2. If necessary, connect a 24 V supply voltage to terminals 31 and 32.

The external 24 V supply is only required if communication with the control may not be interrupted even if the line voltage is switched off.

You connected the converter with the control via PROFIBUS. \square

4.2.13.2 What do you have to set for communication via PROFIBUS?

Configuring PROFIBUS communication

You require the appropriate engineering system to configure PROFIBUS communication in the PROFIBUS master.

If required, load the GSD file of the converter into the engineering system.
Installing the GSD (Page 191)

Setting the address

Set the address of the PROFIBUS slave.
S] Setting the address (Page 272)

Setting the telegram

Set the same telegram in the converter as in the PROFIBUS master. Interconnect the telegrams in the control program of the PROFIBUS master with the signals of your choosing.
Drive control via PROFINET or PROFIBUS (Page 272)

Application examples

You can find application examples for PROFIBUS communication on the Internet:
(3) Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/60441457)
(20) Controlling the speed of a SINAMICS G110M / G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/78788716)

Communication with the control system even if the line voltage is switched off
You must supply the converter with 24 V DC at terminals 31 and 32 if you wish to maintain communication with the control system when the line voltage is switched off.

In the case of brief interruptions of the 24 V power supply, the converter may signal a fault without communications with the control system being interrupted.

4.2.13.3 Installing the GSD

Procedure

1. Save the GSD on your PC using one of the following methods.

- With Internet access:
(2) GSD (http://support.automation.siemens.com/WW/view/en/22339653/133100)
- Without Internet access:

Insert a memory card into the converter.
Set p0804 = 12 .
The converter writes the GSD as zipped file (*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.
2. Unzip the GSD file on your computer.
3. Import the GSD in the engineering system of the controller.

You have now installed the GSD file in the engineering system of the controller.
4.2 Control interfaces

5.1 Commissioning guidelines

Overview

1. Define the requirements to be met by the drive for your application.
(Page 195)
2. Restore the factory settings of the converter if necessary. (Page 219)
3. Check if the factory setting of the converter is sufficient for your application. (Page 200)
4. Set the following for quick commissioning of the drive:

- The closed-loop motor control
- The inputs and outputs
- The fieldbus interface
(Page 203)

5. Check if additional converter functions are required for the application. (Page 195)
6. If necessary, adapt the drive. (Page 245)
7. Save your settings. (Page 229)

5.2 Tools

Operator panel

An operator panel is used to commission, troubleshoot and control the converter, as well as to back up and transfer the converter settings.

The Intelligent Operator Panel (IOP-2) can either be snapped onto a converter, or is available as handheld device with a connecting cable to the converter. The graphics-capable plain text display of the IOP-2 enables intuitive converter operation.

Additional information on the IOP-2 is available in the Internet:

(3) SINAMICS IOP-2 release for sale (https://support.industry.siemens.com/cs/ww/en/view/ 109747625)

The Operator Panel BOP-2 for snapping onto the converter has a two-line display for diagnostics and operating the converter.

Operating Instructions of the BOP-2 and IOP-2 operator panels:
Manuals and technical support (Page 1359)

SINAMICS G120 Smart Access

The SINAMICS G120 Smart Access is a Web server module and an engineering tool that provides wireless connection to a PC, a tablet, or a smartphone. It is designed for quick commissioning, parameterization, and maintenance of the converters. SINAMICS G120 Smart Access are only for commissioning and thus cannot be used with the converter permanently.

Operating instructions of the SINAMICS G120 Smart Access:
Overview of the manuals (Page 1359)

Preventing misuse of the operator panel

The operator panel does not provide protection against unauthorized access. To protect the converter against unauthorized operation or changes to the settings, you need to prevent access to the operator panel:

- Remove the operator panel after commissioning
- Install the converter in a control cabinet that can be locked and lock the control cabinet after commissioning.

Compliance with the General Data Protection Regulation

Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

For this product, this means:
The product does not process neither store any person-related data, only technical function data (e.g. time stamps). If the user links these data with other data (e.g. shift plans) or if he stores person-related data on the same data medium (e.g. hard disk), thus personalizing these data, he has to ensure compliance with the applicable data protection stipulations.

5.3 Preparing for commissioning

5.3.1 Collecting motor data

Data for a standard induction motor

Before starting commissioning, you must know the following data:

- Which motor is connected to the converter?

Note down the Article No. of the motor and the motor's nameplate data.
If available, note down the motor code on the motor's nameplate.

Figure 5-1 Example of the rating plate for a standard induction motor

- In which region of the world is the motor to be used?
- Europe IEC: 50 Hz [kW]
- North America NEMA: 60 Hz [hp] or 60 Hz [kW]
- How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection [Δ]). Note the appropriate motor data for connecting.

1LEO motor mapping table

For the standard induction motor 1LE0, you can find the motor codes and the corresponding article numbers in the mapping table below:

Motor code	Article number	Motor code	Article number	Motor code	Article number
16100	1LE0003-0DA22-1...	16134	1LE0003-1DD23-3...	16168	1LE0003-3AA53-3...
16101	1 LE0003-0DA32-1...	16135	1LE0003-1DD33-3...	16169	1LE0003-3AA63-3...
16102	1 LE0003-ODB22-1...	16136	1LE0003-1DD43-3...	16170	1LE0003-3AA73-3...
16103	1 LE0003-ODB32-1...	16137	1LE0003-1EA23-3...	16171	1LE0003-3AB03-3...
16104	1 LE0003-0DC32-1...	16138	1LE0003-1EB23-3...	16172	1LE0003-3AB23-3...

5.3 Preparing for commissioning

16105	1LE0003-0EA02-1...	16139	1LE0003-1EB43-3...	16173	1LE0003-3AB53-3...
16106	1LE0003-0EA42-1...	16140	1LE0003-1EC43-3...	16174	1LE0003-3AB63-3...
16107	1LE0003-0EB02-1...	16141	1LE0003-1ED43-3...	16175	1LE0003-3AB73-3...
16108	1LE0003-0EB42-1...	16142	1LE0003-2AA43-3...	16176	1LE0003-3AC03-3...
16109	1LE0003-0EC02-1...	16143	1LE0003-2AA53-3...	16177	1LE0003-3AC23-3...
16110	1LE0003-0EC42-1...	16144	1LE0003-2AB43-3...	16178	1LE0003-3AC53-3...
16111	1LE0003-1AA42-1...	16145	1LE0003-2AC43-3...	16179	1LE0003-3AC63-3...
16112	1LE0003-1AB42-1...	16146	1LE0003-2AC53-3...	16180	1LE0003-3AD03-3...
16113	1LE0003-1AB52-1...	16147	1LE0003-2AD53-3...	16181	1LE0003-3AD23-3...
16114	1LE0003-1AC42-1...	16148	1LE0003-2BA23-3...	16182	1LE0003-3AD53-3...
16115	1LE0003-1BA23-3...	16149	1LE0003-2BB03-3...	16183	1LE0003-3AD63-3...
16116	1LE0003-1BB23-3...	16150	1LE0003-2BB23-3...	16184	1LE0003-3BA23-3...
16117	1LE0003-1BC22-1...	16151	1LE0003-2BC23-3...	16185	1LE0003-3BA33-3...
16118	1LE0003-1CA03-3...	16152	1LE0003-2BD03-3...	16186	1LE0003-3BA53-3...
16119	1LE0003-1CA13-3...	16153	1LE0003-2BD23-3...	16187	1LE0003-3BA63-3...
16120	1LE0003-1CB03-3...	16154	1LE0003-2CA23-3...	16188	1LE0003-3BB23-3...
16121	1LE0003-1CB23-3...	16155	1LE0003-2CB23-3...	16189	1LE0003-3BB33-3...
16122	1LE0003-1CC02-1...	16156	1LE0003-2CC23-3...	16190	1LE0003-3BB53-3...
16123	1LE0003-1CC23-3...	16157	1LE0003-2CD23-3...	16191	1LE0003-3BB63-3...
16124	1LE0003-1CC33-3...	16158	1LE0003-2DA03-3...	16192	1LE0003-3BC23-3...
16125	1LE0003-1CD02-1...	16159	1LE0003-2DA23-3...	16193	1LE0003-3BC33-3...
16126	1LE0003-1CD22-1...	16160	1LE0003-2DB03-3...	16194	1LE0003-3BC43-3...
16127	1LE0003-1DA23-3...	16161	1LE0003-2DB23-3...	16195	1LE0003-3BC53-3...
16128	1LE0003-1DA33-3...	16162	1LE0003-2DC03-3...	16196	1LE0003-3BC63-3...
16129	1LE0003-1DA43-3...	16163	1LE0003-2DC23-3...	16197	1LE0003-3BD23-3...
16130	1LE0003-1DB23-3...	16164	1LE0003-2DD03-3...	16198	1LE0003-3BD33-3...
16131	1LE0003-1DB43-3...	16165	1LE0003-2DD23-3...	16199	1LE0003-3BD53-3...
16132	1LE0003-1DC23-3...	16166	1LE0003-3AA03-3...	17100	1LE0003-3BD63-3...
16133	1LE0003-1DC43-3...	16167	1LE0003-3AA23-3...		

Further information can be found on the internet:
(2) 1LEO motor (https://support.industry.siemens.com/cs/ww/en/view/109795680)

Data for a synchronous reluctance motor

Before starting commissioning, you must know the following data:

- Which motor is connected to the converter?

Note down the motor code on the type plate of the motor.

Figure 5-2 Example of a type plate for a reluctance motor

- In which region of the world is the motor to be used?
- Europe IEC: $50 \mathrm{~Hz}[\mathrm{~kW}]$
- North America NEMA: 60 Hz [hp] or 60 Hz [kW]
- How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection [Δ]). Note the appropriate motor data for connecting.

5.3.2 Precharing the circuit (FSH/FSJ only)

FSH/FSJ converters include a half-controlled thyristor bridge as rectifier circuit. As a result of the precharging principle with phase control, precharging is only started when all of the enable signals are available and by setting the ON/OFF command ($\mathrm{p} 0840=1$). The DC link is then fully charged after approximately 4 s .
5.3 Preparing for commissioning

5.3.3 Forming DC link capacitors

Overview

You have to reform the DC link capacitors if the converter has been stored for more than one year. Non-formed DC link capacitors can damage the converter in operation.

Precondition

The converter has not yet been used, and according to the production date it was made over a year ago.
The production date of the converter is coded in the 3rd and 4th digit of the serial number on the rating plate: S ..(3)(4)...

- Example: Serial number S ZVK5375000118 \rightarrow Production date May 2018

Table 5-1 Production year and month

Digit (3)	Production year	Digit 4	Production month
K	2018		$1 \ldots 9$
L	2019	0	January ... September
M	2020	N	October
\ldots	\ldots	D	November

Function description

Procedure for FSA ... FSG

You form the DC link capacitors by supplying the converter with a line voltage of $\leq 100 \%$ of the rated voltage for a defined time.

Figure 5-3 Forming the DC link capacitors

Procedure for FSH and FSJ

1. Set $\mathrm{p} 0010=2$.
2. Set the forming duration p3380.

Storage time from the production date	Recommended forming duration
$1 \ldots 2$ years	1 hour
$2 \ldots 3$ years	2 hours
>3 years	8 hours

For p3380 > 0, with alarm A07391, the converter signals that at the next ON command, DC link forming starts.
3. Switch on the motor, e.g. from an inserted operator panel.
4. Wait for the forming time to elapse. r3381 indicates the remaining time.

If the line voltage is switched off before forming has been completed, then you have to form the DC link again.
5. The converter sets $\mathrm{p} 3380=0$.
6. Set p0010=0.

You have formed the DC link.
\square

Parameter

Parameter	Description	Factory setting
p0010	Drive commissioning parameter filter	0
p3380	Forming activation/duration	0 h
r3381	Remaining forming time	-h
r3382	Forming status word	-

5.3.4 Converter factory setting

Motor

In the factory, the converter is set for an induction motor with 2 pole pairs that matches the rated power of the converter.

Converter interfaces

The inputs and outputs and the fieldbus interface of the converter have specific functions when set to the factory settings.
Factory interface settings (Page 132)

Switching the motor on and off

The converter is set in the factory as follows:

- After the ON command, the motor accelerates within the ramp-up time (referred to 1500 rpm) to its speed setpoint.
- After the OFF1 command, the motor brakes down to standstill with the ramp-down time.
- The negative direction of rotation is inhibited

Ramp-up time10s

Figure 5-4 Switch motor on and off in the factory setting
The ramp-up and ramp-down times define the maximum motor acceleration when the speed setpoint changes. The ramp-up and ramp-down times are derived from the time between motor standstill and the maximum speed, or between the maximum speed and motor standstill.

Traverse the motor in the jog mode

For a converter with PROFINET interface, operation can be switched over using digital input DI 4. The motor is either switched on and off via the fieldbus - or operated in the jog mode via its digital inputs.

For a control command at the respective digital input, the motor rotates with $\pm 150 \mathrm{rpm}$. The same ramp-up and ramp-down times as described above apply.

Figure 5-5 Jogging the motor in the factory setting

Minimum and maximum speed

- Minimum speed - factory setting 0 [rpm]

After the selection of a motor, during the quick commissioning, the converter sets the minimum speed to 20% of the rated speed.
The minimum speed is the lowest speed of the motor independent of the speed setpoint.

- Maximum speed - factory setting 1500 [rpm]

The converter limits the motor speed to this value.

Calculating maximum speed for permanent magnet synchronous motors

A. CAUTION

Damage to the converter due to generator-driven motor
If the load machine drives the permanent magnet synchronous motor unintentionally, the permanent magnet synchronous motor charges the DC link of the converter. An impermissibly high DC link voltage can destroy the DC link capacitors of the converter.

- Ensure that the motor speed always remains below the calculated maximum speed even when the converter is disconnected from the power supply, e.g. by taking the following measures:
- Brake on the load machine
- Backstop on a pump

Calculate the maximum speed:

$n_{\max }=n_{r a}$	$\sqrt{\frac{3}{2}} \cdot \frac{U_{\mathrm{DC} \text { max }} \cdot I_{\text {rated }}}{P_{\text {rated }}}$
$\mathrm{n}_{\text {rated }}$	Rated motor speed
$\mathrm{U}_{\mathrm{DC} \text { max }}$	Maximum permissible DC link voltage in converter: - $\mathrm{V}_{\mathrm{DC} \text { max }}=820 \mathrm{~V}$ for mains voltage $380 \mathrm{~V} \ldots 480 \mathrm{~V} 3 \mathrm{AC}$ - $V_{D C \max }=1022 \mathrm{~V}$ for mains voltage $500 \mathrm{~V} \ldots 600 \mathrm{~V} 3 \mathrm{AC}$ - $V_{D C \max }=1220 \mathrm{~V}$ for mains voltage $660 \mathrm{~V} \ldots 690 \mathrm{~V} 3 \mathrm{AC}$
$I_{\text {rated }}$	Rated motor current
$\mathrm{P}_{\text {rated }}$	Rated motor power

5.3 Preparing for commissioning

Operate the motor in the factory setting

We recommend that you execute quick commissioning. For quick commissioning, you must adapt the converter to the connected motor by setting the motor data in the converter.
All of the following preconditions must be fulfilled in order to operate the converter with factory settings and without further commissioning:

- Simple use, e.g. fan or horizontal conveyor
- Standard induction motor with a rated power of < 18.5 kW

Check whether the control quality of the drive without commissioning is adequate for the requirements of the application.

5.4 Quick commissioning using the BOP-2 operator panel

5.4.1 Fitting the BOP-2 to the converter

Fitting the BOP-2 to the converter

Procedure

1. Open the cover of the interface X 21 on the front of the converter.
2. Locate the lower edge of the Operator Panel into the matching recess of the converter.
3. Plug the operator panel BOP-2 onto the converter until the latch audibly engages.

You have plugged the BOP-2 onto the converter.
\square
The operator panel BOP-2 is ready for operation when you connect the converter to the power supply.
5.4 Quick commissioning using the BOP-2 operator panel

5.4.2 Overview

Figure 5-6 Quick commissioning using the BOP-2 operator panel

5.4.3 Starting quick commissioning

Requirement

The following requirements apply:
59000.01 mimn 0.0

- The power supply is switched on.
- The operator panel displays setpoints and actual values.

Function description

Procedure

Press the ESC key.

Press one of the arrow keys until the BOP-2 displays menu SETUP.

To start quick commissioning, press the OK key in menu $5 E$ TUP.

RESET We recommend resetting the converter to the factory setting before commencing quick commissioning.
Should you wish to change the default setting of the interfaces, the converter must be reset to the factory settings now.
Proceed as follows:

1. Press the OK key.
2. Switch over the display using an arrow key: $n \boldsymbol{L} \rightarrow$ UE 5
3. Press the OK key.

Selecting an application class (Page 205)

5.4.4 Selecting an application class

Overview

When selecting an application class, the converter sets the closed-loop motor control to match the specific applications.
If you do not set the application class, but instead setting "Expert", then you must define the appropriate closed-loop motor control setting.
5.4 Quick commissioning using the BOP-2 operator panel

Function description

Select one of the application classes or setting "Expert":

Standard Drive Control (Page 207)

Dynamic Drive Control (Page 209)

- EMPRT
\triangle Expert (Page 212)

Application class	Standard Drive Control	Dynamic Drive Control
Properties	- Typical settling time after a speed change: 100 ms ... 200 ms - Typical settling time after a load surge: 500 ms - Standard Drive Control is suitable for the following requirements: - Motor power ratings < 45 kW - Ramp-up time $0 \rightarrow$ rated speed (depending on the motor power rating): $1 \mathrm{~s}(0.1 \mathrm{~kW}) \ldots 10 \mathrm{~s}(45 \mathrm{~kW})$ - Applications with steady load torque without load surges - Standard Drive Control is insensitive with respect to imprecise setting of the motor data	- Typical settling time after a speed change: $<100 \mathrm{~ms}$ - Typical settling time after a load surge: 200 ms - Dynamic Drive Control controls and limits the motor torque - Torque accuracy that can be achieved: $\pm 5 \%$ for $15 \% \ldots 100 \%$ of the rated speed - We recommend Dynamic Drive Control for the following applications: - Motor power ratings > 11 kW - For load surges of $10 \% \ldots>100 \%$ of the rated motor torque - Dynamic Drive Control is necessary for a rampup time $0 \rightarrow$ rated speed (dependent on the rated motor power): $<1 \mathrm{~s}(0.1 \mathrm{~kW}) \ldots<10 \mathrm{~s}(560 \mathrm{~kW}) .$
Application examples	- Pumps, fans, and compressors with flow characteristic	- Pumps and compressors with displacement machines
Motors that can be operated	Induction motors	Induction motors, permanent magnet synchronous motors and synchronous reluctance motors
Max. output frequency	550 Hz	$240 \mathrm{~Hz}$ 200 Hz with permanent magnet synchronous motor 150 Hz with Power Modules FSG ... FSJ

5.4 Quick commissioning using the BOP-2 operator panel

Application class	Standard Drive Control	Dynamic Drive Control
Torque control	Without torque control	Speed control with lower-level torque control With permanent magnet synchronous motor: Speed control without lower-level torque control
Commissioning	- Unlike "Dynamic Drive Control," no speed controller needs to be set - Compared with the "EXPERT" setting: - Simplified commissioning using predefined motor data - Reduced number of parameters - Standard Drive Control is preset for converters of frame size A ... frame size C	- Fewer parameters compared with the "EXPERT" setting - Dynamic Drive Control is preset for converters of frame size D ... frame size J

5.4.5 Standard Drive Control

Function description

Select the motor standard:

- Kin 50HIIEC
- HPGRHINEMA, US units
- Kin 5Dh inema, SI units

Set the converter supply voltage.

Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- 1 MIULITTMird-party induction motor
- IL inillile1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- HE
- IPL | INTIPC1 induction motor

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.

If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code $=0$, and enter motor data from p0304 and higher from the rating plate.
87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (EUR/USA, P100 = kW 50 Hz).
5.4 Quick commissioning using the BOP-2 operator panel

| MOT |
| :---: | :---: | :---: |
| P304 |

Rated motor voltage

Rated motor current

MR PR Pr pis art

Figure 5-7 Minimum and maximum motor frequency

A. CAUTION

Material damage caused by unexpected acceleration of the motor

The converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint $=0$, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

- If the application requires a minimum frequency $=0$, then set $\mathrm{p} 1080=0$.

Figure 5-8 Ramp-up and ramp-down time of the motor

Ramp-down time after the OFF3 command

Motor data identification. Select the method which the converter uses to measure the data of the connected motor:

- DFF No motor data identification
- 5 THLLRecommended setting: Measure the motor data at standstill.

The converter switches off the motor after the motor data identification has been completed. Select this setting if the motor cannot rotate freely.

- STHLL OPSetting the same as STiLL

After the motor data identification, the motor accelerates to the current setpoint.
Complete the data entry for quick commissioning as follows:

1. Switch over the display using an arrow key: $\cap \rightarrow$ UES
2. Press the OK key.

You have completed quick commissioning.
\square

5.4.6 Dynamic Drive Control

Function description

Select the motor standard:

- Kin 5 RHzi:IEC
- hp ERHZ: NEMA, US units
- Kin GOHZ: NEMA, SI units

Set the converter supply voltage.

Select the motor type. If a 5 -digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.
Motors without motor code stamped on the rating plate:

- in ILLL T: Third-party induction motor
- IL $\quad 1$ in in: 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate：

－IPL（ I MIN：1PC1
Depending on the converter，the motor list in BOP－2 can deviate from the list shown above．

If you have selected a motor type with motor code，you must now enter the motor code．The converter assigns the following motor data corresponding to the motor code．

If you do not know the motor code，then you must set the motor code $=0$ ，and enter motor data from p0304 and higher from the rating plate．

87 HI

87 Hz motor operation The BOP－2 only indicates this step if you selected IEC as the motor standard（ $\mathrm{P} 100=$ に，

Rated motor voltage

Rated motor current

Rated motor power

Rated motor frequency

Rated motor speed

Motor cooling：
－5ELF：Natural cooling
－FRRLEII：Forced－air cooling
－L！别（1）：Liquid cooling
－Mn FRin：Without fan
Select the basic setting for the motor control：
－חロ L M ロロ：Recommended setting for standard applications
－［L Lnロロ：Recommended setting for applications with short ramp－up and ramp－down times．
－Hi＂』 L LRII：Recommended setting for applications with a high break loose torque．
Select the default setting for the interfaces of the converter that is suitable for your application．
Factory interface settings（Page 132）

Figure 5-9 Minimum and maximum motor frequency

CAUTION

Material damage caused by unexpected acceleration of the motor
The converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint $=0$, the motor accelerates for p1080>0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

- If the application requires a minimum frequency $=0$, then set p1080 $=0$.

Scaling of analog input 0

Figure 5-10 Ramp-up and ramp-down time of the motor

Ramp-down time after the OFF3 command

Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- BFF: Motor data is not measured
- ST:L 呮T: Recommended setting: Measure the motor data at standstill and with the motor rotating.
The converter switches off the motor after the motor data identification has been completed.
- 5^{T} ! LL: Default setting: Measure the motor data at standstill.

The converter switches off the motor after the motor data identification has been completed. Select this setting if the motor cannot rotate freely.

- 吅T: Measure the motor data while the motor is rotating.

The converter switches off the motor after the motor data identification has been completed.

After the motor data identification, the motor accelerates to the current setpoint.

- STHLL \quad P: Setting the same as 5THLL

After the motor data identification, the motor accelerates to the current setpoint.
5.4 Quick commissioning using the BOP-2 operator panel

F:N:5H Complete the data entry for quick commissioning as follows:

1. Switch over the display using an arrow key: $\cap \boldsymbol{\square} \rightarrow$ GE
2. Press the OK key.

You have entered all of the data that is necessary for the quick commissioning of the converter.
\square

5.4.7 Expert

Function description

Select the motor standard:

- Ho brhin NEMA, US units
- Hin EGHTNEMA, SI units

LORI TYP P205
-

Specify the overload capability of the converter:

- Hi5H Oit Duty cycle with "High Overload"

Load cycles and overload capability (Page 1316)
Set the converter supply voltage.

Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- ingilitithird-party induction motor
- HL INT1LEE1,1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- LLE

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.
If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.
If you do not know the motor code, then you must set the motor code $=0$, and enter motor data from p0304 and higher from the rating plate.
87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor

Rated motor voltage

Rated motor current

Rated motor power

Rated motor frequency

Rated motor speed

```
MOT [OOL 
    9335
```

Motor cooling:

- 5ELF: Natural cooling
- FRRCE I: Forced-air cooling
- L i TLU I I: Liquid cooling
- NO FRM: Without fan

Select the appropriate application:

- VE[5TMIn all applications that do not fit the other setting options.
- Pump FRin Applications involving pumps and fans

- PUMP DHIApplications involving pumps and fans with optimized efficiency. The setting only makes sense for steady-state operation with slow speed changes. We recommend setting $\|_{i \prime} E[\quad 5 T \pi i f$ load surges during operation cannot be ruled out.
- ${ }^{\text {L }}$ 明 7 Applications with high break loose torque

Select the control mode:

- IIF L i il: U/f control with linear characteristic
- i"F Liin F: Flux current control (FCC)
- liF OURI: Ulf control with square-law characteristic
-5P步 in EN: Sensorless vector control
5.4 Quick commissioning using the BOP-2 operator panel

Control mode	U/f control or flux current control (FCC)	Sensorless vector control
Properties	- Typical settling time after a speed change: $100 \mathrm{~ms} . .200 \mathrm{~ms}$ - Typical settling time after a load surge: 500 ms - The control mode is suitable to address the following requirements: - Motor power ratings < 45 kW - Ramp-up time $0 \rightarrow$ rated speed (depending on the motor power rating): $1 \mathrm{~s}(0.1 \mathrm{~kW}) \ldots 10 \mathrm{~s}(45 \mathrm{~kW})$ - Applications with steady load torque without load surges - The control mode is insensitive with respect to imprecise setting of the motor data	- Typical settling time after a speed change: < 100 ms - Typical settling time after a load surge: 200 ms - The control mode controls and limits the motor torque - Torque accuracy that can be achieved: $\pm 5 \%$ for $15 \% \ldots 100 \%$ of the rated speed - We recommend the control mode for the following applications: - Motor power ratings > 11 kW - For load surges of $10 \% \ldots>100 \%$ of the rated motor torque - The control mode is necessary for a ramp-up time $0 \rightarrow$ Rated speed (dependent on the rated motor power): <1s(0.1 kW) ... < $10 \mathrm{~s}(630 \mathrm{~kW})$.
Application examples	- Pumps, fans, and compressors with flow characteristic	- Pumps and compressors with displacement machines
Motors that can be operated	Induction motors	Induction motors, permanent magnet synchronous motors and synchronous reluctance motors
Max. output frequency	550 Hz	$240 \mathrm{~Hz}$ 200 Hz with permanent magnet synchronous motor 150 Hz with Power Modules FSG ... FSJ
Torque control	Without torque control	Torque control with and without higher-level speed control
Commissioning	- In contrast to sensorless vector control, the speed controller does not have to be set	

Select the default setting for the interfaces of the converter that is suitable for your application.
Factory interface settings (Page 132)

Figure 5-11 Minimum and maximum motor frequency

CAUTION

Material damage caused by unexpected acceleration of the motor
The converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint $=0$, the motor accelerates for p1080>0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

- If the application requires a minimum frequency $=0$, then set $\mathrm{p} 1080=0$.

Scaling of analog input 0

Figure 5-12 Ramp-up and ramp-down time of the motor

Ramp-down time for the OFF3 command

Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- DFF: Motor data is not measured.
- ST:L 勋T: Recommended setting: Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.
- $5 \mathrm{~T}: \mathrm{L}:$ Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.
Select this setting if one of the following cases is applicable:

- 呮 7 : Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.
5.4 Quick commissioning using the BOP-2 operator panel
 After the motor data identification, the motor accelerates to the current setpoint.
- 5TiLL MP: Setting the same aş TiLL After the motor data identification, the motor accelerates to the current setpoint.
Finish Complete quick commissioning:

1. Switch over the display using an arrow key: $\mathrm{n} \rightarrow \mathrm{D} \rightarrow \mathrm{JE} 5$
2. Press the OK key.

You have entered all of the data that is necessary for the quick commissioning of the converter.
\square

5.4.8 Identifying the motor data and optimizing the closed-loop control

Overview

Using the motor data identification, the converter measures the data of the stationary motor. In addition, based on the response of the rotating motor, the converter can determine a suitable setting for the vector control.

To start the motor data identification routine, you must switch-on the motor via the terminal strip, fieldbus or from the operator panel.

Identifying the motor data and optimizing the closed-loop control

Requirements

- You have selected a method of motor data identification during quick commissioning, e.g. measuring motor data while the motor is stationary.
When quick commissioning is complete, the converter issues alarm A07991.
- The motor has cooled down to the ambient temperature.

An excessively high motor temperature falsifies the motor data identification results.

U WARNING
Unexpected machine motion while the motor data identification is in progress
For the stationary measurement, the motor can make several rotations. The rotating
measurement accelerates the motor up to the rated speed. Secure dangerous machine parts
before starting motor data identification:
- Before switching on, ensure that nobody is working on the machine or located within its
working area.
- Secure the machine's work area against unintended access.
- Lower suspended loads to the floor.

Procedure

Enable the control priority via the operator panel.

The BOP-2 displays the symbol indicating manual operation.

Switch on the motor.

During motor data identification MTM-: 17 flashes on the BOP-2.

If the converter again outputs alarm A07991, then it waits for a new ON command to start the rotating measurement.

If the converter does not output alarm A07991, switch off the motor as described below, and switch over the converter control from HAND to AUTO.

Switch on the motor to start the rotating measurement.

The motor data identification can take up to 2 minutes depending on the rated motor power.
(O. Depending on the setting, after motor data identification has been completed, the converter switches off the motor - or it accelerates it to the setpoint.
If required, switch off the motor.
(40. Disable the control priority via the operator panel.

You have completed the motor data identification. -

Quick commissioning has been completed once the motor data identification has been successfully completed.

5.5 Restoring the factory settings

Why restore the factory settings?

Reset the converter to the factory settings in the following cases:

- You do not know the converter settings.
- The line voltage was interrupted during commissioning and you were not able to complete commissioning.

Resetting to factory setting with the BOP-2 operator panel

Procedure

1. Select "Reset to factory settings"

2. Start the reset.

3. Wait until the converter has been reset to the factory setting.

You have reset the converter to the factory settings.
\square

5.6 Series commissioning

Overview

Series commissioning is the commissioning of several identical converters. During series commissioning, it is sufficient to commission one of the converters and then transfer the settings of the first converter to additional converters.

Precondition

The following preconditions apply to the converters regarding series commissioning:

- All converters have the same article number
- The converters to which the settings are transferred have the same or a higher firmware version as the source converter with the original settings.

Function description

Procedure

1. Commission the first converter.
2. Back up the settings of the first converter to an external storage medium.
\leadsto Upload of the converter settings (Page 229)
3. Transfer the settings from the first converter to another converter via the data storage medium.
2] Download of the converter settings (Page 1276)

5.7 Handling the BOP-2 operator panel

Overview

Figure 5-13 Menu of the BOP-2

The motor is switched on
Jog is active
An alarm is active
Flashing symbol: A fault is active
Master control of the inverter is released via the BOP-2
Figure 5-14 Additional symbols of the BOP-2
5.7 Handling the BOP-2 operator panel

5.7.1 Switching the motor on and off

Overview

The BOP-2 offers the option of switching the motor on and off using the control keys.

Function description

Procedure

1. Enable the control priority via the operator panel.

2. Switch on the motor.

3. Switch off the motor.

4. Disable the control priority via the operator panel.

AVAOD | $5 P$ | 0.0 |
| :--- | :--- |
| | 0.0 |

You switched the motor on and off again.
\square

5.7.2 Changing parameter values

Overview

You can modify the settings of the converter by changing the parameter values in the converter.

Precondition

The converter only permits changes to write parameters. Write parameters begin with a "P", e.g. P45.
The value of a read-only parameter cannot be changed. Read-only parameters begin with an "r", for example: r 2 .

Function description

Procedure

1. Select the menu to display and change parameter values.

2. Select the parameter filter.

- The converter only displays the most important parameters:
STRHDRRD
STRHDRRD
FiLEEr
FiLEEr
- The converter displays all of the parameters to you:

3. When the parameter number flashes, select the desired parameter number.

4. When the parameter value flashes, change the parameter value.

You changed a parameter value.
\square

Additional information

The converter immediately saves any changes so that they are protected against power failure.
5.7 Handling the BOP-2 operator panel

5.7.3 Changing indexed parameters

Overview

For indexed parameters, several parameter values are assigned to a parameter number. Each of the parameter values has its own index.

Precondition

You are in the menu for displaying and changing parameter values.
The number of an indexed parameter flashes in the BOP-2 display.

Function description

Procedure

1. Set the parameter index.

2. Set the parameter value for the selected index.

You have now changed an indexed parameter.

\square

5.7.4 Entering the parameter number directly

Overview

The BOP-2 offers the possibility of setting the parameter number digit by digit.

Precondition

You are in the menu for displaying and changing parameter values.
The number of a given parameter flashes in the BOP-2 display.

Function description

Procedure

1. Press the OK button until the first digit of the parameter number flashes.

2. Change the parameter number digit-by-digit.

If you press the OK button, the BOP-2 jumps to the next digit.

3. After you have entered all of the digits of the parameter number, press the OK button. You set the parameter number directly.
-
5.7 Handling the BOP-2 operator panel

5.7.5 Entering the parameter value directly

Overview

The BOP-2 offers the option of setting the parameter value digit by digit.

Precondition

You are in the menu for displaying and changing parameter values.
The parameter value flashes in the BOP-2 display.

Function description

Procedure

1. Press the OK button until the first digit of the parameter value flashes.

2. Change the parameter value digit-by-digit.

You set the parameter value directly. ロ

5.7.6 Why can a parameter value not be changed?

Overview

Whether or not a parameter value can be changed depends on the type of parameter and the operating mode of the converter.

Function description

The converter indicates why it currently does not permit a parameter to be changed:

Read parameters cannot be adjusted	
The parameter can only be adjusted during quick commissioning.	
A parameter can only be adjusted when the motor is switched off	

Further information

For each parameter, the parameter list contains the operating state in which the parameter can be changed.
5.7 Handling the BOP-2 operator panel

Upload of the converter settings

Overview

After commissioning, your settings are permanently saved in the converter.
We recommend that you additionally back up the converter settings on an external storage medium by means of an upload. Without a backup, your settings could be lost should the converter develop a fault.

The following storage media options are available:

- Memory card
- Operator panel BOP-2
- Operator panel IOP-2
- SINAMICS G120 Smart Access

6.1 Memory card upload

6.1.1 Automatic upload

Overview

We recommend that you insert the memory card before switching on the converter. The converter automatically backs up its settings on the inserted memory card and always keeps it up to date.

Precondition

The converter power supply has been switched off.

Function description

Procedure

1. Insert an empty memory card into the converter.

Note

Accidental overwrite of the converter settings

When the supply voltage is switched on, the converter automatically accepts the settings already backed up on the memory card. If you use a memory card on which settings are already backed up, you will overwrite the settings of the converter.

- Use an empty memory card for the first automatic back-up of your settings.

Note

Unintentional firmware update

If the memory card contains a converter firmware, the converter may perform a firmware update after the supply voltage has been switched on.

- Before inserting the memory card, ensure that it is empty.

Firmware upgrade and downgrade (Page 1305)
2. Switch on the power supply for the converter.

After the power supply has been switched on, the converter copies its changed settings to the memory card.

6.1.2 Manual upload with BOP-2

Overview

If you insert the memory card into a converter that is already supplied with power, you must start the upload manually using a commissioning tool.

Precondition

The converter power supply has been switched on.
A memory card is inserted in the converter.

Function description

Procedure

1. Select the upload.

2. Set the number of your data backup. You can back up 99 different settings on the memory card.

3. Start the upload.

4. Wait until the converter has backed up the settings to the memory card.

You have backed up the settings of the converter to the memory card.
\square

6.1.3 Message for a memory card that is not inserted

Function description

The converter identifies that a memory card is not inserted, and signals this state. The message is deactivated in the converter factory setting.

Activate message

Procedure

1. Set $p 2118[x]=1101, x=0,1, \ldots 19$
2. Set $\mathrm{p} 2119[\mathrm{x}]=2$

Message A01101 for a memory card that is not inserted is activated.
\square
To cyclically signal to the higher-level control that a memory card is not inserted, connect parameter r9401 to the send data of the fieldbus interface.

Deactivate message

Procedure

1. Set $\mathrm{p} 2118[\mathrm{x}]=1101, x=0,1, \ldots 19$
2. Set $\mathrm{p} 2119[\mathrm{x}]=3$

Message A01101 for a memory card that is not inserted is deactivated.
-

Parameter

Parameter	Explanation	Factory setting
p2118[0...19]	Change message type, message number	0
p2119[0 ... 19]	Change message type, type	0
r9401	Safely remove memory card status	-

6.1.4 Safely removing a memory card using the BOP-2

Function description

NOTICE

Data loss from improper handling of the memory card

If you remove the memory card when the converter is switched on without implementing the "safe removal" function you may destroy the file system on the memory card. The data on the memory card are lost. The memory card will only function again after formatting.

- Only remove the memory card using the "safe removal" function.

Procedure

1. Select the menu for changing parameter values.

2. If a memory card is inserted, p9400 $=1$.

Set p9400 $=2$.

3. The converter indicates whether it is currently writing data to the memory card:

- The converter sets p9400 = 100:

You must not remove the memory card. Wait for several seconds and then set p9400 = 2 again.

- The converter sets p9400 = 3:

Remove the memory card.
4. After removing the memory card, the converter sets $\mathrm{p} 9400=0$.

You have safely removed the memory card.
\square
6.2 Uploading to the BOP-2

6.2 Uploading to the BOP-2

Overview

You can back up the converter settings on the BOP-2 operator panel.

Precondition

The converter power supply has been switched on.

Function description

Procedure

1. Select the upload to the operator panel.

2. Start the upload.

3. Wait until the upload is completed.

The upload from the converter to the BOP- 2 is completed.
\square

6.3 More options for the upload

Function description

In addition to the default setting, the converter has an internal memory for backing up three other settings.

On the memory card, you can back up 99 other settings in addition to the default setting.
Further information is provided on the Internet:
Memory options (http://support.automation.siemens.com/WW/view/en/43512514)
6.3 More options for the upload

Protecting the converter settings

7.1 Write protection

Overview

The write protection prevents unauthorized changing of the converter settings.

Function description

Write protection is applicable for all user interfaces:

- Commissioning tool, e.g. operator panel or PC
- Parameter changes via fieldbus

No password is required for write protection.

Activate and deactivate write protection

Parameter		
r7760	Write protection/know-how protection status	
	.00	1 signal: Write protection active
p7761	Write protection (factory setting: 0)	
	$0:$	Deactivate write protection
	$1:$	Activate write protection

Parameter

Table 7-1 Parameters that can be changed with active write protection

Number	Name
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm par_filt
p0124[0...n]	CU detection using LED / CU detect LED
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Sav par
p0972	Drive unit reset / Drv_unit reset
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8805	Identification and Maintenance 4 Configuration / I\&M 4 Config

Number	Name
p8806[0...53]	Identification and Maintenance 1 / I\&M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8809[0...53]	Identification and Maintenance 4 / I\&M 4
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

Note

Write protection for multimaster fieldbus systems

Via multimaster fieldbus systems, e.g. BACnet or Modbus RTU, in spite of write protection being activated, parameters can still be changed. So that write protection is also active when accessing via these fieldbuses, you must additionally set p7762 to 1 .

7.2 Know-how protection

Overview

Know-how protection prevents unauthorized reading of the converter settings.
To protect your converter settings against unauthorized copying, in addition to know-how protection, you can also activate copy protection.

Precondition

Know-how protection requires a password.

Combination of know-how protection and copy protection	Is a memory card necessary?	
Know-how protection without copy protection	The converter can be operated with or without mem-	
ory card.		

Function description

The active know-how protection provides the following:

- With just a few exceptions, the values of all adjustable parameters $\mathrm{p} . .$. are invisible.
- Several adjustable parameters can be read and changed when know-how protection is active.
In addition, you can define an exception list of adjustable parameters, which end users may change.
- Several adjustable parameters can be read but not changed when know-how protection is active.
- The values of monitoring parameters r... remain visible.
- Adjustable parameters cannot be changed using commissioning tools.
- Locked functions:
- Automatic controller optimization
- Stationary or rotating measurement of the motor data identification
- Deleting the alarm history and the fault history
- Generating acceptance documents for safety functions
- Executable functions:
- Restoring factory settings
- Acknowledging faults
- Displaying faults, alarms, fault history, and alarm history
- Reading out the diagnostic buffer
- Uploading adjustable parameters that can be changed or read when know-how protection is active.
When know-how protection is active, support can only be provided (from Technical Support) after prior agreement from the machine manufacturer (OEM).

Know-how protection without copy protection

You can transfer converter settings to other converters using a memory card or an Operator Panel.

Know-how protection with basic copy protection

After replacing a converter, to be able to operate the new converter with the settings of the replaced converter without knowing the password, the memory card must be inserted in the new converter.

Know-how protection with extended copy protection

It is not possible to insert and use the memory card in another converter without knowing the password.

Commissioning know-how protection

1. Check as to whether you must extend the exception list. \leadsto List of exceptions (Page 242)
2. Activate the know-how protection. \checkmark Know-how protection (Page 243)

Parameters

Table 7-2 Parameters that can be changed with active know-how protection

Number	Name
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm par_filt
p0124[0...n]	CU detection using LED / CU detect LED
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO

Number	Name
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Sav par
p0972	Drive unit reset / Drv_unit reset
p2040	Fieldbus interface monitoring time / Fieldbus t_monit
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Acknowledge drive object faults / Ackn DO faults
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8402[0...8]	RTC daylight saving time setting / RTC DST
p8805	Identification and Maintenance 4 Configuration / I\&M 4 Config
p8806[0...53]	Identification and Maintenance 1 / I\&M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8809[0...53]	Identification and Maintenance 4 / I\&M 4
p8980	EtherNet/IP profile / Eth/IP profile
p8981	EtherNet/IP ODVA STOP mode / Eth/IP ODVA STOP
p8982	EtherNet/IP ODVA speed scaling / Eth/IP ODVA n scal
p8983	EtherNet/IP ODVA torque scaling / Eth/IP ODVA M scal
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

Table 7-3 Parameters that can be read with active know-how protection

Number	Name
$p 0015$	Macro drive unit / Macro drv unit
$p 0100$	IEC/NEMA Standards / IEC/NEMA Standards
$p 0170$	Number of Command Data Sets (CDS) / CDS count
$p 0180$	Number of Drive Data Sets (DDS) / DDS count
$p 0300[0 \ldots n]$	Motor type selection / Mot type sel
$p 0304[0 \ldots n]$	Rated motor voltage / Mot U_rated
$p 0305[0 \ldots n]$	Rated motor current / Mot I_rated
$p 0505$	Selecting the system of units / Unit sys select
$p 0595$	Technological unit selection / Tech unit select
$p 0730$	BI: CU signal source for terminal DO 0 / CU S_src DO 0
$p 0731$	BI: CU signal source for terminal DO 1 / CU S_src DO 1
$p 0732$	BI: CU signal source for terminal DO 2 / CU S_src DO 2
$p 0806$	BI: Inhibit master control / Inhibit PcCtrl
$p 0870$	BI: Close main contactor / Close main cont
$p 0922$	PROFIdrive PZD telegram selection / PZD telegr_sel
$p 1080[0 \ldots n]$	Minimum velocity / v_min
$p 1082[0 \ldots n]$	Maximum velocity / v_max

Number	Name
p1520[0...n]	CO: Torque limit upper / M_max upper
p2000	Reference speed reference frequency / n_ref f_ref
p2001	Reference voltage / Reference voltage
p2002	Reference current / I_ref
p2003	Reference torque / M_ref
p2006	Reference temperature / Ref temp
p2030	Fieldbus interface protocol selection / Fieldbus protocol
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079	PROFIdrive PZD telegram selection extended / PZD telegr ext
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7765
p7764[0...n]	KHP OEM exception list / KHP OEM excep list
p11026	Free tec_ctrl 0 unit selection / Ftec0 unit sel
p11126	Free tec_ctrl 1 unit selection / Ftec1 unit sel
p11226	Free tec_ctrl 2 unit selection / Ftec2 unit sel

7.2.1 Extending the exception list for know-how protection

In the factory setting, the exception list only includes the password for know-how protection.
Before activating know-how protection, you can additionally enter the adjustable parameters in the exception list, which must still be able to be read and changed by end users - even if knowhow protection has been activated.
You do not need to change the exception list, if, with exception of the password, you do not require additional adjustable parameters in the exception list.

Absolute know-how protection

If you remove password p7766 from the exception list, it is no longer possible to enter or change the password for know-how protection.

You must reset the converter to the factory settings in order to be able to gain access to the converter adjustable parameters. When restoring the factory settings, you lose what you have configured in the converter, and you must recommission the converter.

Parameter

Parameter	Description	Factory setting
p7763	KHP OEM exception list, number of indices for p7764	1
p7764[0...p7763]	KHP OEM exception list	$[0] 7766$
	p7766 is the password for know-how protection	$[1 \ldots 499] 0$

7.2.2 Activating and deactivating know-how protection

Requirements

- The converter has now been commissioned.
- You have generated the exception list for know-how protection.
- To guarantee know-how protection, you must ensure that the project does not remain at the end user as a file.

Function description

Activating know-how protection

1. Enter a password of your choice in $p 7767$. Each index of p7767 corresponds with a character in the ASCII format.
2. Complete entry of the password with $p 7767[29]=0$.
3. Enter the same password in p 7768 as that for p 7767.
4. Complete entry of the password with $p 7768[29]=0$.

The know-how protection for the converter is activated.
\square

Deactivating know-how protection

1. Enter the password for the know-how protection in p7766. Each index of p7766 corresponds with a character in the ASCII format.
2. Complete entry of the password with $p 7766[29]=0$.

The know-how protection for the converter is deactivated.
\square

Parameter

Parameter	Description	Factory setting
r7758[0...19]	KHP Control Unit serial number	--- ---
p7759[0...19]	KHP Control Unit reference serial number	---
r7760	Write protection/know-how protection status	0000 bin
p7765	KHP configuration	---
p7766[0...29]	KHP password, input	---
p7767[0...29]	KHP password, new	$---\quad$
p7768[0..29]	KHP password, confirmation	---
p7769[0..20]	KHP memory card reference serial number	---
r7843[0...20]	Memory card serial number	

Further information

Preventing data reconstruction from the memory card
As soon as know-how protection has been activated, the converter only backs up encrypted data to the memory card.

In order to guarantee know-how protection, after activating know-how protection, we recommend that you insert a new, empty memory card. For memory cards that have already been written to, previously backed up data that was not encrypted can be reconstructed.

Advanced commissioning

8.1 Overview of the converter functions

Higher-level control

Drive control

The converter receives its commands from the higher-level control via the terminal strip or the fieldbus interface of the Control Unit. The drive control defines how the converter responds to the commands.

Drive control (Page 248)
The converter can switch between different settings of the drive control.
Switching over the drive control (command data set) (Page 381)

Safety functions

The safety functions fulfill increased requirements regarding the functional safety of the drive.
Safe Torque Off (STO) safety function (Page 386)

8.1 Overview of the converter functions

Setpoints and setpoint conditioning

The setpoint generally determines the motor speed.
$\xrightarrow{4}$
Setpoints (Page 450)
\bigcirc
The setpoint processing uses a ramp-function generator to prevent speed steps occurring and to limit the speed to a permissible maximum value.
4] Setpoint processing (Page 464)

Technology controller

$\stackrel{0}{2000}$
The technology controller controls process variables, e.g. pressure, temperature, level or flow. The motor closed-loop control either receives its setpoint from the higher-level control - or from the technology controller.
Technology controller (Page 478)

Motor control

(M) The motor closed-loop control ensures that the motor follows the speed setpoint. You can
\square Motor control (Page 504)

Drive protection

The protection functions prevent damage to the motor, converter and driven load.

Increasing the drive availability
The drive can bridge temporary power failures or be switched on while the motor is rotating.
D] Drive availability (Page 621)

Saving energy

 disconnects the power module from the system, if necessary.

[^1]
8.2 Brief description of the parameters

Overview

The brief parameter description provides the most important information for all of the parameters that are assigned to a certain converter function.

If the number of parameter indices depends on the data sets, then the parameter index is shown in an abbreviated form.

	Number of indices $=$ number of command data sets (CDS) Number of indices $=$ number of drive data sets (DDS) Number of indices $=$ number of motor data sets (MDS) Parameters with indices 0... 3 Parameters with bits $0 . . .15$	
Number	Name	Factory setting
p1234[C] -	-	
p1234[D] -	-	
p1234[M]		
p1234[0...3] -		
p1234.0... 15		

Figure 8-1 Brief parameter description

$8.3 \quad$ Drive control

8.3.1 Switching the motor on and off

8.3.1.1 Sequence control when switching the motor on and off

Overview

The sequence control defines the rules for switching the motor on and off.

Figure 8-2 Simplified representation of the sequence control
After switching the supply voltage on, the converter normally goes into the "ready to start" state. In this state, the converter waits for the command to switch on the motor.

The converter switches on the motor with the ON command. The converter changes to the "Operation" state.

After the OFF1 command, the converter brakes the motor down to standstill. The converter switches off the motor once standstill has been reached. The converter is again "ready to start".

Function description

Figure 8-3 Sequence control of the converter when the motor is switched on and off
Converter states S1 ... S5c are defined in the PROFIdrive profile. The sequence control defines the transition from one state to another.

Table 8-1 Converter states

The motor is switched off	The motor is switched on		
Current does not flow in the motor and the motor does not generate any torque	Current flows in the motor and the motor gener- ates a torque		
S1	The ON command and an OFF command are active at the same time. In order for the converter to exit the state, you must deactivate OFF2 and OFF3 and activate the ON command again.	S4	The motor is switched on.
S2	The converter waits for a new command to switch on the motor.	S5a, S5c	The motor is still switched on. The convert- er brakes the motor with the ramp-down time of the ramp-function generator.
S3	The converter waits for "Enable opera- tion". The "Enable operation" command is always active in the converter factory set- ting.	S5b	The motor is still switched on. The convert- er brakes the motor with the OFF3 ramp- down time.

Table 8-2 Commands for switching the motor on and off

ON Jogging 1 Jogging 2 Enable opera- tion	The converter switches the motor on.
OFF1, OFF3	1. The converter brakes the motor. 2. The converter switches off the motor once it comes to a standstill. The converter identifies that the motor is at a standstill when at least one of the following conditions is satisfied: - The speed actual value falls below the threshold in p1226, and the time started in p1228 has expired.
- The speed setpoint falls below the threshold in p1226, and the time subsequently	
started in p1227 has expired.	

Parameters

Number	Name	Factory setting
r0046.0...31	CO/BO: Missing enable signals	-
p0857	Power unit monitoring time	10000 ms
p0858[C]	BI: Unconditionally close holding brake	0

8.3 Drive control

Number	Name	Factory setting
p0860	BI: Line contactor feedback signal	863.1
p0861	Line contactor monitoring time	100 ms
p1226[D]	Speed threshold for standstill detection	20 rpm
p1227	Standstill detection monitoring time	300 s
p1228	Pulse suppression delay time	0.01 s

8.3.1.2 Selecting the ON/OFF functions

Overview

With different ON/OFF functions, the converter can flexibly respond to a wide range of situations and stop the motor when necessary. You can select ON/OFF1 or ON/OFF2 command to fit your specific application.

Function description

ON/OFF2

- For converters with USS interface, the ON/OFF2 function is enabled by default (p29650 = 0).
- For converters with PROFINET/PROFIBUS interface, the ON/OFF2 function is disabled by default (p29650 = - 1). After enabling ON/OFF2 via parameter p 29650 , you must configure the command and command source as required.

Table 8-3 Example: ON/OFF2 command via DI 0

Parameter	Description
p29650 $=0$	DI selection for ON/OFF2: DI 0
p29652 $=722.0$	BI: ON/OFF2: Select ON/OFF2 via digital input 0
p0844 $=29659.1$	Connect the ON/OFF2 status to the binector input
p0840 $=29659.0$	Connect the ON/OFF1 status to the binector input

ON/OFF1

To use the ON/OFF1 function, you need to first disable the ON/OFF2 function by setting p29650 $=-1$ and configure the command and command source as required.

Table 8-4 Example: ON/OFF1 command via DI 0

Parameter	Description
p29650 $=-1$	DI selection for ON/OFF2: None
p29651 $=722.0$	BI: ON/OFF1: Select ON/OFF1 via digital input 0
p29652 $=0.0$	BI: ON/OFF2: Deselect ON/OFF2
p0840 $=29659.0$	Connect the ON/OFF1 status to the binector input
p0844 $=29659.1$	Connect the ON/OFF2 status to the binector input

Note

When changing the signal source set in p29651 and p29652, make sure that the signal source level is low; otherwise, the ON-command will be triggered.

Parameter

Number	Name	Factory setting
p0840[C]	BI: ON/OFF (OFF1)	Depending on the converter
p0844[C]	BI: No coast-down/coast-down (OFF2) signal source 1	Depending on the converter
p29650[C]	DI selection for ON/OFF2	0
p29651[C]	BI: ON/OFF1	0
p29652[C]	BI: ON/OFF2 (OFF2)	0
r29659.0..1	CO/BO: Command word	-

8.3.1.3 Function diagram 2610 - Sequence control-sequencer

Figure 8-4 FP 2610

8.3.2 Adapt the default setting of the terminal strips

Overview

functions using special parameters. The following parameters are available to interconnect signals:

- Binectors BI and BO are parameters to interconnect binary signals.
- Connectors Cl and CO are parameters to interconnect analog signals.

The following chapters describe how you adapt the function of individual converter inputs and outputs using binectors and connectors.

1) with I/O Extension Module

8.3 Drive control

8.3.2.1 Digital inputs

Function description

To change the function of a digital input, you must interconnect the status parameter of the digital input with a binector input of your choice.

Binector inputs are designated in the parameter list with the prefix "BI".

Example

To acknowledge converter fault messages using digital input DI 1, you must interconnect DI 1 with the command to acknowledge faults (p2103).
Set p2103 $=722.1$.

Parameters

Parameter	Description	Factory setting
r0721	CU digital inputs, terminal actual value	-
r0722	CO/BO: CU digital inputs, status	-
r0723	CO/BO: CU digital inputs, status inverted	--
$p 0724$	CU digital inputs debounce time	4 ms
$p 0810$	BI: Command data set selection CDS bit 0	Dependent on the converter
$p 0840[C]$	BI: ON/OFF (OFF1)	Dependent on the converter
$p 0844[C]$	BI: No coast down/coast down (OFF2) signal source 1	Dependent on the converter
$p 0848[C]$	BI: No quick stop/quick stop (OFF3) signal source 1	1
$p 0852[C]$	BI: Enable operation/inhibit operation	Dependent on the converter
$p 1020[C]$	BI: Fixed speed setpoint selection, bit 0	0
$p 1021[C]$	BI: Fixed speed setpoint selection, bit 1	0
$p 1022[C]$	BI: Fixed speed setpoint selection, bit 2	0
$p 1023[C]$	BI: Fixed speed setpoint selection, bit 3	0
$p 1035[C]$	BI: Motorized potentiometer setpoint higher	Dependent on the converter
$p 1036[C]$	BI: Motorized potentiometer setpoint lower	Dependent on the converter

Parameter	Description	Factory setting
p1055[C]	BI: Jogging bit 0	Dependent on the converter
p1056[C]	BI: Jogging bit 1	Dependent on the converter
p1113[C]	BI: Setpoint inversion	Dependent on the converter
p2103[C]	BI: 1. Acknowledge faults	Dependent on the converter
p2106[C]	BI: External fault 1	1
p2112[C]	BI: External alarm 1	1

For further binector inputs and additional information on parameters, please refer to the parameter list.
\checkmark Parameter list (Page 666)

8.3.2.2 Analog input as digital input

Function description

To use an analog input as additional digital input, you must interconnect the corresponding status parameter r0722.11 or r0722.12 with a binector input of your choice.

You may operate the analog input as a digital input with 10 V or with 24 V .

```
NOTICE
Defective analog input due to overcurrent
If the analog input switch is set to "Current input" (I), a 10 V or 24 V voltage source results in an
overcurrent at the analog input. An overcurrent condition destroys the analog input.
- If you use an analog input as a digital input, then you must set the analog input switch to "Voltage" (U).
```


8.3.2.3 Digital outputs

Function description

1) with I/O Extension Module

To change the function of a digital output, you must interconnect the digital output with a binector output of your choice.

Binector outputs are marked in the parameter list with the prefix "BO".

Example

To output converter fault messages via digital output DO 1, you must interconnect DO 1 with these fault messages.
Set p0731 = 52.3

Parameter

Table 8-5 Frequently used binector outputs (BO) of the converter

Parameters	Description		Factory setting
r0052[0...15]	CO/BO: Status word 1		-
	. 00	1 signal: Ready for switching on	
	. 01	1 signal: Ready for operation	
	. 02	1 signal: Operation enabled	
	. 03	1 signal: Fault active	
	. 04	0 signal: OFF2 active	
	. 05	0 signal: OFF3 active	
	. 06	1 signal: Switching on inhibited active	
	. 07	1 signal: Alarm active	
	. 08	0 signal: Deviation, setpoint/actual speed	
	. 09	1 signal: Control request	
	. 10	1 signal: Maximum speed (p1082) reached	
	. 11	0 signal: I, M, P limit reached	
	. 13	0 signal: Alarm, motor overtemperature	
	. 14	1 signal: Motor clockwise rotation	
	. 15	0 signal: Alarm, converter overload	
r0053[0...11]	CO/BO: Status word 2		-
	. 00	1 signal: DC braking active	
	. 02	1 signal: Speed > minimum speed (p1080)	
	. 06	1 signal: Speed \geq setpoint speed (r1119)	
p0730	BI: CU signal source for terminal DO 0		52.3
p0731	BI: CU signal source for terminal DO 1		52.2
p0732	BI: CU signal source for terminal DO 2		52.0
p0733	BI: CU signal source for terminal DO 3		52.7
p0734	BI: CU signal source for terminal DO 4		0
p0735	BI: CU signal source for terminal DO 5		0

8.3 Drive control

8.3.2.4 Analog inputs

Function description

${ }^{1)}$ with I/O Extension Module

Define the analog input type

Parameter $\mathrm{p} 0756[\mathrm{x}]$ and the switch on the converter specify the analog input type.
Table 8-6 Default settings via parameter p0756

AI 0	Unipolar voltage input	$0 \mathrm{~V} \ldots+10 \mathrm{~V}$	p0756[0]	0
	Unipolar voltage input monitored	+2 V ... +10 V		1
	Unipolar current input	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$		2
	Unipolar current input monitored	+4 mA ... +20 mA		3
	Bipolar voltage input (factory setting)	-10 V ... +10 V		4
AI 1	Unipolar voltage input	$0 \mathrm{~V} . . .+10 \mathrm{~V}$	p0756[1]	0
	Unipolar voltage input monitored	+2 V ... +10 V		1
	Unipolar current input	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$		2
	Unipolar current input monitored	+4 mA ... +20 mA		3
	Bipolar voltage input (factory setting)	-10 V ... +10 V		4
AI 2	Unipolar current input (factory setting)	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$	p0756[2]	2
	Unipolar current input monitored	+4 mA ... +20 mA		3
	LG-Ni1000 temperature sensor			6
	Pt1000 temperature sensor			7
	No sensor connected			8
	DIN-Ni1000 temperature sensor (6180 ppm / K)			10
AI 3	LG-Ni1000 temperature sensor		$\begin{aligned} & \mathrm{p} 0756[3] \\ & = \end{aligned}$	6
	Pt1000 temperature sensor			7
	No sensor connected (factory setting)			8
	DIN-Ni1000 temperature sensor (6180 ppm / K)			10

The switch that belongs to the analog input is located behind the cover for the interfaces.

The switch for Al 2 (temperature/current) is on the I/O Extension Module.

Defining the function of an analog input

You define the analog input function by interconnecting a connector input of your choice with parameter r0755. Parameter r0755 is assigned to the particular analog input via its index, e.g. parameter r 0755 [0] is assigned to analog input 0.

Connector inputs are designated in the parameter list with the prefix "Cl".

Example

In order to enter the supplementary setpoint via analog input AI 0, you must interconnect AI 0 with the signal source for the supplementary setpoint.

Set p1075 = 755[0].

Parameters

Table 8-7 Frequently used connector inputs (CI) of the converter

Parameter	Description	Factory setting
p1070[C]	Cl: Main setpoint	Dependent on the converter
p1075[C]	Cl: Supplementary setpoint	0
p2253[C]	Cl: Technology controller setpoint 1	0
p2264[C]	Cl: Technology controller actual value	0

You can find additional connector inputs in the parameter list.
\checkmark Parameter list (Page 666)

More information

Using an analog input as a digital input

Some analog inputs can also be operated as digital input.
D] Digital inputs (Page 254)

8.3.2.5 Adjusting characteristics for analog input

Function description

If you change the analog input type using p0756, then the converter automatically selects the appropriate scaling of the analog input. The linear scaling characteristic is defined using two points (p0757, p0758) and (p0759, p0760). Parameters p0757 ... p0760 are assigned to an analog input via their index, e.g. parameters p0757[0] ... p0760[0] belong to analog input 0.

```
p0756 = 4
Voltage input, - \(10 \mathrm{~V} \ldots 10 \mathrm{~V}\)
```


p0756 = 3
Current input, 4 mA ... 20 mA

You must define your own characteristic if none of the default types match your particular application.

Example

The converter should convert a $6 \mathrm{~mA} \ldots 12 \mathrm{~mA}$ signal into the value range $-100 \% \ldots 100 \%$ via analog input 0 . The wire-break monitoring of the converter should respond when 6 mA is fallen below.

Current input, $6 \mathrm{~mA} . . .12 \mathrm{~mA}$

Procedure

1. Set the DIP switch for analog input 0 on the Control Unit to current input ("I").

2. set $\mathrm{p} 0756[0]=3$

You have defined analog input 0 as a current input with wire-break monitoring.
3. Set $\mathrm{p} 0757[0]=6.0(\mathrm{x} 1)$
4. Set $p 0758[0]=-100.0(y 1)$
5. Set p0759[0] = 12.0 (x2)
6. Set $\mathrm{p} 0760[0]=100.0(\mathrm{y} 2)$
7. Set p0761[0] = 6

An input current $<6 \mathrm{~mA}$ results in fault F03505.
The characteristic for the application example is set.
\square

Parameters

Parameter	Description	Factory setting
$p 0757[0 \ldots \mathrm{n}]$	CU analog inputs characteristic value $x 1$	0
$p 0758[0 \ldots \mathrm{n}]$	CU analog inputs characteristic value y 1	0%
$p 0759[0 \ldots \mathrm{n}]$	CU analog inputs characteristic value $x 2$	10
$p 0760[0 \ldots \mathrm{n}]$	CU analog inputs characteristic value y 2	100%
$p 0761[0 \ldots \mathrm{n}]$	CU analog inputs wire-break monitoring, response threshold	2
$p 0762[0 \ldots \mathrm{n}]$	CU analog inputs wire breakage monitoring time	100 ms

8.3.2.6 Setting the deadband

Function description

With the control enabled, electromagnetic interference on the signal cable can cause the motor to slowly rotate in one direction in spite of a speed setpoint $=0$.

The deadband acts on the zero crossover of the analog input characteristic. Internally, the converter sets its speed setpoint $=0$, even if the signal at the analog input terminals is slightly positive or negative. This prevents the converter from rotating the motor when the speed setpoint $=0$.

Parameters

Parameter	Description	Factory setting
p0764[0]	Analog inputs deadband, AI 0	0
p0764[1]	Analog inputs deadband, AI 1	0

8.3.2.7 Analog outputs

Function description

1) with I/O Extension Module

Defining the analog output type

Define the analog output type using parameter p0776.
The converter offers a series of default settings, which you can select using parameter p0776:

Current output (factory setting)	$0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$	$\mathrm{p} 0776=$	0
Voltage output	$0 \mathrm{~V} \ldots+10 \mathrm{~V}$		1
Current output	$+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$		2

Defining the function of an analog output

Connector outputs are designated with "CO".
You define the analog output function by interconnecting parameter p0771 with a connector output of your choice. Parameter p0771 is assigned to the particular analog output via its index, e.g. parameter p0771[0] is assigned to analog output 0 .

Example

To output the converter output current via analog output 0 , you must interconnect AO 0 with the signal for the output current.
Set p0771 $=27$.

Parameters

Table 8-8 Frequently used connector outputs (CO) of the converter

Parameter	Description	Factory setting
r0021	CO: Speed actual value, smoothed	- rpm
r0025	CO: Output voltage, smoothed	- Vrms

Parameter	Description	Factory setting
r0026	CO: DC link voltage, smoothed	- V
r0027	CO: Absolute actual current, smoothed	- Arms
r0063	CO: Speed actual value	-rpm

You can find additional connector outputs in the parameter list.
Parameter list (Page 666)

8.3.2.8 Adjusting characteristics for analog output

Function description

If you change the analog output type, then the converter automatically selects the appropriate scaling of the analog output. The linear scaling characteristic is defined using two points (p0777, p0778) and (p0779, p0780).

```
p0776 = 1
Voltage output, 0 V ... 10 V
```


$$
\text { p0776 = } 2
$$

Current output, $4 \mathrm{~mA} . . .20 \mathrm{~mA}$

Parameters p0777 ... p0780 are assigned to an analog output via their index, e.g. parameters p0777[0] ... p0770[0] belong to analog output 0.
You must define your own characteristic if none of the default types match your particular application.

Example

Via analog output 0 , the converter should convert a signal in the value range $0 \% \ldots 100 \%$ into an output signal $6 \mathrm{~mA} . . .12 \mathrm{~mA}$.

Current output, $6 \mathrm{~mA} . . .12 \mathrm{~mA}$

Procedure

1. Set $\mathrm{p} 0776[0]=2$

This defines analog output 0 as a current output.
2. Set $\mathrm{p} 0777[0]=0.0(\mathrm{x} 1)$
3. Set $p 0778[0]=6.0(y 1)$
4. Set $\mathrm{p} 0779[0]=100.0(x 2)$
5. Set $\mathrm{p} 0780[0]=12.0(\mathrm{y} 2)$

The characteristic for the application example is set.
\square

Parameters

Table 8-9 Parameters for the scaling characteristic

Parameter	Description	Factory setting
p0777[0...1]	CU analog outputs characteristic value $\times 1$	-
p0778[0...1]	CU analog outputs characteristic value $y 1$	0 V
p0779[0...1]	CU analog outputs characteristic value $\times 2$	100%
p0780[0...1]	CU analog outputs characteristic value $y 2$	20 V

8.3.2.9

Function diagram 2221 - Digital inputs

Figure 8-5 FP 2221

8.3.2.10 Function diagram 2256 - Analog inputs as digital inputs

Figure 8-6 FP 2256

8.3.2.11 Function diagram 2244 - Digital outputs

Figure 8-7 FP 2244

8.3.2.12 Function diagram 2251 - Analog inputs 0 and 1

Figure 8-8 FP 2251

8.3.2.13 Function diagram 2252 - Analog input 2

Figure 8-9 FP 2252

8.3.2.14 Function diagram 2270 - Analog input 3

Figure 8-10 FP 2270

8.3.2.15
 Function diagram 2261-Analog outputs

Figure 8-11 FP 2261

8.3.3 Drive control via PROFINET or PROFIBUS

8.3.3.1 Setting the address

Function description

Procedure

1. Set the address with a commissioning tool via p0918
2. Switch off the converter power supply.
3. Wait until all LEDs on the converter are dark.
4. Switch on the converter power supply again.

Your settings become effective after switching on.
The PROFIBUS address is set.
\square

8.3.3.2 Receive data and send data

Overview

Cyclic data exchange

The converter receives cyclic data from the higher-level control - and returns cyclic data to the control.

Figure 8-12 Cyclic data exchange
Converter and higher-level control system package their data in the form of telegrams.

Figure 8-13 Telegram structure

A telegram has the following structure:

- Header and trailer form the protocol frame.
- User data is located within the frame:
- PKW: The control system can read or change the parameters in the converter via "PKW data".
Not every telegram has a "PKW range".
- PZD: The converter receives control commands and setpoints from the higher-level control - and sends status messages and actual values via "PZD data".

PROFIdrive and telegram numbers

For typical applications, certain telegrams are defined in the PROFIdrive profile and are assigned a fixed PROFIdrive telegram number. As a consequence, behind a PROFIdrive telegram number, there is a defined signal composition. As a consequence, a telegram number uniquely describes cyclic data exchange.
The telegrams are identical for PROFIBUS and PROFINET.

8.3.3.3 Telegrams

Overview

The user data of the telegrams that are available are described in the following.
Telegram 1

16 -bit speed setpoint

Telegram 20

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
STW1	NSOLL A				
ZSW1	NIST_A GLATT	IAIST_ $_{\text {GLATT }}$	MIST_ $_{4}$ GLATT	PIST_- GLATT	MELD_- NAMUR

16-bit speed setpoint for VIK-Namur

Telegram 350

PZD01	PZD02	PZD03	PZD04
STW1	NSOLL A	M_LIM	STW3
ZSW1	NIST_A GLATT	IAIST_- GLATT	ZSW3

16-bit speed setpoint with torque limiting

8.3 Drive control

Telegram 352

PZD01	PZD02	PZD03	PZD04	PZD05	PZ
STW1	$\underset{\substack{\text { NSOLL } \\ \hline}}{ }$	Freely assignable			
ZSW1	NIST_A GLATT	$\begin{array}{\|l} \hline \text { IAIST_- } \\ \text { GLATT } \end{array}$	$\begin{aligned} & \text { MIST_- }_{\text {GLATT }} \end{aligned}$	WARN CODE	CODE

16-bit speed setpoint for PCS7
Telegram 353

16-bit speed setpoint with reading and writing to parameters
Telegram 354

	PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
	STW1	$\underset{\substack{\mathrm{NSOLL}}}{ }$	Freely assignable			
	ZSW1	NIST_A GLATT	$\begin{aligned} & \hline \text { IAIST_ }^{2} \\ & \text { GLATT } \\ & \hline \end{aligned}$	MIST_ GLATT	WARN CODE	$\begin{array}{\|c\|} \hline \text { FAULT } \\ \text { CODE } \end{array}$

16-bit speed setpoint for PCS7 with reading and writing to parameters

Telegram 999

Unassigned interconnection and length

Table 8-10 Abbreviations

Abbreviation	Explanation	Abbreviation	Explanation
PZD	Process data	PKW	Parameter channel
STW	Control word	MIST_GLATT	Actual smoothed torque
ZSW	Status word	PIST_GLATT	Actual smoothed active power
NSOLL_A	Speed setpoint	M_LIM	Torque limiting value
NIST_A	Speed actual value	FAULT_CODE	Fault code
NIST_A_GLATT	Smoothed actual speed value	WARN_CODE	Alarm code
IAIST_GLATT	Smoothed current actual val- ue	MELD_NAMUR	Message according to the VIK-NA- MUR definition

Function description

Control word 1 (STW1)

Bit	Significance		Explanation	Signal interconnection in the converter
	Telegram 20	All other telegrams		
0	0 = OFF1		The motor brakes with the ramp-down time p1121 of the ramp-function generator. The converter switches off the motor at standstill.	$\begin{aligned} & \text { p0840[0] = } \\ & \text { r2090.0 } \end{aligned}$
	$0 \rightarrow 1=\mathrm{ON}$		The converter goes into the "ready" state. If, in addition bit $3=1$, then the converter switches on the motor.	
1	$0=$ OFF2		Switch off the motor immediately, the motor then coasts down to a standstill.	$\begin{aligned} & \text { p0844[0] = } \\ & \text { r2090.1 } \end{aligned}$
	1 = No OFF2		The motor can be switched on (ON command).	
2	0 = Quick stop (OFF3)		Quick stop:The motor brakes to a standstill with the OFF3 ramp-down time p1135.	$\begin{aligned} & \text { p0848[0]= } \\ & \text { r2090.2 } \end{aligned}$
	1 = No quick stop (OFF3)		The motor can be switched on (ON command).	
3	0 = Inhibit operation		Immediately switch-off motor (cancel pulses).	$\begin{aligned} & \text { p0852[0] = } \\ & \text { r2090.3 } \end{aligned}$
	1 = Enable operation		Switch-on motor (pulses can be enabled).	
4	0 = Disable RFG		The converter immediately sets its ramp-function generator output to 0 .	$\begin{aligned} & \text { p1140[0] = } \\ & \text { r2090.4 } \end{aligned}$
	1 = Do not disable RFG		The ramp-function generator can be enabled.	
5	0 = Stop RFG		The output of the ramp-function generator stops at the actual value.	$\begin{aligned} & \mathrm{p} 1141[0]= \\ & \mathrm{r} 2090.5 \end{aligned}$
	1 = Enable RFG		The output of the ramp-function generator follows the setpoint.	
6	$0=$ Inhibit setpoint		The converter brakes the motor with the rampdown time p1121 of the ramp-function generator.	$\begin{aligned} & \text { p1142[0] = } \\ & \text { r2090.6 } \end{aligned}$
	1 = Enable setpoint		Motor accelerates to the setpoint with the rampup time p1120.	
7	$0 \rightarrow 1$ = Acknowledge faults		Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.	$\begin{aligned} & \text { p2103[0] = } \\ & \text { r2090.7 } \end{aligned}$
8,9	Reserved			
10	$0=$ No control via PLC		Converter ignores the process data from the fieldbus.	$\begin{aligned} & \mathrm{p} 0854[0]= \\ & \mathrm{r} 2090.10 \end{aligned}$
	1 = Control via PLC		Control via fieldbus, converter accepts the process data from the fieldbus.	
11	1 = Direction reversal		Invert setpoint in the converter.	$\begin{aligned} & \hline \mathrm{p} 1113[0]= \\ & \mathrm{r} 2090.11 \end{aligned}$
12	Not used			
13	---1)	1 = MOP up	Increase the setpoint saved in the motorized potentiometer.	$\begin{aligned} & \text { p1035[0] = } \\ & \text { r2090.13 } \end{aligned}$

Bit	Significance		Explanation	Signalinter- connection in the con- verter
	Telegram 20	All other tele- grams		1 = MOP down
14	$---1)$	Reduce the setpoint saved in the motorized po- tentiometer.	p1036[0] $=$ r2090.14	
15	CDS bit 0	Reserved	Changes over between settings for different op- eration interfaces (command data sets).	p0810 $=$ r2090.15

1) If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

Status word 1 (ZSW1)

Bit	Significance		Remarks	Signal interconnection in the converter
	Telegram 20	All other telegrams		
0	1 = Ready for switching on		Power supply switched on; electronics initialized; pulses locked.	$\begin{aligned} & \text { p2080[0] = } \\ & \text { r0899.0 } \end{aligned}$
1	1 = Ready		Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor.	$\begin{aligned} & \text { p2080[1] = } \\ & \text { r0899.1 } \end{aligned}$
2	1 = Operation enabled		Motor follows setpoint. See control word 1, bit 3.	$\begin{aligned} & \hline \text { p2080[2] = } \\ & \text { r0899.2 } \end{aligned}$
3	1 = Fault active		The converter has a fault. Acknowledge fault using STW1.7.	$\begin{aligned} & \text { p2080[3] = } \\ & \text { r2139.3 } \end{aligned}$
4	1 = OFF2 inactive		Coast down to standstill is not active.	$\begin{aligned} & \hline \text { p2080[4] = } \\ & \text { r0899.4 } \end{aligned}$
5	1 = OFF3 inactive		Quick stop is not active.	$\begin{aligned} & \hline \text { p2080[5] = } \\ & \text { r0899.5 } \end{aligned}$
6	1 = Switching on inhibited active		It is only possible to switch on the motor after an OFF1 followed by ON.	$\begin{aligned} & \mathrm{p} 2080[6]= \\ & \text { r0899.6 } \end{aligned}$
7	1 = Alarm active		Motor remains switched on; no acknowledgement is necessary.	$\begin{aligned} & \text { p2080[7] = } \\ & \text { r2139.7 } \end{aligned}$
8	1 = Speed deviation within the tolerance range		Setpoint / actual value deviation within the tolerance range.	$\begin{aligned} & \text { p2080[8] = } \\ & \text { r2197.7 } \end{aligned}$
9	1 = Master control requested		The automation system is requested to accept the converter control.	$\begin{aligned} & \text { p2080[9] = } \\ & \text { r0899.9 } \end{aligned}$
10	1 = Comparison speed reached or exceeded		Speed is greater than or equal to the corresponding maximum speed.	$\begin{aligned} & \text { p2080[10] } \\ & =r 2199.1 \end{aligned}$
11	$\begin{aligned} & 1=\text { current or } \\ & \text { torque limit } \\ & \text { reached } \end{aligned}$	1 = torque limit reached	Comparison value for current or torque has been reached or exceeded.	$\begin{array}{\|l\|} \hline \text { p2080[11] } \\ =\text { r0056.13 } \\ \text { r1407.7 } \\ \hline \end{array}$
12	---1)	1 = Holding brake open	Signal to open and close a motor holding brake.	$\begin{aligned} & \text { p2080[12] } \\ & =\text { r0899.12 } \end{aligned}$
13	0 = Alarm, motor overtemperature		--	$\begin{aligned} & \mathrm{p} 2080[13] \\ & =\mathrm{r} 2135.14 \end{aligned}$

Bit	Significance		Remarks	Signal interconnection in the converter
	Telegram 20	All other telegrams		
14	1 = Motor rotates clockwise		Internal converter actual value >0.	$\begin{aligned} & \mathrm{p} 2080[14] \\ & =\mathrm{r} 2197.3 \end{aligned}$
	$0=$ Motor rotates counter-clockwise		Internal converter actual value <0.	
15	1 = CDS display	$\begin{aligned} & \hline 0=\text { Alarm, con- } \\ & \text { verter thermal } \\ & \text { overload } \end{aligned}$		$\begin{aligned} & \mathrm{p} 2080[15] \\ & =\mathrm{r} 0836.0 \text { । } \\ & \mathrm{r} 2135.15 \end{aligned}$

${ }^{1)}$ If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

Control word 3 (STW3)

Bit	Significance	Explanation	Signal interconnection in the converter ${ }^{1)}$
	Telegram 350		
0	1 = fixed setpoint bit 0	Selects up to 16 different fixed setpoints.	p1020[0] = r2093.0
1	1 = fixed setpoint bit 1		p1021[0] = r2093.1
2	1 = fixed setpoint bit 2		p1022[0] = r2093.2
3	1 = fixed setpoint bit 3		p1023[0] = r2093.3
4	1 = DDS selection bit 0	Changes over between settings for different motors (drive data sets).	p 0820 = r2093.4
5	1 = DDS selection bit 1		$\mathrm{p} 0821=\mathrm{r} 2093.5$
6	Not used		
7	Not used		
8	1 = technology controller enable	--	p2200[0] = r2093.8
9	1 = enable DC braking	--	p1230[0] = r2093.9
10	Not used		
11	Reserved		
12	1 = torque control active 0 = speed control active	Changes over the control mode for vector control.	$\mathrm{p} 1501[0]=r 2093.12$
13	$\begin{aligned} & 1=\text { no external fault } \\ & 0=\text { external fault is active (F07860) } \end{aligned}$	--	$\mathrm{p} 2106[0]=r 2093.13$
14	Not used		
15	$1=C D S$ bit 1	Changes over between settings for different operation interfaces (command data sets).	$\mathrm{p} 0811[0]=r 2093.15$

1) If you switch from telegram 350 to a different one, then the converter sets all interconnections p1020, ... to "0". Exception: p2106 = 1.

Status word 3 (ZSW3)

Bit	Significance	Description	Signal interconnection in the converter	
0	1 = DC braking active	--	p2051[3] = r0053	
1	1 = \|n_act	> p1226	Absolute current speed $>$ stationary state detection	
2	1 = \|n_act $\mid>$ p1080	Absolute actual speed $>$ minimum speed		
3	1 = i_act \geqq p2170	Actual current \geq current threshold value		
4	1 = \|n_act $\mid>$ p2155	Absolute actual speed > speed threshold value 2		
5	1 = \|n_act $\mid \leqq$ p2155	Absolute actual speed < speed threshold value 2		
6	1 = \|n_act	\geqq r1119	Speed setpoint reached	
7	1 = DC link voltage \leqq p2172	Actual DC link voltage \leqq threshold value		
8	1 = DC link voltage > p2172	Actual DC link voltage > threshold value		
9	1 = ramp-up or ramp-down completed	Ramp-function generator is not active.		
10	1 = technology controller output at the lower limit	Technology controller output \leqq p2292		
11	1 = technology controller output at the upper limit	Technology controller output > p2291		
12	Not used			
13	Not used			
14	Not used			
15	Not used			

Fault word according to the VIK-NAMUR definition (MELD_NAMUR)

Bit	Significance	P no.
0	1 = Control Unit signals a fault	p2051[5] = r3113
1	1 = line fault: Phase failure or inadmissible voltage	
2	$1=$ DC link overvoltage	
3	1 = Power Module fault, e.g. overcurrent or overtemperature	
4	$1=$ converter overtemperature	
5	$1=$ ground fault/phase fault in the motor cable or in the motor	
6	$1=$ motor overload	
7	$1=$ communication error to the higher-level control system	
8	$1=$ fault in a safety-relevant monitoring channel	
10	$1=$ fault in the internal converter communication	
11	$1=$ line fault	
15	$1=$ other fault	

8.3.3.4 Parameter channel

Overview

The parameter channel allows parameter values to be cyclically read and written to.

Structure of the parameter channel:

- PKE (1st word)
- Type of task (read or write).
- Bit 11 is reserved and is always assigned 0.
- Parameter number
- IND (2nd word)
- Parameter index
- PWE (3rd and 4th word)
- Parameter value

Function description

AK: Request and response ID

Table 8-11 Request identifiers, control \rightarrow converter

AK	Description	Response identifier	
		positive	negative
0	No request	0	718
1	Request parameter value	$1 / 2$	718
2	Change parameter value (word)	1	718
3	Change parameter value (double word)	2	718
4	Request descriptive element ${ }^{1)}$	3	718
6)	Request parameter value (field) ${ }^{1)}$	$4 / 5$	718
$7^{2)}$	Change parameter value (field, word) ${ }^{1)}$	4	718
$8^{2)}$	Change parameter value (field, double word) ${ }^{1)}$	5	718
9	Request number of field elements	6	718

${ }^{1)}$ The required element of the parameter is specified in IND (2nd word).
2) The following request IDs are identical: $1 \equiv 6,2 \equiv 7$ and $3 \equiv 8$.

We recommend that you use identifiers 6, 7 and 8 .

8.3 Drive control

Table 8-12 Response identifiers, converter \rightarrow control

AK	Description
0	No response
1	Transfer parameter value (word)
2	Transfer parameter value (double word)
3	Transfer descriptive element 1)
4	Transfer parameter value (field, word) ${ }^{2}$)
5	Transfer parameter value (field, double word) ${ }^{2)}$
6	Transfer number of field elements
7	Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table.
8	No master controller status / no authorization to change parameters of the parameter channel interface

1) The required element of the parameter is specified in IND (2nd word).
2) The required element of the indexed parameter is specified in IND (2nd word).

Table 8-13 Error numbers for response identifier 7

No.	Description
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a subindex that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element error value that cannot be changed)
$0 B$ hex	No master control (change request but with no master control, see also p0927)
$0 C$ hex	Keyword missing
11 hex	Request cannot be executed due to the operating state (access is not possible for tempo- rary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
65 hex	Parameter number is currently deactivated (depending on the mode of the converter)
66 hex	Channel width is insufficient (communication channel is too small for response)
68 hex	Illegal parameter value (parameter can only assume certain values)
$6 A$ hex	Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller \rightarrow converter")
$6 B$ hex	No change access for a controller that is enabled. (The operating state of the converter prevents a parameter change)

No.	Description
86 hex	Write access only for commissioning (p0010 = 15) (operating state of the converter pre- vents a parameter change)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

PNU (parameter number) and page index

Parameter number	PNU	Page index
$0000 \ldots 1999$	$0000 \ldots 1999$	0 hex
$2000 \ldots 3999$	$0000 \ldots 1999$	80 hex
$6000 \ldots 7999$	$0000 \ldots 1999$	90 hex
$8000 \ldots 9999$	$0000 \ldots 1999$	20 hex
$10000 \ldots 11999$	$0000 \ldots 1999$	A0 hex
$20000 \ldots 21999$	$0000 \ldots 1999$	50 hex
$30000 \ldots 31999$	$0000 \ldots 1999$	FO hex
$60000 \ldots 61999$	$0000 \ldots 1999$	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 8-14 Parameter value or connector

	PWE 1	PWE 2	
Parameter value	Bit $15 \ldots 0$	Bit $15 \ldots 8$	Bit $7 \ldots 0$
	0	0	8 -bit value
	0	16-bit value	
	Bit $15 \ldots 0$	3it $15 \ldots 10$	Bit $9 \ldots 0$
	Number of the connector	$3 F$ hex	The index or bit field number of the connec- tor

Examples

Read request: Read out serial number of the Power Module (p7841[2])

To obtain the value of indexed parameter p7841, you must fill the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number $=$ PNU + offset (page index) (7841 = $1841+6000$)
- IND, bit 8 ... 15 (subindex): $=2$ (index of parameter)
- IND, bit 0 ... 7 (page index): $=90$ hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0 , for example.

Figure 8-14 Parameter channel for read request from p7841[2]

Write request: Change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210=0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as $1210<1999$)
- IND, bit 8 ... 15 (subindex): = 0 hex (parameter is not indexed)
- IND, bit 0 ... 7 (page index): $=0$ hex (offset 0 corresponds to 0 hex)
- PWE1, bit 0 ... 15: = 0 hex
- PWE2, Bit 0 ... 15: = 1A hex ($26=1 \mathrm{~A}$ hex)

Parameter channel																																										
PKE, 1st word									IND, 2nd word												PWE1 - high, 3rd word											PWE2 - low, 4th word										
	15.. 12		$10 \ldots 0$						15 ... 8						$7 \ldots 0$						$15 . .0$											$15 . .0$										
	AK		Parameter number						Subindex						Page index						Parameter value (bit $16 . . .31$)											Parameter value (bit $0 . . .15$)										
0	0 1 1	0	$1{ }^{1} 0$	0 1	O11	111	10	10	00	0	0	0				0	0	00	0	0	0	00	$0 \mid 0$	0	0	0	0	0	0	0	0	0	O	0		0	0	0	1	1		

Figure 8-15 A parameter channel to activate the automatic restart with $\mathrm{p} 1210=26$

Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/ OFF1) the value 722.2 (DI 2). To do this, you must fill the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex ($840=348$ hex, no offset, as $840<1999$)
- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): 0 hex (offset 0 corresponds to 0 hex)
- PWE1, Bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- PWE2, Bit 10 ... 15: = 3F hex (drive object - for SINAMICS G120, always 63 = 3 f hex)
- PWE2, Bit 0 ... 9: = 2 hex (Index of Parameter (DI $2=2$))

Parameter channel						
PKE, 1st word		IND, 2nd word		PWE1 - high, 3rd word	PWE2 - low, 4th word	
15...12 ${ }^{1}$	$10 \ldots 0$	$15 . .8$	$7 \ldots 0$	$15 \ldots 0$	$15 . .10$	$9 \ldots 0$
AK	Parameter number	Subindex	Page index	Parameter value	Drive Object	Index
01111	0111010010000	0000000	0000000			

Figure 8-16 Parameter channel to assign digital input 2 with ON/OFF1

8.3.3.5 Expanding or freely interconnecting telegrams

Overview

When you have selected a telegram, the converter interconnects the corresponding signals with the fieldbus interface. Generally, these interconnections are locked so that they cannot be changed. However, with the appropriate setting in the converter, the telegram can be extended or even freely interconnected.

Function description

Interconnection of send data and receive data

Figure 8-17 Interconnection of the send data
In the converter, the send data are available in the "Word" format (p2051) - and in the "Double word" format (p2061). If you set a specific telegram, or you change the telegram, the converter automatically interconnects parameters p2051 and p2061 with the appropriate signals.

Figure 8-18 Interconnection of the receive data

The converter saves the receive data as follows:

- "Word" format in r2050
- "Double word" format in r2060
- Bit-by-bit in r2090 ... r2093

Extending a telegram: Procedure

1. Set p0922 $=999$.
2. Set parameter p2079 to the value of the corresponding telegram.
3. Interconnect additional send words and receive words with signals of your choice via parameters r2050 and p2051.

You have extended a telegram.
-
Freely interconnecting signals in the telegram: Procedure

1. Set p0922 $=999$.
2. Set p2079 = 999 .
3. Interconnect additional send words and receive words with signals of your choice via parameters r2050 and p2051.

You have freely interconnected a telegram.
\square

Example

You wish to extend telegram 1 to 6 send words and 6 receive words. You want to test the extension by initiating that the converter returns each receive word back to the higher-level control system.

Procedure

1. $\mathrm{p} 0922=999$
2. $\mathrm{p} 2079=1$
3. $\mathrm{p} 2051[2]=\mathrm{r} 2050[2]$
4. ...
5. $\mathrm{p} 2051[5]=\mathrm{r} 2050[5]$
6. Test the telegram length for received and sent words:
$-\quad r 2067[0]=6$

- $\mathrm{r} 2067[1]=6$

You wish to extend telegram 1 to 6 send words and 6 receive words.
\square

Parameter

Number	Name	Factory setting
p0922	PROFIdrive PZD telegram selection	1
r2050[0...11]	CO: PROFIdrive PZD receive word	-
p2051[0...16]	CI: PROFIdrive PZD send word	0 or dependent on the converter
r2053[0...16]	PROFIdrive diagnostics send PZD word	-
r2060[0...10]	CO: PROFIdrive PZD receive double word	-
p2061[0...15]	CI: PROFIdrive PZD send double word	0
r2063[0...15]	PROFIdrive diagnostics PZD send double word	-
r2067	PZD maximum interconnected [0] Receive (r2050, r2060) [1] Send (p2051, p2061)	-
p2079	PROFIdrive PZD telegram selection extended	1
p2080[0...15]	BI: Binector-connector converter, status word 1	[0] 899 [1] 899.1 [2] 899.2 [3] 2139.3 [4] 899.4 [5] 899.5 [6] 899.6 [7] 2139.7 [8] 2197.7 [9] 899.9 [10] 2199.1 [11] 1407.7 [12] 0 [13] 2135.14 [14] 2197.3 [15] 2135.15
r2090.0... 15	BO: PROFIdrive receive PZD1 bit by bit	-
r2091.0... 15	BO: PROFIdrive PZD2 receive bit-serial	-
r2092.0... 15	BO: PROFIdrive PZD3 receive bit-serial	-
r2093.0... 15	BO: PROFIdrive PZD4 receive bit-serial	-

8.3.3.6 Acyclically reading and writing converter parameters

Overview

The converter supports the writing and reading of parameters via acyclic communication.

8.3.3.7 Reading and changing parameters via data set 47

Note

Values in italics
Values in italics in the following tables mean that you have to adjust these values for a specific request.

Reading parameter values

Table 8-15 Request to read parameters

Data block	Byte n	Bytes n + 1	n
Header	Reference 01 hex... FF hex	01 hex: Read job	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m)	2
Address, parameter 1	Attribute 10 hex: Parameter value 20 hex: Parameter description	Number of the indices 00 hex ... EA hex (For parameters without index: 00 hex)	4
	Parameter number 0001 hex ... FFFE hex		6
	Number of the 1st index 0000 hex ... FFFE hex (for parameters without index: 0000 hex)		8
	...		\ldots
Address, parameter 2	...		\ldots
...	...		\ldots
Address, parameter m	...		\ldots

Table 8-16 Converter response to a read request

Data block	Byte n	Bytes n + 1	n
Header	Reference (identical to a read request)	01 hex: Converter has executed the read request. 81 hex: Converter was not able to completely execute the read request.	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m) (identical to the read request)	2

8.3 Drive control

Data block	Byte n	Bytes $\mathrm{n}+1$	n
Values, parameter 1	Format 02 hex: Integer8 03 hex: Integer16 04 hex: Integer32 05 hex: Unsigned8 06 hex: Unsigned16 07 hex: Unsigned32 08 hex: FloatingPoint OA hex: OctetString OD hex: TimeDifference 34 hex: TimeOfDay without date indication 35 hex: TimeDifference with date indication 36 hex: TimeDifference without date indication 41 hex: Byte 42 hex: Word 43 hex: Double word 44 hex: Error	Number of index values or - for a negative response - number of error values	4
	Value of the 1 st index or - for a negative response - error value 1 You can find the error values in a table at the end of this section.		6

Values, parameter 2	...		
...	...		
Values, parameter m	...		

Changing parameter values

Table 8-17 Request to change parameters

Data block	Byte n	Bytes n + 1	n
Header	Reference 01 hex ... FF hex	02 hex: Change request	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m) 01 hex ... 27 hex	2
Address, parameter 1	10 hex: Parameter value	$\begin{aligned} & \hline \text { Number of indices } \\ & 00 \text { hex ... EA hex } \\ & \text { (00 hex and } 01 \text { hex are equivalents) } \\ & \hline \end{aligned}$	4
	Parameter number 0001 hex ... FFFF hex		6
	Number of the 1st index 0000 hex ... FFFE hex		8

Address, parameter 2	...		
...	\ldots		\ldots
Address, parameter m	...		

Data block	Byte n	Bytes $\mathrm{n}+1$	n
Values, parameter 1	Format 02 hex: Integer 8 03 hex: Integer 16 04 hex: Integer 32 05 hex: Unsigned 8 06 hex: Unsigned 16 07 hex: Unsigned 32 08 hex: Floating Point OA hex: Octet String OD hex: Time Difference 34 hex: TimeOfDay without date indication 35 hex: TimeDifference with date indication 36 hex: TimeDifference without date indication 41 hex: Byte 42 hex: Word 43 hex: Double word	Number of index values 00 hex ... EA hex	
	Value of the 1st index		
	...		
Values, parameter 2	\ldots		
...	...		
Values, parameter m	...		

Table 8-18 Response, if the converter has executed the change request

Data block	Byte \mathbf{n}	Bytes $\mathbf{n + 1}$	\mathbf{n}
Header	Reference (identical to a change request)	$\mathbf{0 2}$ hex (change request successful)	0
	$\mathbf{0 1}$ hex (ID of drive objects, at G120 always = 1)	Number of parameters (identical to a change request)	2

Table 8-19 Response if the converter was not able to completely execute the change request

Data block	Byte \mathbf{n}	Bytes $\mathbf{n}+\mathbf{1}$	\mathbf{n}
Header	Reference (identical to a change request)	$\mathbf{8 2}$ hex: (Converter was not able to completely execute the write request)	0
	$\mathbf{0 1}$ hex (ID of drive objects, at G120 always = 1)	Number of parameters (identical to a change request)	2
Values, parameter 1	Format 40 hex: Zero (change request for this data block executed) 44 hex: Error (change request for this data block not executed)	Number of error values 00 hex	4
	Only for "Error" - error value 1 You can find the error values in the table at the end of this section.	6	
	Only for "Error" - error value 2 Error value 2 is either zero, or it contains the number of the first index where the error occurred.	8	

Advanced commissioning

8.3 Drive control

Data block	Byte n	Bytes $\mathrm{n}+1$	n
\ldots	\ldots		\ldots
Values, parameter m	\ldots		

Error values

Table 8-20 Error value in the parameter response

Error value 1	Significance
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a parameter index that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element that cannot be changed)
09 hex	Description data not available (access to a description that does not exist, parameter value is available)
OB hex	No master control (change request but with no master control)
OF hex	Text array does not exist (although the parameter value is available, the request is made to a text array that does not exist)
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
15 hex	Response too long (the length of the actual response exceeds the maximum transfer length)
16 hex	Illegal parameter address (illegal or unsupported value for attribute, number of elements, parameter number, subindex or a combination of these)
17 hex	Illegal format (change request for an illegal or unsupported format)
18 hex	Number of values not consistent (number of values of the parameter data to not match the number of elements in the parameter address)
19 hex	Drive object does not exist (access to a drive object that does not exist)
20 hex	Parameter text cannot be changed
21 hex	Service is not supported (illegal or not support request ID).
6B hex	A change request for a controller that has been enabled is not possible. (The converter rejects the change request because the motor is switched on. Observe the "Can be changed" parameter attribute ($C 1, C 2, \mathrm{U}, \mathrm{T}$) in the parameter list. Parameters (Page 663)
6C hex	Unknown unit.
6E hex	Change request is only possible when the motor is being commissioned (p0010 = 3).
6F hex	Change request is only possible when the power unit is being commissioned (p0010 = 2).
70 hex	Change request is only possible for quick commissioning (basic commissioning) (p0010 = 1).
71 hex	Change request is only possible if the converter is ready (p0010 = 0).
72 hex	Change request is only possible for a parameter reset (restore to factory setting) (p0010 = 30).

Error value 1	Significance
73 hex	Change request possible only during commissioning of the safety functions (p0010 = 95).
74 hex	Change request is only possible when a technological application/unit is being commissioned (p0010 = 5).
75 hex	Change request is only possible in a commissioning state (p0010 $=0$).
76 hex	Change request is not possible for internal reasons (p0010 = 29).
77 hex	Change request is not possible during download.
81 hex	Change request is not possible during download.
82 hex	Accepting the master control is inhibited via BI: p0806.
83 hex	Desired interconnection is not possible (the connector output does not supply a float value although the con- nector input requires a float value)
84 hex	Converter does not accept a change request (converter is busy with internal calculations. See parameter r3996 in the parameter list. cr
85 hex	No access methods defined.
86 hex	Write access only during commissioning of the data records (p0010 = 15) (operating status of the converter prevents a parameter change.)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

8.3.3.8 Slave-to-slave communication

"Direct data exchange" is sometimes called "slave-to-slave communication" or "data exchange broadcast". Here, slaves exchange data without any direct involvement of the master.

Example: A converter uses the actual speed value of another converter as its speed setpoint.

Definitions

- Publisher: Slave, which sends data for direct data exchange.
- Subscriber: Slave, which receives the data for direct data exchange from the publisher.
- Links and access points define the data that is used for direct data exchange.

Restrictions

- Direct data exchange in the current firmware version is only possible for converters with PROFIBUS communication.
- A maximum of 12 PZDs are permissible for each drive.
- A maximum of four links are possible from one subscriber to one or several publishers.

Configuring slave-to-slave communication

Procedure

1. In the control, define:

- Which converters operate as publisher (sender) or subscriber (receiver)?
- Which data or data areas do you use for direct data exchange?

2. In the converter, define:

How does the subscriber process the data transferred using direct data exchange?
You have now configured slave-to-slave communication.

\square

8.3.4 EtherNet/IP

8.3.4.1 Configuring communication

Overview

EtherNet/IP is realtime Ethernet, and is mainly used in automation technology.

Function description

You must set the following parameters to configure the converter communication via EtherNet/ IP:

Procedure

1. $\mathrm{p} 2030=10$
2. The following parameters must match your EtherNet configuration:

- p8921 = IP address
- p8922 = standard gateway
- p8923 = subnet mask
- p8920 = station name

3. $\mathrm{p} 8925=2$
4. Select the EtherNet/IP profile:

SINAMICS profile	ODVA AC/DC drive profile
p8980 = 0	p8980 = 1
Select the appropriate telegram using p0922. Telegrams (Page 273)	p0922 = 1: The converter communicates using telegram 1. Other telegrams are not possible. However, when required you can extend telegram 1. Expanding or freely interconnecting telegrams (Page 284)
	When required, set the following parameters: - p8981 - p8982 - p8983

5. Switch off the converter power supply.
6. Wait until all LEDs on the converter are dark.
7. Switch on the converter power supply again.

You have now configured the converter for communication via EtherNet/IP.
\square

Parameter

Number	Name	Factory setting
p2030	Fieldbus interface protocol selection 0: no protocol \ldots	Dependent on the converter
10: EtherNet/IP	PN Name of Station	-
p8920	PN IP Address	0
p8922	PN Default Gateway	0
p8923	PN Subnet Mask	0

Number	Name	Factory setting
p8925	Activate PN interface configuration 0: No function 1: Reserved 2: Activate the configuration and save 3: Delete configuration	0
r8931	PN IP Address actual	PN Default Gateway actual
r8932	PN Subnet Mask actual	-
r8933	EtherNet/IP profile 0: SINAMICS 1: ODVA AC/DC	-
p8980	EtherNet/IP ODVA STOP mode 0: OFF1 1: OFF2	EtherNet/IP ODVA speed scaling $123: 32$ $124: 16$ \ldots
p8981	$128: 1$ $129: 0.5$ \ldots $133: ~$ p8982	EtherNet/IP ODVA torque scaling Values the same as p8982
p8983		128

More information

EtherNet/IP objects and assemblies of the converter:
\square Supported objects (Page 294)

8.3.4.2 Supported objects

Overview

Object class		Object name	Objects re- quired	ODVA objects	SINAMICS ob- jects
hex	dec		x		
1 hex	1	Identity object	x		
4 hex	4	Assembly Object	x		
6 hex	6	Connection Manager Object		x	
28 hex	40	Motor Data Object		x	
29 hex	41	Supervisor Object		x	
2 hex	42	Drive Object			

Object class		Object name	Objects re- quired	ODVA objects	SINAMICS ob- jects
hex	dec				x
32C hex	812	Siemens Drive Object			x
32D hex	813	Siemens Motor Data Object	x		
F5 hex	245	TCP/IP Interface Object ${ }^{1)}$	x		
F6 hex	246	Ethernet Link Object ${ }^{1}$		x	x
300 hex	768	Stack Diagnostic Object		x	x
302 hex	770	Adapter Diagnostic Object		x	x
303 hex	771	Explicit Messages Diagnostic Object		x	x
304 hex	772	Explicit Message Diagnostic List Object			
401 hex	1025	Parameter object			

1) These objects are part of the EtherNet/IP system management.

Identity Object, Instance Number: 1 hex

Supported services

Class • Get Attribute all Instance

- Get Attribute all
- Get Attribute single
- Reset

Table 8-21 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-22 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT16	Vendor ID	1251
2	get	UINT16	Device Type - ODVA AC Drive - Siemens Drive	02 hex 12 hex
3	get	UINT16	Product code	r0964[1]
4	get	UINT16	Revision	The versions should match the EDS file
5	get	UINT16	Status	See the following table
6	get	UINT32	Serial number	bits 0 ... 19: consecutive number; bits 20 ... 23: Production identifier bits 24 $\ldots 27:$ Month of manufacture (0 = Jan, B = Dec) Bits 28 ... 31: Year of manufacture (0 = 2002)
7	get	Short String	Product name	Max. length 32 bytes

Table 8-23 Explanation of No. 5 of the previous table

Byte	Bit	Name	Description
1	0	Owned	0 : Converter is not assigned to any master 1: Converter is assigned to a master
	1		Reserved
	2	Configured	0: Ethernet/IP basic settings 1: Modified Ethernet/IP settings For G120, always = 1
	3		Reserved
	$4 \ldots 7$	Extended Device Status	0: Self-test or status not known 1: Firmware update active 2: At least one I/O connection with error 3: No I/O connections 4: Incorrect configuration in the ROM 5: Fatal fault 6: At least one I/O connection is active 7: All I/O connections in the quiescent state 8 ... 15: Reserved
2	8 ... 11		Not used
	12... 15		Reserved

Assembly Object, Instance Number: 4 hex

Supported services

Class • Get Attribute single Instance • Get Attribute single

- Set Attribute single

Table 8-24 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-25 Instance Attribute

No.	Service	Type	Name	Value/explanation
3	set	Array of UINT8	Assembly	1 byte array nd] Supported ODVA AC/DC assemblies (Page 307)

Connection Manager Object, Instance Number: 6 hex

Supported services

Class

- Get Attribute all
- Get Attribute single

Instance

- Forward open
- Forward close
- Get Attribute single
- Set Attribute single

Table 8-26 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-27 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT16	OpenReqs	Counters
2	get	UINT16	OpenFormat Rejects	Counters
3	get	UINT16	OpenResource Rejects	Counters
4	get	UINT16	OpenOther Rejects	Counters
5	get	UINT16	CloseReqs	Counters
6	get	UINT16	CloseFormat Rejects	Counters
7	get	UINT16	CloseOther Rejects	Counters
8	get	UINT16	ConnTimeouts	Counters Number of bus errors

Motor Data Object, Instance Number 28 hex

Supported services

Class • Get Attribute single
Instance

- Get Attribute single
- Set Attribute single

Table 8-28 Class Attribute

No .	Serv- ice	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-29 Instance Attribute

No .	Service	Type	Name	Value/explanation
3	get, set	USINT	Motor Type	p0300 motor type, see the following table
6	get, set	UINT16	Rated Current	p0305 rated motor current
7	get, set	UINT16	Rated Voltage	p0304 rated motor voltage
8	get, set	UINT32	Rated Power	p0307 rated motor power
9	get, set	UINT16	Rated Frequency	p0310 rated motor frequency
10	get, set	UINT16	Rated Temperature	p0605 motor temperature threshold
11	get, set	UINT16	Max Speed	p0322 maximum motor speed
12	get, set	UINT16	Pole Count	p0314 value of p0314*2
13	get, set ${ }^{13}$	UINT32	Torque Constant	p0316 motor torque constant
14	get, set	UINT32	Inertia	p0341 motor moment of inertia
15	get, set	UINT16	Base Speed	p0311 motor rated speed

1) G115D: Only "get" possible.

Value in p0300	Ethernet/IP motor data object		
0	no motor	0	Non-standard motor
1	Induction motor	7	Squirrel-cage induction motor
2	Synchronous motor	3	PM synchronous motor
10	1LE1 induction motor	7	Squirrel-cage induction motor
13	1LG6 induction motor	7	Squirrel-cage induction motor
17	1LA7 induction motor	7	Squirrel-cage induction motor
19	1LA9 induction motor	7	Squirrel-cage induction motor
100	1LE1 induction motor	7	Squirrel-cage induction motor
104	1PH4 induction motor	3	PM synchronous motor
107	1PH7 induction motor	0	Non-standard motor
108	1PH8 induction motor	5	Switched reluctance motor
200	1PH8 synchronous motor	0	Non-standard motor
204	1LE4 synchronous motor	3	PM synchronous motor
237	1FK7 synchronous motor	0	Non-standard motor
10000	Motor with DRIVE-CLiQ	0	Non-standard motor
10001	Motor with DRIVE-CLiQ 2nd D	0	Non-standard motor

Supervisor Object, Instance Number: 29 hex

Supported services

Class

- Get Attribute single

Instance - Get Attribute single

- Set Attribute single

Table 8-30 Class Attribute

No -	Serv- ice	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-31 Instance Attribute

No	Service	Type	Name	Value/explanation
3	get, set	Bool	Run1	STW. 0 operation, clockwise rotation
5	get, set	Bool	Net Control	Internal 0: Local 1: Network
6	get	UINT8	State	0: Vendor Specific 1: Startup 2: Not_Ready 3: Ready 4: Enabled 5: Stopping 6: Fault_Stop 7: Faulted
7	get	Bool	Running1	ZSW1:2 1: - (Enabled and Run1) or - (Stopping and Running1) or - (Fault_Stop and Running1) $0=$ Other state
9	get	Bool	Ready	ZSW1:0 1: - Ready or - Enabled or - Stopping 0 = Other state
10	get	Bool	Fault	ZSW1:3 drive fault
11	get	Bool	Warning	ZSW1:7 alarm active
12	get, set	Bool	Fault reset	STW. 7 acknowledge fault
13	get	UINT16	Fault Code	r945[0] error code
14	get	UINT16	Warning Code	r2122[0] alarm code
15	get	Bool	CtIFromNet	Display from Net Control 1: Control from network 0 : Local control

Drive Object, Instance Number: 2A hex

Supported services

Class

- Get Attribute single
Instance
- Get Attribute single
- Set Attribute single

Table 8-32 Class Attribute

No .	Serv- ice	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-33 Instance Attribute

No .	Service	Type	Name	Value/explanation	
3	get	Bool	At reference	r2197.7 1: \|n_act	\geq n_set 0 : Otherwise
4	get, set	Bool	Net_reference	Internal 0: Local 1: Network	
6	get	UINT8	Drive_Mode	p1300 manufacturer-specific, see following table	
7	get	INT	Speed Actual	Main actual value, see speed units	
8	get, set	INT	Speed Ref	Main setpoint, see speed units	
9	get	INT	Current Actual	r0027 absolute current actual value, smoothed	
10	get, set	INT	Current limit	p0323 maximum motor current	
15	get	INT	Power Actual	r0032 actual active power smoothed	
16	get	INT	Output voltage	r0025 output voltage smoothed	
17	get	INT	Output voltage	r0072 output voltage	
18	get, set	UINT16	AccelTime	p1120 ramp-function generator ramp-up time	
19	get, set	UINT16	DecelTime	p1121 ramp-function generator, ramp-down time	
20	get, set	UINT16	Low Speed Lim	p1080 minimum speed	
21	get, set	UINT16	High Speed Lim	p1082 maximum speed	
22	get, set	SINT	Speed Scale	p8982 Ethernet/IP ODVA speed scaling	
29	get	Bool	Ref From Net	Internal - display of Net_Reference 0: Local 1: Network	

Value in p1300		Ethernet/IP motor data object	
0	V/f with linear characteristic	1	Open loop speed (frequency)
1	V/f with linear characteristic and FCC	Vendor-specific mode	
2	V/f with parabolic characteristic		
4	V/f with linear characteristic and ECO		
7	V/f for parabolic characteristic and ECO		
20	Speed control (without encoder)	2	Closed-loop speed control

Siemens Drive Object, Instance Number: 32C hex

Supported services

Class • Get Attribute single
Instance

- Get Attribute single
- Set Attribute single

Table 8-34 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-35 Instance Attribute

No.	Type	Service	Name	Value/explanation
2	INT16	get, set	Commissioning state	p0010 commissioning parameter filter
$3 . .18$	WORD	get	STW1	STW1 bit-by-bit access: Attr. 3 = STW1.0 Attr. 18 = STW1. 15
19	WORD	get	Main setpoint	Main setpoint
20... 35	WORD	get	ZSW1	ZSW1 bit-by-bit access: Attr. $20=$ ZSW1. 0 Attr. 35 = ZSW1. 15
36	WORD	get	Actual Frequency	Main actual value (actual frequency)
37	REAL	get, set	Ramp Up Time	p1120[0] ramp-function generator ramp-up time
38	REAL	get, set	Ramp Down Time	p1121[0] ramp-function generator ramp-down time
39	REAL	get, set	Current Limit	p0640[0] current limit
40	REAL	get, set	Frequency MAX Limit	p1082[0] maximum speed
41	REAL	get, set	Frequency MIN Limit	p1080[0] minimum speed
42	REAL	get, set	OFF3 Ramp Down Time	p1135[0] OFF3 ramp-down time
43	UINT32 I BOOL	get, set	PID Enable	p2200[0] technology controller enable
44	REAL	get, set	PID Filter Time Constant	p2265 technology controller actual value filter time constant
45	REAL	get, set	PID D Gain	p2274 technology controller differentiation time constant
46	REAL	get, set	PID P Gain	p2280 technology controller proportional gain
47	REAL	get, set	PID I Gain	p2285 technology controller integral time
48	REAL	get, set	PID Up Limit	p2291 technology controller maximum limiting

8.3 Drive control

No.	Type	Service	Name	Value/explanation
49	REAL	get, set	PID Down Limit	p2292 technology controller minimum limiting
50	REAL	get	Speed setpoint	r0020 speed setpoint
51	REAL	get	Output Frequency	r0024 output frequency
52	REAL	get	Output Voltage	r0025 output voltage
53	REAL	get	DC Link Voltage	r0026[0] DC-link voltage
54	REAL	get	Actual Current	r0027 current actual value
55	REAL	get	Actual Torque	r0031 torque actual value
56	REAL	get	Output power	r0032 actual active power value
57	REAL	get	Motor Temperature	r0035[0] motor temperature
58	REAL	get	Power Unit Temperature	r0037[0] power unit temperature
59	REAL	get	Energy kWh	r0039 energy display
60	UINT8	get	CDS Eff (Local Mode)	r0050 active command data set
61	WORD	get	Status Word 2	r0053 status word 2
62	WORD	get	Control Word 1	r0054 control word 1
63	REAL	get	Motor Speed (Encoder)	r0061 actual speed value
64	UINT32	get	Digital Inputs	r0722 digital inputs status
65	UINT32	get	Digital Outputs	r0747 digital outputs status
66	REAL	get	Analog Input 1	r0752[0] analog input 1
67	REAL	get	Analog Input 2	r0752[1] analog input 2
68	REAL	get	Analog Output 1	r0774[0] analog output 1
69	REAL	get	Analog Output 2	r0774[1] analog output 2
70	UINT16	get	Fault Code 1	r0947[0] fault number 1
71	UINT16	get	Fault Code 2	r0947[1] fault number 2
72	UINT16	get	Fault Code 3	r0947[2] fault number 3
73	UINT16	get	Fault Code 4	r0947[3] fault number 4
74	UINT16	get	Fault Code 5	r0947[4] fault number 5
75	UINT16	get	Fault Code 6	r0947[5] fault number 6
76	UINT16	get	Fault Code 7	r0947[6] fault number 7
77	UINT16	get	Fault Code 8	r0947[7] fault number 8
78	REAL	get	Pulse Frequency	r1801 pulse frequency
79	UINT16	get	Alarm Code 1	r2110[0] alarm number 1
80	UINT16	get	Alarm Code 2	r2110[1] alarm number 2
81	UINT16	get	Alarm Code 3	r2110[2] alarm number 3
82	UINT16	get	Alarm Code 4	r2110[3] alarm number 4
83	REAL	get	PID setpoint Output	r2260 technology controller setpoint after the ramp-function generator
84	REAL	get	PID Feedback	r2266 technology controller actual value after the filter
85	REAL	get	PID Output	r2294 technology controller output signal

Siemens Motor Data Object, Instance Number: 32D hex

Supported services

Class • Get Attribute single
Instance

- Get Attribute single
- Set Attribute single

Table 8-36 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-37 Instance Attribute

No.	Service	Type	Name	Value/explanation
2	get, set	UINT16	Commissioning state	p0010
3	get	INT16	Motor Type	p0300
6	get, set	REAL	Rated Current	p0305
7	get, set	REAL	Rated Voltage	p0304
8	get, set	REAL	Rated Power	p0307
9	get, set	REAL	Rated Frequency	p0310
10	get, set	REAL	Rated Tempera- ture	p0605
11	get, set	REAL	Max Speed	p0322
12	get, set	UINT16	Pole pair number	p0314
13	get, set	REAL	Torque Constant	p0316
14	get, set	REAL	Inertia	p0341
15	get, set	REAL	Base Speed	p0311
19	get, set	REAL	Cos Phi	p0308

TCP/IP Interface Object, Instance Number: F5 hex

Supported services

Class • Get Attribute all

- Get Attribute single

Instance • Get Attribute all

- Get Attribute single
- Set Attribute single

Table 8-38 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-39 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT32	Status	Fixed value: 1 hex 1: Configuration acknowledged, by DHCP or saved values
2	get	UINT32	Configuration Capability	Fixed value: 94 hex 4 hex: DHCP supported 10 hex: Configuration can be adjusted 80 hex: ACD-capable
3	get, set	UINT32	Configuration Control	1 hex: Saved values 3 hex: DHCP
4	get	UINT16	Path Size (in WORDs)	Fixed value: 2 hex
		UINT8	Path	20 hex, F6 hex, 24 hex, 05 hex, where 5 hex is the number of instances of F6 hex (four physical ports plus one internal port).
5	get, set	STRING	Interface Configuration	r61000 Name of Station
		UINT32		r61001 IP address
6	get, set	UINT16	Host Name	Host Name Length
		STRING		
10	get, set	UINT8	Select ACD	local OM flash: 0: Disabled, 1: Enabled
11	get, set	UINT8	Last Conflict Detected	local OM flash ACD Activity
		UINT8		local OM flash Remote MAC
		UINT8		local OM flash ARP PDU

Link Object, Instance Number: F6 hex

Supported services

Class

- Get Attribute all
- Get Attribute single

Instance • Get Attribute all

- Get Attribute single
- Set Attribute single

Table 8-40 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 8-41 Instance Attribute

No.	Service	Type	Name	Value/explanation
1	get	UINT32	Interface Speed	0: link down 10: 10 Mbps 100: 100 Mbps
2	get		Interface Flags	Bit 1: Link-Status Bit 2: Duplex Mode (0: Half duplex, 1 duplex) Bit 3 ... 5: Automatic state identification Bit 6: Reset required Bit 7: Local hardware fault ($0=0 \mathrm{k}$)
3	get	ARRAY	Physical Address	r8935 Ethernet MAC address
4	$\begin{gathered} \text { get_and_cl } \\ \text { ear } \end{gathered}$	Struct of	Interface Counters	Optional; required if the Media Counters attribute is implemented
		UINT32	In Octets	Received octets
		UINT32	In Ucast Packets	Received Unicast packets
		UINT32	In NUcast Packets	Received non-Unicast packets
		UINT32	In Discards	Incoming packets, not processed
		UINT32	In Errors	Incoming packets with errors
		UINT32	In Unknown Protos	Incoming packets with unknown protocol
		UINT32	Out Octets	Sent octets
		UINT32	Out Ucast Packets	Sent Unicast packets
		UINT32	Out NUcast packets	Sent non-Unicast packets
		UINT32	Out Discards	Outgoing packets, not processed
		UINT32	Out Errors	Outgoing packets, with errors

8.3 Drive control

No.	Service	Type	Name	Value/explanation
5	$\begin{gathered} \text { get_and_cl } \\ \text { ear } \end{gathered}$	Struct of	Media Counters	Media-specific counters
		UINT32	Alignment Errors	Structure received, which does not match the number of octets
		UINT32	FCS Errors	Structure received, which does not pass the FCS check
		UINT32	Single Collisions	Structure successfully transmitted, precisely one collision
		UINT32	Multiple Collisions	Structure successfully transmitted, multiple collisions
		UINT32	SQE Test Errors	Number of SQE errors
		UINT32	Deferred Transmissions	First transmission attempt delayed
		UINT32	Late Collisions	Number of collisions that occurred delayed by 512 bit timers to the request
		UINT32	Excessive Collisions	Transmission unsuccessful. Reason: Intensive collision
		UINT32	MAC Transmit Errors	Transmission unsuccessful. Reason: An internal MAC sublayer receiving error
		UINT32	Carrier Sense Errors	Times that the carrier sense condition was lost or never asserted when attempting to transmit a frame
		UINT32	Frame Too Long	Structure too large
		UINT32	MAC Receive Errors	Transmit unsuccessful. Reason: An internal MAC sublayer receiving error
6	get, set	Struct of	Interface Control	-
		UINT16	Control Bits	-
		UINT16	Forced Interface Speed	-
10	get	String	Interface_Label	Interface-Label

Parameter Object, Instance Number: 401 hex

Supported services

Class • Get Attribute all Instance • Get Attribute all

- Set Attribute single

Table 8-42 Class Attribute

No.	Service	Type	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Cyclic communication is established via parameter object 401.

Example: Read parameter 2050[10] (connector output to interconnect the PZD received from the fieldbus controller)

Get Attribute single function with the following values:

- Class $=401$ hex
- Instance = $2050=802$ hex corresponds to the parameter number
- Attribute $=10=$ A hex corresponds to index 10

Example: Parameter 1520[0] writing (upper torque limit)
Set Attribute single function with the following values:

- Class $=401$ hex
- Instance $=1520=5$ FO hex corresponds to the parameter number
- Attribute $=0=0$ hex corresponds to index 0
- Data = 500.0 (value)

Supported ODVA AC/DC assemblies

Overview

Number		required/ optional	Type	Name
hex	dec			
14 hex	20	Required	Sending	Basic Speed Control Output
46 hex	70	Required	Receiving	Basic Speed Control Input

Assembly Basic Speed Control, Instance Number: 20, type: Output

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0					Fault Reset		RUN Forward	
1								
2	Speed Reference (Low Byte)							
3	Speed Reference (High Byte)							

Assembly Basic Speed Control, Instance Number: 70, type: Input

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0					Running Forward		Faulted	
1								
2	Speed Actual (Low Byte)							
3	Speed Actual (High Byte)							

8.3.4.3 Create generic I/O module

Overview

For certain controllers, or if you wish to use the SINAMICS profile, you cannot use the EDS file provided by Siemens. In these cases, you must create a generic I/O module in the control system for the cyclic communication.

Function description

Procedure

1. In your control, create a generic device with Ethernet/IP functionality.
2. In the control, enter the lengths for the process data for cyclic communication in the new device which you set in the converter:
r2067[0] (input), r2067[1] (output), e.g.: Standard telegram 2/2
4 ms is supported as the minimum value for RPI (Requested Packet Interval).
3. In the converter, set the same values for IP address, subnet mask, default gateway and name of the station as in the control.
Configuring communication (Page 292)
You have created a generic I/O module for cyclic communication with the converter.

\square

Further information

You can find a detailed description of how to create a generic I/O module on the Internet:
(3) Application example (http://support.automation.siemens.com/WW/view/en/82843076)

8.3.4.4 The converter as Ethernet node

Integrating a converter into an Ethernet network (assigning an IP address)

Procedure

1. Set p8924 (PN DHCP mode) $=2$ or 3

- p8924 = 2

The DHCP server assigns the IP address based on the MAC address of the converter

- p8924 = 3

The DHCP server assigns the IP address based on the device name of the converter
2. Save the settings with $\mathrm{p} 8925=2$. The next time that the converter switches on, it retrieves the IP address. After this, you can address the converter as an Ethernet node.

Note
 Immediate switchover without restart

The switchover to DHCP is performed immediately and without a restart if the change is carried out with the EtherNet/IP command "Set Attribute Single" (class F5 hex, attribute 3). The following options are available:

- Via an EtherNet/IP controller
- Via an EtherNet/IP commissioning tool

You have now integrated the converter into Ethernet
Displays
r8930: Device name of the converter
r8934: Operating mode, PN or DHCP
r8935: MAC address

Additional options of integrating converters into Ethernet

You also have the option of integrating the converter into Ethernet using Proneta or STEP 7, for example.

Here is the example of the "Edit Ethernet station" screen form from Step 7, which you can use to make the required settings.

8.3.5 Function diagrams for PROFINET, PROFIBUS and EtherNet/IP

8.3.5.1 Overview

The following fieldbuses are described in common function diagrams:

- PROFINET
- PROFIBUS
- EtherNet/IP

8.3.5.2 Function diagram 2401-Overview

Figure 8-19

8.3.5.3 Function diagram 2410 - Addresses and diagnostics

Figure 8-20 FP 2410

8.3.5.4 Function diagram 2420 - Telegrams and process data

Figure 8-21 FP 2420

8.3.5.5 Function diagram 2440 - PZD receive signals interconnection

Figure 8-22

Figure 8-23

8.3.5.7 Function diagram 2442 - STW1 control word interconnection SINAMICS

Figure 8-24 FP 2442

8.3.5.8 Function diagrams 2446 - STW3 control word interconnection

Figure 8-25

8.3.5.9 Function diagram 2450 - PZD send signals interconnection

Figure 8-26 FP 2450

Figure 8-27

Signal sources for ZSW1 im Interface Mode SINAMICS (p2038 = 0)					
Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	$\begin{array}{\|l\|} \hline \text { Inverted } \\ <1> \end{array}$
ZSW1.0	1 = Ready for switching on	p2080[0] $=$ r0899.0	[2503.7]	Sequence control	-
ZSW1.1	1 = Ready for operation (DC link loaded, pulses inhibited)	p2080[1] $=$ r0899.1	[2503.7]	Sequence control	-
ZSW1.2	1 = Operation enabled (drive follows n _set)	p2080[2] $=$ r0899.2	[2503.7]	Sequence control	-
ZSW1.3	1 = Fault present	$\mathrm{p} 2080[3]=\mathrm{r} 2139.3$	[2548.7]	[8060]	-
ZSW1.4	1 = No coast down active (OFF2 inactive)	p2080[4] $=$ r0899.4	[2503.7]	Sequence control	-
ZSW1.5	1 = No Quick stop active (OFF3 inactive)	$\mathrm{p} 2080[5]=\mathrm{r} 0899.5$	[2503.7]	Sequence control	-
ZSW1.6	1 = Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	Sequence control	-
ZSW1.7	1 = Alarm present	$\mathrm{p} 2080[7]=\mathrm{r} 2139.7$	[2548.7]	[8065]	-
ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] = r2197.7	[2534.7]	[8011]	-
ZSW1.9	1 = Control requested <2>	p2080[9] = r0899.9	[2503.7]	[2503]	-
ZSW1.10	1 = for n comparison value reached/exceeded	p2080[10] $=$ r2199.1	[2536.7]	[8010]	-
ZSW1.11	$1=\mathrm{I}, \mathrm{M}$, or P limit not reached	p2080[11] = r1407.7	[2522.7]	[6060]	\checkmark
ZSW1.12	Reserved	p2080[12] $=$ r0899.12	[2503.7]	[2701]	-
ZSW1.13	1 = No motor overtemperature alarm	p2080[13] = r2135.14	[2548.7]	[8016]	\checkmark
ZSW1.14	$\begin{aligned} & 1=\text { Motor rotates forwards }\left(n _ \text {act } \geq 0\right) \\ & 0=\text { Motor rotates backwards }\left(\mathrm{n}_{2} \text { _act }<0\right) \end{aligned}$	p2080[14] = r2197.3	[2534.7]	[8011]	-
ZSW1.15	1 = No alarm, thermal overload, power unit	$\mathrm{p} 2080[15]=\mathrm{r} 2135.15$	[2548.7]	[8021]	\checkmark
<1> The ZSW1 is generated using the binector-connector converter (BI: p2080[0..15], inversion: p2088[0].0 ... p2088[0].15). <2> The drive is ready to accept data.					
1	2 3 4	5	6	7	
PROFIdrive (PROFIBUS/PROFINET), EtherNet/IP					
PROFIdrive - ZSW1 status word interconnection (p2038 = 0)					

Figure 8-28
FP 2452

8.3.5.12 Function diagram 2456 - ZSW3 status word interconnection

Figure 8-29

8.3.5.13 Function diagram 2468 - Receive telegram free interconnection

Figure 8-30

8.3.5.14 Function diagram 2470 - Send telegram free interconnection

Figure 8-31

8.3.5.15 Function diagram 2472 - Status word free interconnection

Figure 8-32 FP 2472

Figure 8-33 FP 2473

8.3.6 Modbus RTU

8.3.6.1 Activating communication via fieldbus

Function description

Procedure

Proceed as follows to activate communication via Modbus RTU:

1. Start quick commissioning.
2. In the first steps of the quick commissioning, confirm all of the values that have already been set.
3. Select one of the following default settings:

- 51: "Modbus RTU control"
- 52: "Modbus RTU control local/remote"

2] Overview (Page 133)
4. In the next steps of the quick commissioning, confirm all additional values that have already been set.
5. Exit quick commissioning.

You have activated communication via Modbus RTU.
\square
ON/OFF commands via Modbus RTU
Selecting the macros 51 and 52 has the following effect:

- Only the ON/OFF2 command is possible via the terminal strip.
- The higher-level controller cannot turn the motor on or off.

To turn the motor on and off via the higher-level controller, you need to manually interconnect the ON/OFF1 and OFF2 commands with the PROFIdrive control word:

- Set p0840[0] = r2090.0
- Set p0844[0] = r2090.1

8.3.6.2 Setting the address

Function description

Procedure

1. Using parameter p2021, set the address using an operator panel or SINAMICS G120 Smart Access. Permissible addresses: $0 \ldots 31$.
2. Switch off the converter power supply.
3. Wait until all LEDs on the converter are dark.
4. Switch on the converter power supply again. Your settings become active after switching on.

You have set the bus address.

\square

Parameters

Parameter	Description	Factory setting
p2021	Fieldbus interface address	0

8.3.6.3 Parameters for setting communication via Modbus RTU

General settings

Fieldbus protocol selection p2030 = 2 (Modbus RTU)
Baud rate p2020 = 7, 19200 bit/s
Setting range: 4800 bit/s ... 187500 bit/s
Parity
In the factory, the converter is set for controllers with "parity even". You can adapt the parity at your controller using p2031:

- p2031 = 0: No parity, 1 stop bit or 2 stop bits
- p2031 = 1: Odd parity, 1 stop bit
- p2031 = 2: Even parity, 1 stop bit
- p2031 = 3: No parity, 1 stop bit

Modbustiming p2024[0 ... 2]

- p2024[0]: Maximum slave telegram processing time:

The time after which the slave must have sent a response to the master. $0 \mathrm{~ms} . . .10000 \mathrm{~ms}$, factory setting $=6000 \mathrm{~ms}$.

- p2024[1]: Character delay time:

Character delay time: Maximum permissible time between the individual characters in the Modbus frame. (Modbus standard processing time for 1.5 bytes).

- p2024 [2]: Inter-telegram delay:
maximum permissible time between Modbus telegrams. (Modbus standard processing time for 3.5 bytes).

Values for p2024 [1] and p2024 [2]
\checkmark Table 8-43 Baud rates, transmission times, and delays (Page 331).
Fieldbus monitoring time p2040 = 1000 ms
Setting range: $0 \mathrm{~ms} . . .1999999 \mathrm{~ms}$
The more slaves that are connected in the network, the longer the fieldbus monitoring time must be.

If process data is not transferred within one cycle of the fieldbus monitoring time, then the converter shuts down with fault F01910.
p2040 $=0 \Rightarrow$ bus monitoring deactivated.
Fieldbus error statistics r2029
Displaying receive errors at the fieldbus interface

Interconnecting analog outputs

If you set communication via Modbus (p2030 = 2), then the analog outputs of the converter are internally interconnected with the fieldbus analog outputs:

- p0771[0] = 791[0]
- p0771[1] = 791[1].

The values for $\mathrm{p} 0791[0]$ and p 0791 [1] are written via registers 40523 and 40524. Interconnections between parameter p0791 and other sources are rejected.

This means that the control outputs system-specific values via the analog outputs of the converter.

However, if you still wish to display a converter-specific value, you must adapt the appropriate wiring.

Example

- AO 0 should display the value written via the control with register 40523 . In this particular case, no other settings are required in the converter.
- AO 1 should display the smoothed actual current value. To do this, you must set p0771[1] = 27 (r0027 smoothed actual current value).
In this case, a write access via register 40524 to p0791[1] results in a fault message in the control.

Note

Reset to the factory setting for Modbus

If you have set communication via Modbus ($\mathrm{p} 2030=2$), when restoring the factory settings, the analog outputs are again interconnected with $\mathrm{p} 0771[0]=791[0]$ and $\mathrm{p} 0771[1]=791[1]$.

8.3.6.4 Modbus RTU telegram

Description

For Modbus, there is precisely one master and up to 247 slaves. The master always starts the communication. Slaves send data when requested to do so by the master. Slave-to-slave communication is not possible. The converter always operates as slave.

The following figure shows the structure of a Modbus RTU telegram.

Figure 8-34 Modbus with delay times
The data area of the telegram is structured according to the mapping tables.

8.3.6.5 Baud rates and mapping tables

Permissible baud rates and telegram delay

The Modbus RTU telegram requires pauses for the following situations:

- for the start identifier
- for separating the individual frames
- for the end identifier

Minimum duration: Processing time for 3.5 bytes (can be set via p2024[2]).
A character delay time is also permitted between the individual bytes of a frame. Maximum duration: Processing time for 1.5 bytes (can be set via p2024[1]).

Table 8-43 Baud rates, transmission times, and delays

Baud rate in bit/s (p2020)	Transmission time per character (11 bits)	Minimum pause be- tween two telegrams $(\mathrm{p} 2024[2])$	Maximum pause be- tween two bytes (p2024[1])
4800	2.292 ms	$\geq 8.021 \mathrm{~ms}$	$\leq 3.438 \mathrm{~ms}$
9600	1.146 ms	$\geq 4.010 \mathrm{~ms}$	$\leq 1.719 \mathrm{~ms}$
19200 (factory setting)	0.573 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.859 \mathrm{~ms}$
38400	0.286 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.75 \mathrm{~ms}$
57600	0.191 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.556 \mathrm{~ms}$
76800	0.143 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.417 \mathrm{~ms}$
93750	0.117 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.341 \mathrm{~ms}$
115200	0.095 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.278 \mathrm{~ms}$
187500	0.059 ms	$\geq 1.75 \mathrm{~ms}$	$\leq 0.171 \mathrm{~ms}$

Note

The factory setting for $\mathrm{p} 2024[1]$ and $\mathrm{p} 2024[2]$ is 0 . The converter defines the particular values depending on the protocol selection (p2030) or the baud rate.

Modbus register

The converter supports the subsequently listed registers. Error "Exception Code" is output if an attempt is made to access other registers.

Note

Read and write access to converter data

R: read via FC03; W: write via FC06; R/W: read via FC03 or write via FC06

8.3 Drive control

Table 8-44 Assigning the Modbus registers to the process data

Regis- ter	Description	Access	Scaling	Data / parameter
40100	Control word	R/W	1	Process data 1
40101	Main setpoint	R/W	1	Process data 2
40110	Status word	R	1	Process data 1
40111	Main actual value	R	1	Process data 2

8.3.6.6 Mapping tables - converter data

Table 8-45 Assigning the Modbus registers to the parameters - inputs and outputs

Register	Description	Access	Unit	Scaling	ON/OFF text/ value range		Data / parameter
Digital outputs							
40200	DO 0	R/W	--	1	HIGH	LOW	p0730, r747.0, p748.0
40201	DO 1	R/W	--	1	HIGH	LOW	p0731, r747.1, p748.1
40202	DO 2	R/W	--	1	HIGH	LOW	p0732, r747.2, p748.2
40203	DO 3	R/W	--	1	HIGH	LOW	p0733, r747.3, p748.3
Analog outputs							
40220	AO 0	R	\%	100	-100.0	100.0	r0774.0
40221	AO 1	R	\%	100	-100.0	100.0	r0774.1
40523	AO 0	R/W	\%	100	-199.99	199.99	p0791.0
40524	AO 1	R/W	\%	100	-199.99	199.99	p0791.1
Digital inputs							
40240	DI 0	R	--	1	HIGH	LOW	r0722.0
40241	DI 1	R	--	1	HIGH	LOW	r0722.1
40242	DI 2	R	--	1	HIGH	LOW	r0722.2
40243	DI 3	R	--	1	HIGH	LOW	r0722.3
40244	DI 4	R	--	1	HIGH	LOW	r0722.4
40245	DI 5	R	--	1	HIGH	LOW	r0722.5
Analog inputs							
40260	AI 0	R	\%	100	-300.0	300.0	r0755 [0]
40261	Al 1	R	\%	100	-300.0	300.0	r0755 [1]

Table 8-46 Assigning the Modbus registers to the parameters - converter data

Register	Description	Access	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40300	Powerstack number	R	--	1	0 ... 32767	r0200
40301	Converter firmware	R	--	1	e.g. 470	r0018 / 10000
40320	Rated power	R	kW	100	0 ... 327.67	r0206
40321	Current limit	R/W	A	10	10.0 ... 400.0	p0640
40322	Ramp-up time	R/W	S	100	0.00 ... 650.0	p1120
40323	Ramp-down time	R/W	S	100	0.00 ... 650.0	p1121
40324	Reference speed	R/W	RPM	1	6... 32767	p2000
Converter diagnostics						
40340	Speed setpoint	R	RPM	1	-16250 ... 16250	r0020
40341	Actual speed value	R	RPM	1	-16250 ... 16250	r0022
40342	Output frequency	R	Hz	100	- 327.68 ... 327.67	r0024
40343	Output voltage	R	V	1	0... 32767	r0025
40344	DC-link voltage	R	V	1	0... 32767	r0026

Advanced commissioning

8.3 Drive control

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40345	Current actual value	R	A	100	$0 \ldots 163.83$	r0027
40346	Actual torque value	R	Nm	100	$-325.00 \ldots 325.00$	r0031
40347	Actual active power	R	kW	100	$0 \ldots 327.67$	r0032
40348	Energy consumption	R	kWh	1	$0 \ldots 32767$	r0039
40349	Control priority	R	--	1	HAND	AUTO
r0807						

Table 8-47 Assigning the Modbus registers to the parameters - fault diagnostics

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40400	Failure number, index 0	R	--	1	$0 \ldots 32767$	r0947 [0]
40401	Failure number, index 1	R	--	1	$0 \ldots 32767$	r0947 [1]
40402	Failure number, index 2	R	--	1	$0 \ldots 32767$	r0947 [2]
40403	Fault number, index 3	R	--	1	$0 \ldots 32767$	r0947 [3]
40404	Fault number, index 4	R	--	1	$0 \ldots 32767$	r0947 [4]
40405	Fault number, index 5	R	--	1	$0 \ldots 32767$	r0947 [5]
40406	Fault number, index 6	R	--	1	$0 \ldots 32767$	r0947 [6]
40407	Fault number, index 7	R	--	1	$0 \ldots 32767$	r0947 [7]
40408	Alarm number	R	--	1	$0 \ldots 32767$	r2110 [0]
40409	Actual alarm code	R	--	1	$0 \ldots 32767$	r 2132
40499	PRM ERROR code	R	--	1	$0 \ldots 255$	--

Table 8-48 Assigning the Modbus registers to the parameters - technology controller

Register	Description	Access	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40500	Technology controller enable	R/W	--	1	$0 \ldots 1$	p2200, r2349.0
40501	Technology controller MOP	R/W	\%	100	-200.0 ... 200.0	p2240
Technology controller adjustment						
40510	Time constant for actual-value filters of the technology controller	R/W	--	100	$0.00 \ldots 60.0$	p2265
40511	Scaling factor for actual value of the technology controller	R/W	\%	100	$0.00 \ldots 500.00$	p2269
40512	Proportional amplification of the technology controller	R/W	--	1000	$0.000 . . .65 .000$	p2280
40513	Integral time of the technology controller	R/W	s	1	$0 \ldots 60$	p2285
40514	Time constant D-component of the technology controller	R/W	--	1	$0 \ldots 60$	p2274
40515	Max. limit of technology controller	R/W	\%	100	-200.0 ... 200.0	p2291
40516	Min. limit technology controller	R/W	\%	100	-200.0 ... 200.0	p2292

Table 8-49 Assigning the Modbus registers to the parameters - PID diagnostics

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40520	Effective setpoint acc. to internal tech- nology controller MOP ramp-function generator	R	$\%$	100	$-100.0 \ldots 100.0$	r 2250
40521	Actual value of technology controller af- ter filter	R	$\%$	100	$-100.0 \ldots 100.0$	r 2266
40522	Output signal technology controller	R	$\%$	100	$-100.0 \ldots 100.0$	r 2294

Table 8-50 Modbus registers for communication via DS47

Regis- ter	Description	Ac- cess	Unit	Scaling	Data / parameter
40601	DS47 Control	R/W	--	--	--
40602	DS47 header	R/W	--	--	--
40603	DS47 data 1	R/W	--	--	--
\ldots	\ldots	\ldots			
40722	DS47 data 120	R/W	--	--	--

Table 8-51 Modbus registers for multi-pump control

Register	Last reg- ister	Description	Ac- cess	Unit	Scaling	ON/OFF text/value range	Data / parameter
40800		Status word	R	--	1	$0 \ldots 65535$	p 29529
40801		Motor index speed control	R	--	1	$0 \ldots 3$	p 29538
40802		Status word, service mode	R	--	1	$0 \ldots 65535$	p 29544
40804	40805	Motor 1 operating hours	R / W	h	10	$0 \ldots 429496729.5$	$\mathrm{p} 29530[0]$
40806	40807	Motor 2 operating hours	R/W	h	10	$0 \ldots 429496729.5$	$\mathrm{p} 29530[1]$
40808	40809	Motor 3 operating hours	R/W	h	10	$0 \ldots 429496729.5$	$\mathrm{p} 29530[2]$
40810	40811	Motor 4 operating hours	R/W	h	10	$0 \ldots 429496729.5$	$\mathrm{p} 29530[3]$

8.3.6.7 Acyclic communication via Modbus RTU

Acyclic communication or general parameter access is realized using the Modbus registers 40601 ... 40722.

Acyclic communication is controlled using 40601. 40602 contains the function code (always = $47=2 \mathrm{Fhex}$) and the number of the following user data. User data are contained in registers 40603 ... 40722.

Overview of acyclic communication

Value in the register				Explanation
40601	40602		$\mathbf{4 0 6 0 3} \ldots 40722$	
0	47	\ldots	\ldots	Write values for acyclic access
1	47	Request length [bytes]	Request data	Activate acyclic access
2	47	Response length [bytes]	Response data	Response for a successful request
2	47	0	Error code	Response for an erronous request

Error codes

1 hex: Invalid Length (invalid length)
2 hex: Invalid State (in the current converter state, this action is not permitted)
3 hex: Invalid function code ($F C \neq 2 F$ hex)
4 hex: Response not ready (the response has still not been issued)
5 hex: Internal Error (general system error)
Incorrect access operations to parameters via data set 47 are logged in registers 40603 ... 40722.

8.3.6.8 Write and read access using function codes

Basic structure of read and write access using function codes

Slave ID	Protocol Data Unit (PDU)		CRC	
	FC	Data	low	high
1 Byte	1 Byte	$0 \ldots 252$ Bytes	2 Byte	

Function codes used

For data exchange between the master and slave, predefined function codes are used for communication via Modbus.

The converter uses the following Modbus function codes:

- FC 03: Holding register to read data from the converter
- FC 06: Write single register to write to individual register
- FC 16: Write to multiple registers to write to several registers

Structure of a read request via Modbus function code 03 (FC 03)

Any valid register address is permitted as the start address.
Via FC 03, the control can address more than one register with one request. The number of addressed registers is contained in bytes 4 and 5 of the read request.

Table 8-52 Structure of a read request via slave number 17, example

Value	Byte	Description
11 h	0	Slave address
03 h	1	Function code
00 h	2	Register start address "High" (register 40110)
6 h	3	Register start address "Low"
00 h	4	Number of registers "High" (2 registers: 40110; 40111)
02 h	5	number of registers "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

8.3 Drive control

The response returns the corresponding data set:

Table 8-53 Slave response to the read request, example

Value	Byte	Description
11 h	0	Slave address
03 h	1	Function code
04 h	2	Number of bytes (4 bytes are returned)
11 h	3	Data first register "High"
22 h	4	Data first register "Low"
33 h	5	Data second register "High"
44 h	6	Data second register "Low"
xx h	7	CRC "Low"
xx h	8	CRC "High"

Table 8-54 Invalid read request

Read request	Converter response
Invalid register address	Exception code 02 (invalid data address)
Read a write-only register	Telegram in which all values are set to 0.
Read a reserved register	Exception code 03 (invalid data value)
Controller addresses more than 125 registers	Exception code 02 (invalid data address)
The start address and the number of registers of an address are located outside of a defined register block	

Structure of a write request via Modbus function code 06 (FC 06)

Start address is the holding register address.
Via FC 06, with one request, only precisely one register can be addressed. The value, which is written to the addressed register, is contained in bytes 4 and 5 of the write request.

Table 8-55 Structure of a write request for slave number 17, example

Value	Byte	Description
11 h	0	Slave address
06 h	1	Function code
00 h	2	Register start address "High" (write register 40100)
63 h	3	Register start address "Low"
55 h	4	Register data "High"
66 h	5	Register data "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

The response returns register address (bytes 2 and 3) and the value (bytes 4 and 5), which the higher-level control had written to the register.

Table 8-56 Slave response to the write request

Value	Byte	Description
11 h	0	Slave address
06 h	1	Function code
00 h	2	Register start address "High"
63 h	3	Register start address "Low"
55 h	4	Register data "High"
66 h	5	Register data "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

Table 8-57 Invalid write request

Write request	Converter response
Incorrect address (a holding register address does not exist)	Exception Code 02 - invalid data ad- dress
Write to a "read-only" register	Exception Code 04 - device failure
Write to a reserved register	

For Exception Code 4, via the holding register 40499, you can read out the internal drive error code, which has occurred for the last parameter access via the holding register.

8.3.6.9 Reading and writing parameters acyclically via FC 16

Via FC 16 , with one request, up to 122 registers can be written to directly one after the other, while for Write Single Register (FC 06) you must individually write the header data for each register.

Header

In addition to the slave address, enter the transfer type, the start address and the number of the following registers in the header.

User data

You control the access in the user data via register 40601.
In register 40602, you define the acyclic access as well as the length of the request data.
Register 40603 contains the request reference - it is defined by the user - and the access type reading or writing.

Register 40604 contains the number of the drive object (always 1) and the number of parameters that are read or written.

Register 40605 contains the attribute that you use to control whether you read out the parameter value or the parameter attribute. In the number of elements you specify how many indices are read.

8.3 Drive control

Example: r0002 read acyclically

Table 8-58 Write parameter request: Reading the parameter value of r0002 from slave number 17

Value	Byte	Description
11 h	0	Slave address
$\begin{array}{r} 10 \mathrm{~h} \\ 0258 \mathrm{~h} \\ 0007 \mathrm{~h} \\ 0 \mathrm{E} \\ 0001 \mathrm{~h} \\ 2 \mathrm{~F} 0 \mathrm{~A} \\ 8001 \mathrm{~h} \\ 0101 \mathrm{~h} \\ 1001 \mathrm{~h} \\ 0002 \mathrm{~h} \\ 0000 \mathrm{~h} \end{array}$	$\begin{array}{\|l} \hline 1 \\ 2,3 \\ 4,5 \\ 6 \\ 7,8 \\ 9,10 \\ 11,12 \\ 13,14 \\ 15,16 \\ 17,18 \\ 19,20 \end{array}$	```Function code (write multiple) Register start address Number of registers to be read (40601 ... 40607) Number of data bytes (7 registers, each 2 bytes = 14 bytes) 40601: DS47 Control = 1 (activate request) 40602: Function 2F h (47), request length 10 bytes (0A h) 40603: Request reference = 80 h, request identifier = 1 h 40604: DO-Id = 1, number of parameters = 1 40605: Attribute, number of elements = 1 40606: Parameter number = 2 40607: Subindex = 0```
$\begin{array}{ll} x x & h \\ x x & h \end{array}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { CRC "Low" } \\ & \text { CRC "High" } \end{aligned}$

Table 8-59 Start parameter request: Reading the parameter value of r0002 from slave number 17

Value	Byte	Description
11 h	0	Slave address
03 h	1	Function code (read)
0258 h	2,3	Register start address
0007 h	4,5	Number of registers to be read (40601 ... 40607)
0010 h	6,7	Number of registers
xx h	8	CRC "Low"
xx h	9	CRC "High"

Table 8-60 Response for successful read operation

Value	Byte	Description
11 h	0	Slave address
$\begin{array}{r} 03 \mathrm{~h} \\ 20 \mathrm{~h} \\ 0002 \mathrm{~h} \\ 2 \mathrm{~F} 08 \mathrm{~h} \\ 8001 \mathrm{~h} \\ 0101 \mathrm{~h} \\ 0301 \mathrm{~h} \\ 001 \mathrm{~h} \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3,4 \\ & 5,6 \\ & 7,8 \\ & \\ & 9,10 \\ & 11,12 \\ & 13,14 \end{aligned}$	```Function code (read) Number of following data bytes (20 h: 32 bytes corresponds to 16 registers) 40601: DS47 Control = 2 (the request was executed) 40602: Function code 2F h (47), response lengths 8 bytes 40603: Request reference mirrored = 80 h, response identifier = 1 (request parameter) 40604: DO-ID = 1, number of parameters = 1 40605: Format, number of elements = 1 40606: Parameter value = 1F h (31)```
$x \times h$ xx h	15 16	CRC "Low" CRC "High"

Table 8-61 Response for unsuccessful read operation - read request still not completed

Value	Byte	Description
11 h	0	Slave address
03 h	1	Function code (read)
20 h	2	Number of following data bytes (20 h : 32 bytes corresponds to 16 registers)
0001 h	3,4	40601: Check value 1 = request is processed
2F00 h	5,6	40602: Function 2F h(47), response length 0 (fault)
0004 h	7,8	40603: Error code: 0004 Response Not Ready (response has still not been issued)
xx h	9	CRC "Low"
$x \times \mathrm{h}$	10	CRC "High"

Example: Set p1121 = 12.15

Table 8-62 Write parameter request: Writing the parameter value of p1121 from slave number 17

Value	Byte	Description
11 h	0	Slave address
10 h	1	Function code (write multiple)
0258 h	2,3	Register start address
000A h	4,5	Number of registers to be written to (40601 ... 40610)
14 h	6	Number of data bytes (10 registers, each 2 bytes $=20$ bytes)
0001 h	7,8	40601: C1 (activate request)
2 F 10 h	9,10	40602: Function 2 F h (47), request length 16 bytes (10 h)
8002 h	11,12	40603: Request reference $=80 \mathrm{~h}$, request identifier $=2 \mathrm{~h}$ (write)
0101 h	13,14	40604: DO-Id = 1, number of parameters = 1
1001 h	15,16	40605: Attribute, number of elements $=1$
0461 h	17,18	40606: Parameter number $=1121$
0000 h	19,20	40607 : Subindex $=0$
0801 h	21,22	40608: Format + number of values
4142 h	23, 24	40609: Parameter value 12,15
6666 h	25,26	40610: Parameter value
$x \mathrm{x}$ h	27	CRC "Low"
$x \mathrm{x}$ h	28	CRC "High"

Table 8-63 Start parameter request: Writing the parameter value of p1121 from slave number 17

| Value | Byte | Description | |
| :---: | :--- | :--- | :--- | :--- |
| 11 h | 0 | Slave address | |
| 06 h | 1 | Function code (write) | |
| 0258 h | 2,3 | Register start address | |
| 0007 h | 4,5 | Number of registers to be written to (40601 ... 40610) | |
| 0010 h | 6,7 | Number of registers | |
| xx h | 8 | CRC "Low" | |
| xx h | 9 | CRC "High" | |

8.3 Drive control

Table 8-64 Response for successful write operation

Value	Byte	Description
11 h	0	Slave address
06 h	1	Function code (write)
20 h	2	Number of following data bytes (20 h: 32 bytes corresponds to 16 registers)
0002 h	3,4	40601: DS47 Control $=2$ (request was executed)
2F04 h	5,6	40602: Function code 2F h (47), response length 4 bytes
8002 h	7,8	40603: Request reference mirrored $=80 \mathrm{~h}$, response identifier $=2$ (change parameter)
0101 h	9,10	40604: DO-ID = 1, number of parameters = 1
xx h	11	CRC "Low"
xx h	12	CRC "High"

Table 8-65 Response for unsuccessful write operation - write request still not completed

Value	Byte	Description
11 h	0	Slave address
06 h	1	Function code (write)
20 h	2	Number of following data bytes (20 h: 32 bytes corresponds to 16 registers)
0001 h	3,4	$40601:$ DS47 Control $=1$ (request is processed)
2 F 00 h	5,6	$40602:$ Function 2F h(47), response length 0 (fault)
0004 h	7,8	$40603:$ Error code: 0004 Response Not Ready (response has still not been issued)
xx h	9	CRC "Low"
xx h	10	CRC "High"

8.3.6.10 Communication procedure

Procedure for communication in a normal case

Normally, the master sends a telegram to a slave (address range 1 ... 247). The slave sends a response telegram to the master. This response telegram mirrors the function code; the slave enters its own address in the telegram and so the slave identifies itself with the master.

The slave only processes orders and telegrams which are directly addressed to it.

Communication error

If the slave detects a communication error on receipt (parity, CRC), it does not send a response to the master, since this can lead to "setpoint timeout".

Logical error

If the slave detects a logical error within a request, it responds to the master with an "exception response". In the response, the slave sets the highest bit in the function code to 1 . If the slave receives, for example, an unsupported function code from the master, the slave responds with an "exception response" with code 01 (Illegal function code).

Table 8-66 Overview of exception codes

Exception code	Modbus name	Remark
01	Illegal function code	An unknown (unsupported) function code was sent to the slave.
02	Illegal Data Address	An invalid address was requested.
03	Illegal data value	An invalid data value was detected.
04	Server failure	Slave has terminated during processing.

Maximum processing time, p2024[0]

The slave-response time is the time in which the Modbus master expects a response to a request. Set the same slave-response time (p2024 [0] in the converter) in the master and slave.

Process data monitoring time (setpoint timeout), p2040

"Setpoint timeout" (F1910) is issued by the Modbus if p2040 is set to a value $>0 \mathrm{~ms}$ and no process data is requested within this time period.

The "Setpoint timeout" only applies for access to process data (40100, 40101, 40110, 40111). The "Setpoint timeout" is not generated for parameter data (40200 ... 40522).

Note

Adjust the time (factory setting $=100 \mathrm{~ms}$) depending on the number of slaves and the baud rate set on the bus.

8.3.6.11 Application example

An application example for MODBUS RTU is provided on the Internet:
(3) Communication via the MODBUS interface (https:// support.industry.siemens.com/cs/ww/en/view/35928944)

8.3.7 USS

8.3.7.1 Activating communication via fieldbus

Function description

Procedure

Proceed as follows to activate communication via USS:

1. Start quick commissioning.
2. In the first steps of the quick commissioning, confirm all of the values that have already been set.
3. Select one of the following default settings:

- 54: "USS control"
- 55: "USS control local/remote"
$\xrightarrow{4}$ Overview (Page 133)

4. In the next steps of the quick commissioning, confirm all additional values that have already been set.
5. Exit quick commissioning.

You have activated communication via USS.
\square
ON/OFF commands via USS
Selecting the macros 54 and 55 has the following effect:

- Only the ON/OFF2 command is possible via the terminal strip.
- The higher-level controller cannot turn the motor on or off.

To turn the motor on and off via the higher-level controller, you need to manually interconnect the ON/OFF1 and OFF2 commands with the PROFIdrive control word:

- Set p0840[0] = r2090.0
- Set $\mathrm{p} 0844[0]=\mathrm{r} 2090.1$

8.3.7.2 Setting the address

Function description

Procedure

1. Using parameter p2021, set the address using an operator panel or SINAMICS G120 Smart Access.
Permissible addresses: 1 ... 247.
2. Switch off the converter power supply.
3. Wait until all LEDs on the converter are dark.
4. Switch on the converter power supply again. Your settings become active after switching on.

You have set the bus address.
\square

Parameters

Parameter	Description	Factory setting
p2021	Fieldbus interface address	0

8.3.7.3 Telegram structure

Overview

A USS telegram comprises a series of elements with a defined sequence. Each element contains 11 bits.

Figure 8-35 Structure of a USS telegram

Telegram part	Description
Start delay / response delay	There is always a start / response delay between two telegrams. STX
LGE	An ASCll character (02 hex) indicates the beginning of the message.
LGe telegram length "LGE" is calculated as follows:	
LGE = user data (n bytes) + ADR (1 byte) + BCC (1 byte)	

Telegram part	Description							
ADR	- Bit $7=0$: Normal data exchange. Bit $7=1$, to transfer telegrams that require a net data structure different from the device profile. - Bit $6=0$: Normal data exchange. Bit $6=1$: Testing the bus connection: The converter returns the telegram unchanged to the master. - Bit $5=0$: Normal data exchange. (Bit $5=1$: Not supported in the converter.) - Bits 0 ... 4: Address of the converter.							
User data	4 Specify user data of telegram (Page 346).							
BCC	Checksum (exclusive or) across all telegram bytes - with the exception of BCC.							

8.3.7.4 Specify user data of telegram

Overview

The user data of the telegram consist of the following elements:

- Parameter channel (PIV) for writing and reading parameter values
- Process data (PZD) for controlling the drive

Figure 8-36 USS telegram - user data structure

Function description

Parameter channel

You specify the length of the parameter channel in parameter p2023:

- p2023 = 0

With this setting, no parameter values are transferred.

- p2023 = 3

You can select this setting if you only want to read or write 16-bit data or alarm signals.

- $\mathrm{p} 2023=4$:

If you want to read or write 32-bit values (for example indexed parameters or bit parameters, e.g. r0722.2), then this setting is required. In this case, the send or receive telegram always contains four words, even if only three would be required. The values are right-justified in the 4th word

- p2023 = 127:

If you set p2023 = 127 (variable length), the send and response telegrams are exactly as long as the task requires.

Process data

Parameter p2022 defines the length for the process data. You can transfer up to eight process data items in one telegram (p2022 = $0 \ldots 8$). For p2022 = 0, no process data is transferred.

Parameters

Parameter	Description	Factory setting
p2022	Fieldbus interface USS PZD number	2
p2023	Fieldbus interface USS PKW number	127

8.3.7.5 USS process data channel (PZD)

Function description

The process data channel (PZD) contains the following data depending on the transmission direction:

- Control words and setpoints for the slave
- Status words and actual values for the master.

Figure 8-37 Process data channel
The first two words are:

- Control 1 (STW1) and main setpoint (HSW)
- Status word 1 (ZSW1) and main actual value (HIW)

If p2022 is greater than or equal to 4, then the converter receives the additional control word (STW2).

Control word 1 (STW1)

Bit	Significance	Explanation	Signal interconnection in the converter
0	0 = OFF1	The motor brakes with the ramp-down time p1121 of the ramp-function generator. The converter switches off the motor at standstill.	$\begin{aligned} & \mathrm{p} 0840[0]= \\ & \mathrm{r} 2090.0 \end{aligned}$
	$\mathrm{O} \rightarrow 1=\mathrm{ON}$	The converter goes into the "ready" state. If, in addition bit $3=1$, then the converter switches on the motor.	
1	$0=$ OFF2	Switch off the motor immediately, the motor then coasts down to a standstill.	$\begin{aligned} & \text { p0844[0] = } \\ & \text { r2090.1 } \end{aligned}$
	1 = No OFF2	The motor can be switched on (ON command).	
2	0 = Quick stop (OFF3)	Quick stop: The motor brakes to a standstill with the OFF3 ramp-down time p1135.	$\begin{aligned} & \mathrm{p} 0848[0]= \\ & \mathrm{r} 2090.2 \end{aligned}$
	1 = No quick stop (OFF3)	The motor can be switched on (ON command).	
3	$0=$ Inhibit operation	Immediately switch-off motor (cancel pulses).	$\begin{aligned} & \text { p0852[0] = } \\ & \text { r2090.3 } \end{aligned}$
	1 = Enable operation	Switch-on motor (pulses can be enabled).	
4	0 = Disable RFG	The converter immediately sets its ramp-function generator output to 0 .	$\begin{aligned} & \text { p1140[0] = } \\ & \text { r2090.4 } \end{aligned}$
	1 = Do not disable RFG	The ramp-function generator can be enabled.	
5	0 = Stop RFG	The output of the ramp-function generator stops at the actual value.	$\begin{aligned} & \text { p1141[0] = } \\ & \text { r2090.5 } \end{aligned}$
	1 = Enable RFG	The output of the ramp-function generator follows the setpoint.	
6	$0=$ Inhibit setpoint	The converter brakes the motor with the ramp-down time p1121 of the ramp-function generator.	$\begin{aligned} & \text { p1142[0] = } \\ & \text { r2090.6 } \end{aligned}$
	1 = Enable setpoint	Motor accelerates to the setpoint with the ramp-up time p1120.	
7	$0 \rightarrow 1$ = Acknowledge faults	Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.	$\begin{aligned} & \hline \begin{array}{l} \text { p2103[0] }= \\ \text { r2090.7 } \end{array} \end{aligned}$
8,9	Reserved		
10	0 = No control via PLC	Converter ignores the process data from the fieldbus.	$\begin{aligned} & \mathrm{p} 0854[0]= \\ & \mathrm{r} 2090.10 \end{aligned}$
	1 = Control via PLC	Control via fieldbus, converter accepts the process data from the fieldbus.	
11	$1=$ Direction reversal	Invert setpoint in the converter.	$\begin{aligned} & \text { p1113[0] = } \\ & \text { r2090.11 } \end{aligned}$
12	Reserved		
13	1 = MOP up	Increase the setpoint saved in the motorized potentiometer.	$\begin{aligned} & \hline \begin{array}{l} \text { p1035[0] }= \\ \text { r2090.13 } \end{array} \\ & \hline \end{aligned}$
14	1 = MOP down	Reduce the setpoint saved in the motorized potentiometer.	$\begin{aligned} & \hline \begin{array}{l} \text { p1036[0] }= \\ \text { r2090.14 } \end{array} \\ & \hline \end{aligned}$
15	Reserved		

Status word 1 (ZSW1)

Bit	Significance	Remarks	Signal interconnection in the converter
0	1 = Ready for switching on	Power supply switched on; electronics initialized; pulses locked.	$\begin{aligned} & \text { p2080[0] = } \\ & \text { r0899.0 } \end{aligned}$
1	1 = Ready	Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor.	$\begin{aligned} & \hline \text { p2080[1] = } \\ & \text { r0899.1 } \end{aligned}$
2	1 = Operation enabled	Motor follows setpoint. See control word 1, bit 3.	$\begin{aligned} & \text { p2080[2] = } \\ & \text { r0899.2 } \end{aligned}$
3	1 = Fault active	The converter has a fault. Acknowledge fault using STW1.7.	$\begin{aligned} & \text { p2080[3] = } \\ & \text { r2139.3 } \end{aligned}$
4	1 = OFF2 inactive	Coast down to standstill is not active.	$\begin{aligned} & \mathrm{p} 2080[4]= \\ & \text { r0899.4 } \end{aligned}$
5	1 = OFF3 inactive	Quick stop is not active.	$\begin{aligned} & \text { p2080[5] = } \\ & \text { r0899.5 } \end{aligned}$
6	1 = Switching on inhibited active	It is only possible to switch on the motor after an OFF1 followed by ON.	$\begin{aligned} & \hline \text { p2080[6] = } \\ & \text { r0899.6 } \end{aligned}$
7	1 = Alarm active	Motor remains switched on; no acknowledgement is necessary.	$\begin{aligned} & \text { p2080[7] = } \\ & \text { r2139.7 } \end{aligned}$
8	1 = Speed deviation within the tolerance range	Setpoint / actual value deviation within the tolerance range.	$\begin{aligned} & \text { p2080[8] = } \\ & \text { r2197.7 } \end{aligned}$
9	1 = Master control requested	The automation system is requested to accept the converter control.	$\begin{aligned} & \text { p2080[9] = } \\ & \text { r0899.9 } \end{aligned}$
10	1 = Comparison speed reached or exceeded	Speed is greater than or equal to the corresponding maximum speed.	$\begin{aligned} & \text { p2080[10] = } \\ & \text { r2199.1 } \end{aligned}$
11	1 = Torque limit not reached	Fallen below comparison value for current or torque.	$\begin{aligned} & \hline p 2080[11]= \\ & \text { r0056.13 / } \\ & \text { r1407.7 } \end{aligned}$
12	Reserved		$\begin{aligned} & \mathrm{p} 2080[12]= \\ & \text { r0899.12 } \end{aligned}$
13	0 = Alarm, motor overtemperature	--	$\begin{aligned} & \mathrm{p} 2080[13]= \\ & \text { r2135.14 } \end{aligned}$
14	1 = Motor rotates clockwise	Internal converter actual value >0.	$\begin{aligned} & \mathrm{p} 2080[14]= \\ & \text { r2197.3 } \end{aligned}$
	$0=$ Motor rotates coun-ter-clockwise	Internal converter actual value <0.	
15	0 = Alarm, converter thermal overload		$\begin{aligned} & \mathrm{p} 2080[15]= \\ & \text { r2135.15 } \end{aligned}$

8.3.7.6 Telegram monitoring

Function description

You require the telegram runtimes in order to set the telegram monitoring. The character runtime is the basis of the telegram runtime:

Table 8-67 Character runtime

Baud rate in bit/s	Transmission time per bit	Character run time (= $\mathbf{1 1}$ bits)
9600	$104.170 \mu \mathrm{~s}$	1.146 ms
19200	$52.084 \mu \mathrm{~s}$	0.573 ms
38400	$26.042 \mu \mathrm{~s}$	0.286 ms
57600	$17.361 \mu \mathrm{~s}$	0.191 ms
115200	$8.681 \mu \mathrm{~s}$	0.095 ms

The telegram runtime is longer than just purely adding all of the character runtimes (=residual runtime). You must also take into consideration the character delay time between the individual characters of the telegram.

Figure 8-38 Telegram runtime as the sum of the residual runtime and character delay times
The total telegram runtime is always less than 150% of the pure residual runtime.
Before each request telegram, the master must maintain the start delay. The start delay must be $>2 \times$ character runtime.
The slave only responds after the response delay has expired.

Figure 8-39 Start delay and response delay
Table 8-68 Start delay

Baud rate in bit/s	Transmission time per character (= $\mathbf{1 1}$ bits)	Min. start delay
9600	1.146 ms	$>2.291 \mathrm{~ms}$
19200	0.573 ms	$>1.146 \mathrm{~ms}$

Baud rate in bit/s	Transmission time per character (= 11 bits)	Min. start delay
38400	0.286 ms	$>0.573 \mathrm{~ms}$
57600	0.191 ms	$>0.382 \mathrm{~ms}$
115200	0.095 ms	$>0.191 \mathrm{~ms}$

The character delay time must be shorter than the start delay.

Telegram monitoring of the master

With your USS master, we recommend that the following times are monitored:

- Response delay:

Response time of the slave to a request from the master The response delay must be $<20 \mathrm{~ms}$, but longer than the start delay

- Telegram runtime:

Transmission time of the response telegram sent from the slave

Telegram monitoring of the converter

The converter monitors the time between two requests of the master. Parameter p2040 defines the permissible time in ms . If a time $\mathrm{p} 2040 \neq 0$ is exceeded, then the converter interprets this as telegram failure and responds with fault F01910.
150% of the residual runtime is the guide value for the setting of p2040, i.e. the telegram runtime without taking into account the character delay times.

For communication via USS, the converter checks bit 10 of the received control word 1 . If the bit is not set when the motor is switched on ("Operation"), the converter responds with fault F07220.

Parameters

Parameter	Description	Factory setting
p2040	Fieldbus interface monitoring time	1000 ms

8.3.7.7 USS parameter channel

Structure of the parameter channel

Depending on the setting in p 2023 , the parameter channel has a fixed length of three or four words, or a variable length, depending on the length of the data to be transferred.

1. and 2 nd word contain the parameter number and index as well as the type of job (read or write). The other words of the parameter channel contain parameter contents. The parameter contents can be 8 -bit values, 16 -bit values (such as baud rate) or 32 -bit values (e.g. CO parameters). The parameter contents are entered right justified in the word with the highest number. Words that are not required are assigned 0 .

Bit 11 in the 1 st word is reserved and is always assigned 0.
The diagram shows a parameter channel that is four words long.

Parameter channel		
PKE (1st word)	IND (2nd word)	PWE (3rd and 4th word)
'15...12:11: $10 \ldots 0$	15...8 8 7 \ldots - 0	15...0 0
AK S : PNU	Page index: Subindex	PWE 1, High Word
M		

You can find examples of telegrams at the end of this section.

Function description

AK: Request and response ID

Table 8-69 Request identifiers, control \rightarrow converter

AK	Description	Response identifier	
		positive	negative
0	No request	0	718
1	Request parameter value	$1 / 2$	718
2	Change parameter value (word)	1	718
3	Change parameter value (double word)	2	718
4	Request descriptive element ${ }^{1)}$	3	718
6)	Request parameter value (field) ${ }^{1)}$	$4 / 5$	718
$7^{2)}$	Change parameter value (field, word) ${ }^{1)}$	4	718
$8^{2)}$	Change parameter value (field, double word) ${ }^{\text {1) }}$	5	718
9	Request number of field elements	6	718

1) The required element of the parameter is specified in IND (2nd word).
2) The following request IDs are identical: $1 \equiv 6,2 \equiv 7$ and $3 \equiv 8$.

We recommend that you use identifiers 6, 7 and 8 .

Table 8-70 Response identifiers, converter \rightarrow control

AK	Description
0	No response
1	Transfer parameter value (word)
2	Transfer parameter value (double word)
3	Transfer descriptive element ${ }^{1)}$
4	Transfer parameter value (field, word) ${ }^{2)}$
5	Transfer parameter value (field, double word) ${ }^{2)}$
6	Transfer number of field elements

AK	Description
7	Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table.
8	No master controller status / no authorization to change parameters of the parameter channel interface

${ }^{1)}$ The required element of the parameter is specified in IND (2nd word).
${ }^{2)}$ The required element of the indexed parameter is specified in IND (2nd word).

Table 8-71 Error numbers for response identifier 7

No.	Description
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a subindex that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element error value that cannot be changed)
OB hex	No master control
OC hex	Keyword missing
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
65 hex	Parameter number is currently deactivated (depending on the mode of the converter)
66 hex	Channel width is insufficient (communication channel is too small for response)
68 hex	Illegal parameter value (parameter can only assume certain values)
6A hex	Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller \rightarrow converter")
6B hex	No change access for a controller that is enabled. (The operating state of the conerter prevents a parameter change)
86 hex	Write access only for commissioning ($\mathrm{p} 0010=15$) (operating state of the converter prevents a parameter change)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

PNU (parameter number) and page index

Parameter number	PNU	Page index
$0000 \ldots 1999$	$0000 \ldots 1999$	0 hex
$2000 \ldots 3999$	$0000 \ldots 1999$	80 hex
$6000 \ldots 7999$	$0000 \ldots 1999$	90 hex
$8000 \ldots 9999$	$0000 \ldots 1999$	20 hex
$10000 \ldots 11999$	$0000 \ldots 1999$	A0 hex
$20000 \ldots 21999$	$0000 \ldots 1999$	50 hex
$29000 \ldots 29999$	$0000 \ldots 1999$	70 hex
$30000 \ldots 31999$	$0000 \ldots 1999$	F0 hex
$60000 \ldots 61999$	$0000 \ldots 1999$	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 8-72 Parameter value or connector

	PWE 1	PWE 2	
Parameter value	Bit $15 \ldots 0$	Bit $15 \ldots 8$	Bit $7 \ldots 0$
	0	0	8 -bit value
	0	16-bit value	
	Bit $15 \ldots 0$	3it $15 \ldots 10$	Bit $9 \ldots 0$
	Number of the connector	3 halue	The index or bit field number of the connec- tor

Examples

Read request: Read out serial number of the Power Module (p7841[2])

To obtain the value of the indexed parameter p7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset)

Parameter number = PNU + offset (page index)
(7841 = $1841+6000$)

- IND, bit 8 ... 15 (subindex): = 2 (index of parameter)
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0 , for example.

Parameter channel						
PKE, 1st word		IND, 2nd word		PWE1 - high, 3rd word	PWE2 - low, 4th word	
15...12 11	$10 \ldots 0$	$15 . . .8$	$7 \ldots 0$	$15 \ldots 0$	$15 . .10$	$9 \ldots 0$
AK	Parameter number	Subindex	Page index	Parameter value	Drive object	Index

Figure 8-40 Telegram for a read request from p7841[2]

Parameter number

Parameter numbers < 2000
PNU = parameter number.
Write the parameter number into the PNU (PKE bit $10 \ldots 0$).
Parameter numbers ≥ 2000
PNU = parameter number - offset.
Write the parameter number minus the offset into the PNU (PKE bit 10 ... 0).
Write the offset in the page index (IND bit 15 ... 8).

Table 8-73 Offset and page index of the parameter numbers

Parameter number	Offset	Page index								
		Hex	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0000 ... 1999	0	0 hex	0	0	0	0	0	0	0	0
2000 ... 3999	2000	80 hex	1	0	0	0	0	0	0	0
6000 ... 7999	6000	90 hex	1	0	0	1	0	0	0	0
8000 ... 9999	8000	20 hex	0	0	1	0	0	0	0	0
10000 ... 11999	10000	AO hex	1	0	1	0	0	0	0	0
20000 ... 21999	20000	50 hex	0	1	0	1	0	0	0	0
29000 ... 29999	28000	70 hex	0	1	1	1	0	0	0	0
30000 ... 31999	30000	FO hex	1	1	1	1	0	0	0	0
60000 ... 61999	60000	74 hex	0	1	1	1	0	1	0	0

Indexed parameters

For indexed parameters, you must write the index as hex value into the subindex (IND bit 7 ... 0).

Parameter contents

Parameter contents can be parameter values or connector parameters. You require two words for connector parameters. You can find more information on interconnecting connector parameters in the operating instructions of the converter in the section "Interconnecting signals in the converter".

Enter the parameter value in the parameter channel right-justified as follows:

- 8-bit values: Low word, bits bits $8 \ldots 15$ are zero. 0 ... 7,
- 16-bit values: Low word, bits 0 ... 15,
- 32-bit values: Low word and high word

Enter a connector parameter right-justified as follows:

- Number of the connector parameter: High word
- Drive object of the connector parameter: Low word, bits 10 ... 15
- The index or bit field number of the connector parameter: Low word, bits 0 ... 9

Telegram examples, length of the parameter channel $=4$

Read request: Read out serial number of the Power Module (p7841[2])

To obtain the value of the indexed parameter p 7841 , you must fill the telegram of the parameter channel with the following data:

- PKE, bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number $=$ PNU + offset (page index) (7841 = $1841+6000$)
- IND, bit 8 ... 15 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- IND, bit 0 ... 7 (subindex): = 2 (index of parameter)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0 , for example.

Figure 8-41 Telegram for a read request from p7841[2]
Write request: Changing the automatic restart mode (p 1210)
Parameter p1210 defines the automatic restart mode:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as $1210<1999$)
- IND, bit 8 ... 15 (page index): $=0$ hex (offset 0 corresponds to 0 hex)
- IND, bit 0 ... 7 (subindex): = 0 hex (parameter is not indexed)
- PWE1, bit 0 ... 15: = 0 hex
- PWE2, bit 0 ... 15: = 1A hex ($26=1 \mathrm{~A}$ hex)

Figure 8-42 Telegram, to activate the automatic restart with p1210 $=26$

Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/ OFF1) the value 722.2 (DI 2). To do this, you must fill the telegram of the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, no offset, as $840<1999$)
- IND, bit 8 ... 15 (page index): $=0$ hex (offset 0 corresponds to 0 hex)
- IND, bit 0 ... 7 (subindex): = 1 hex (command data set CDS1 = index1)
- PWE1, bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- PWE2, bit 10 ... 15: = 3f hex (drive object - for SINAMICS G120 always 63 = 3f hex)
- PWE2, bit 0 ... 9: = 2 hex (index or bit number of the parameter: DI $2=r 0722.2$)

Figure 8-43 Telegram, to assign DI 2 with ON/OFF1

8.3.8 \quad BACnet MS/TP

8.3.8.1 BACnet properties

Function description

In BACnet, components and systems are considered to be black boxes which contain a number of objects. BACnet objects only stipulate the behavior outside the device, BACnet sets no internal functions.

A range of object types and their instances represent one component.
Each BACnet device has precisely one BACnet device object. An NSAP (Network Service Access Point - comprising network number and MAC address; MAC: Medium Access Control) uniquely identifies a BACnet device. This address is BACnet-specific and must not be confused with the Ethernet MAC address.

Data exchange with the client

The converter receives control commands and setpoints via service instructions from the control and transmits its status back to the control. The converter can also send telegrams automatically itself, respectively execute services, e.g. COV_Notification.

The converter supports Unicode, coded with character set UTF-8

Further information

The Protocol Implementation Conformance Statement (PICS) is available on the Internet:
(3) PICS (https://support.industry.siemens.com/cs/us/en/view/109760469)

8.3.8.2 Activating communication via fieldbus

Function description

Procedure

Proceed as follows to activate communication via BACnet MS/TP:

1. Start quick commissioning.

Q Quick commissioning using the BOP-2 operator panel (Page 203)
2. In the first steps of the quick commissioning, confirm all of the values that have already been set.
3. Select the default setting 54: "USS control".

Overview (Page 133)
4. In the next steps of the quick commissioning, confirm all additional values that have already been set.
5. Exit quick commissioning.
6. Set $\mathrm{p} 2030=5$

You have activated communication via BACnet MS/TP.
\square

ON/OFF commands via BACnet

Selecting the macro 54 has the following effect:

- Only the ON/OFF2 command is possible via the terminal strip.
- The higher-level controller cannot turn the motor on or off.

To turn the motor on and off via the higher-level controller, you need to manually interconnect the ON/OFF1 and OFF2 commands with the PROFIdrive control word:

- Set p0840[0] = r2090.0
- Set $\mathrm{p} 0844[0]=r 2090.1$

8.3.8.3 Setting the address

Function description

Procedure

1. Using parameter p2021, set the address using an operator panel or SINAMICS G120 Smart Access.
Permissible addresses: $0 \ldots 127$.
2. Switch off the converter power supply.
3. Wait until all LEDs on the converter are dark.
4. Switch on the converter power supply again. Your settings become active after switching on.

You have set the bus address.
\square

Parameters

Parameter	Description	Factory setting
p2021	Fieldbus interface address	0

8.3.8.4 Setting communication via BACnet

General settings

Processing times p2024[0... 2]
p2024[0]: $0 \mathrm{~ms} . . .10000 \mathrm{~ms}$, maximum processing time (APDU timeout), factory setting = 6000 ms, p2024 [1 ... 2]: Irrelevant

BACnet communication parameter p2025[0... 3]

- p2025 [0]: 0 ... 4194303: Device object instance number, Factory setting = 1
- p2025 [1]: 1 ... 10: Maximum Info Frames, factory setting = 5
- p2025 [2]: $0 \ldots 39$: Number of APDU Retries (repeated attempts after fault telegrams), factory setting $=3$
- p2025 [3]: 1 ... 127: maximum master address, factory setting $=32$

Setting COV_Increment p2026[0 ... 75]

(COV = change of values) $0 \ldots 4194303.000$, factory setting $=1$. A maximum of 32 COVs are permissible.

COV_Increment: Changes the value of the "present value" of an object instance for which the server transfers an UnConfirmedCOV_Notification or ConfirmedCOV_Notification.
You can use these parameters to set the converter value changes for which an UnConfirmedCOV_Notification or ConfirmedCOV_Notification result is sent.
The factory setting 1 means that the converter sends an UnConfirmedCOV_Notification or ConfirmedCOV_Notification if the considered value, e.g. for a range of $0 \ldots 10 \mathrm{~V}$, changes by an absolute value ≥ 1.
This requires an active SubscribeCOV_Service to send the relevant object instance.
You can also set the COV_Increment via the object property "COV_Increment" of the relevant analog input, analog output or analog value.

BACnet language selection p2027

German/English - only becomes effective after power off/on
Fieldbus error statistics r2029
Displaying receive errors at the fieldbus interface

Device name - default setting, change, restore factory setting

The converter has a device name in BACnet that uniquely identifies the converter.
The device name is preset at initial power up. It has the following structure:

p7610[0...79] contains the device names in ASCII format.

Changing device names

Change the device name either in the converter or via the controller:

- Converter: Change p7610
- Controller: Change the "object-name" property via the Write Property Service

Restoring factory settings

The device name is retained when the factory settings are restored.
If you wish to reset the name to the factory setting, original value, set p7610[0] = NULL (ASCII-0).

Interconnecting analog outputs, restoring factory settings

If you set communication via BACnet, the converter switches its analog outputs with the fieldbus.

The control then specifies the values which the converter outputs via its analog outputs.
To display a converter-specific value, you must change the interconnection of the analog output.
Examples:

- AO 0 should display the value which the control specifies in the ANALOG OUTPUT 0 object. In this particular case, no other settings are required in the converter.
- AO 1 should display the smoothed current actual value of the converter (r0027 smoothed actual current value).
Interconnect p0771[1] with r0027: p0771[1] = 27
In this case, write access via the object ANALOG OUTPUT 1 results in an error message in the control.

Reset to the factory setting for BACnet

When restoring the factory setting, the converter again uses the fieldbus to switch its analog outputs.

8.3.8.5 Supported services and objects

BIBBs used by the converter

The BIBBs (BIBB: BACnet Interoperability Building Block) are a collection of one or several BACnet services. BACnet services are subdivided into A and B devices. An A device operates as client and a B device as server.

The converter is a server and therefore operates as B device, as "BACnet Application Specific Controller" (B-ASC).

It uses the following executed BIBBs.

Overview of the BIBB used and the associated services

Short designation	BIBB	Service
DS-RP-B	Data Sharing-ReadProperty-B	ReadProperty
DS-RPM-B	Data Sharing-ReadMultipleProperty-B	ReadPropertyMultiple
DS-WP-B	Data Sharing-WriteProperty-B	WriteProperty
DM-DDB-B	Device Management-Dynamic Device Binding-B	• Who-Is - I-Am
DM-DOB-B	Device Management-Dynamic Object Binding-B	• Who-Has - I-Have
DM-DCC-B	Device Management-DeviceCommuni- cationControl-B	DeviceCommunicationControl
DS-COV-B	Data Sharing-COV-B	• SubscribeCOV,

The converter can simultaneously process up to 32 SubscribeCOV services. These can all refer to the same object instances - or different object instances.

SubscribeCOV monitors the property changes of the following objects:

- Analog Input AI...
- Analog Output AO...
- Analog Value AV...
- Binary Value BV...
- Multi-State Input MSI...

Note

SubscribeCOV services are not retentive; i.e. the master must re-initiate the SubscribeCOV services when restarting the converter.

Object types in BACnet

Object type	Code digit	Object type	Code digit
Device Object	8	Analog Output AO...	1
Binary Input BI...	3	Analog Value AV...	2
Binary Output BO...	4	Multi-State Input MSI...	13
Binary Value BV...	5	Octet String Values	47
Analog Input AI...	0		

Object properties of the "Device" object type

- Object_Identifier	- Application_Software_Version	- APDU_Timeout
- Object_Name	- Protocol_Version	- Number_Of_APDU_Retries
- Object_Type	- Protocol_Revision	- Max Master
- System_Status	- Protocol_Services_Supported	- Max Info Frames
- Vendor_Name	- Protocol_Object_Types_Supported	- Device Address Binding
- Vendor_Identifier	- Object_List	- Database Revision
- Model_Name	- Max_APDU_Length_Accepted ${ }^{1)}$	
- Firmware_Revision	- Segmentation_Supported ${ }^{2)}$	

1) Length $=480,{ }^{2)}$ not supported

Properties of the other object types

Property	Object type							
	Binary Input BI...	Binary Output BO...	Binary Value BV...	Analog Input AI...	Analog Output AO...	Analog Value AV...	MultiState Input MSI..	Octet String values
Object_Identifier	X	X	X	X	X	X	X	X
Object_Name	X	X	X	X	X	X	X	X
Object_Type	X	X	X	X	X	X	X	X
Present_Value	X	X	X	X	X	X	X	X
Description	X	X	X	X	X	X	X	
Status_Flags	X	X	X	X	X	X	X	X
Event_State	X	X	X	X	X	X	X	
Out_Of_Service	X	X	X	X	X	X	X	
Units				X	X	X		
Priority_Array		X	$\mathrm{X}^{1)}$		X	$\mathrm{X}^{1)}$		
Relinquish_Default		X	$\mathrm{X}^{1)}$		X	$\mathrm{X}^{1)}$		
Polarity	X	X						
Active_Text	X	X	X					
Inactive_Text	X	X	X					
COV_Increment				X	X	X		
State_Text							X	
Number_of_States							X	

1) Only for access type C: Commandable

Note

Language switching

Using parameter p2027, you can switch the language of the BACnet object properties (German, English). Only the English identifiers (e.g. "Object name") are specified in the following tables.

8.3 Drive control

Binary Input BI...

Instance ID	Object name	Description	Possible values	Text active / text inactive	Access type ${ }^{1)}$	Parameter
BIO	DIO ACT	Status DI 0	ON/OFF	ON/OFF	R	r0722.0
BI1	DI1 ACT	Status DI 1	ON/OFF	ON/OFF	R	r0722.1
BI2	DI2 ACT	Status DI 2	ON/OFF	ON/OFF	R	r0722.2
BI3	DI3 ACT	Status DI 3	ON/OFF	ON/OFF	R	r0722.3
BI4	DI4 ACT	Status DI 4	ON/OFF	ON/OFF	R	r0722.4
BI5	DI5 ACT	Status DI 5	ON/OFF	ON/OFF	R	r0722.5
BI6	DI6 ACT	Status DI 6	ON/OFF	ON/OFF	R	r0722.6
BI7	DI7 ACT	Status AI 0 - used as DI 11	ON/OFF	ON/OFF	R	r0722.11
B18	DI8 ACT	Status AI 1 - used as DI 12	ON/OFF	ON/OFF	R	r0722.12
BI10	DO0 ACT	Status DO 0 (relay 1)	ON/OFF	ON/OFF	R	read r747.0
BI11	DO1 ACT	Status DO 1 (relay 2)	ON/OFF	ON/OFF	R	read r747.1
BI12	DO2 ACT	Status DO 2 (relay 3)	ON/OFF	ON/OFF	R	read r747.2

1) R: Readable

Binary Output BO...

In- stance ID	Object name	Description	Possible val- ues	Text active / text inactive	Access type ${ }^{1)}$	Parameter
BO0	DO0 CMD	Controls DO 0 (relay 1)	ON/OFF	ON/OFF	C	p0730
BO1	DO1 CMD	Controls DO 1 (relay 2)	ON/OFF	ON/OFF	C	p0731
BO2	DO2 CMD	Controls DO 2 (relay 3)	ON/OFF	ON/OFF	C	p0732
BO3	DO3 CMD	Controls DO 3 (relay 4)	ON/OFF	ON/OFF	C	p0733
BO4	DO4 CMD	Controls DO 4 (relay 5)	ON/OFF	ON/OFF	C	p0734
BO5	DO5 CMD	Controls DO 5 (relay 6)	ON/OFF	ON/OFF	C	p0735

1) C: Commandable

Analog Input AI...

In- stance ID	Object name	Description	Unit	Range	Access type ${ }^{1)}$	Parameter
AIO	ANALOG IN 0	Input signal AIO	V/mA	Converter-depend- ent	R	r0752[0]
AI1	ANALOG IN 1	Input signal AI1	V/mA	Converter-depend- ent	R	r0752[1]
AI2	ANALOG IN 2	Input signal AI2	V/mA	Converter-depend- ent	R	r0752[2]
AI3	ANALOG IN 3	Input signal AI3	V/mA	Converter-depend- ent	R	r0752[3]

$\begin{array}{\|l\|} \hline \text { In- } \\ \text { stance } \\ \text { ID } \\ \hline \end{array}$	Object name	Description	Unit	Range	Access type ${ }^{1)}$	Parameter
Al10	AIN 0 SCALED	Scaled AI 0 input signal	\%	Converter-dependent	R	r0755[0]
Al1 1	AIN 1 SCALED	Scaled AI 1 input signal	\%	Converter-dependent	R	r0755[1]
Al12	AIN 2 SCALED	Scaled AI 2 input signal	\%	Converter-dependent	R	r0755[2]
Al13	AIN 3 SCALED	Scaled AI 3 input signal	\%	Converter-dependent	R	r0755[3]

1) R: Readable

Analog Output AO...

In- stance ID	Object name	Description	Unit	Range	Access type ${ }^{1)}$	Parameter AOO ANALOG OUT 0
AO1	ANALOG OUT 1	Output signal AO 0	$\%$	Converter-depend- ent	C	p0791[0]
AO2	ANALOG OUT 2	Output signal AO 2	$\%$	Converter-depend- ent	C	p0791[1]

1) C: Commandable

Binary Value BV...

In- stance ID	Object name	Description	Possible values	Text ac- tive	Text in- active	Ac- cess type ${ }^{1)}$	Parameter BV0
RUN STOP- PED	Converter status regardless of com- mand source	RUN / STOP	STOP	RUN	R	r0052.2	
BV1	FWD REV	Direction of rotation regardless of command source	REV / FWD	FWD	REV	R	r0052.14
BV2	FAULT ACT	Converter fault	FAULT / OK	FAULT	OK	R	r0052.3
BV3	WARN ACT	Converter warning	WARN / OK	WARN	OK	R	r0052.7
BV4	MANUAL AU- TO	Source of Manual/Auto converter control	AUTO / MANUAL	AUTO	LOCAL	R	r0052.9
BV62)	MAINT REQ	Maintenance required	MAINT/OK	MAINT	OK	R	reserved
BV7	HAND CON- TROL	Control of the converter from the BACnet override control via BV93 The "Manual" mode of the operator panel has a higher priority than the BACnet override control.	ON/OFF	O	1	R	r2032[10]
BV8	AT SETPOINT	Setpoint reached	YES / NO	YES	NO	R	r0052.8
BV9	AT MAX FREQ	Maximum speed reached	YES / NO	YES	NO	R	r0052.10

8.3 Drive control

	Object name	Description	Possible values	Text active	Text inactive	Access type ${ }^{1)}$	Parameter
BV10	DRIVE READY	Converter ready	YES / NO	YES	NO	R	r0052.1
BV15	HAND RUNNING	Status of the ON command, regardless of the source	YES / NO	0	1	R	r2032[0]
BV16	HIB MOD ACT	Energy saving mode is active	ON/OFF	0	1	R	r2399[1]
BV17	ESM MOD	Essential service mode is active	ON/OFF	0	1	R	r3889[0]
BV20	$\begin{aligned} & \text { RUN STOP } \\ & \text { CMD } \end{aligned}$	ON command for the converter (when controlling via BACnet)	RUN / STOP	0	1	C	r0054.0
BV21	$\begin{aligned} & \text { FWD REV } \\ & \text { CMD } \end{aligned}$	Reverse direction of rotation (when controlling via BACnet)	REV / FWD	0	1	C	r0054.11
BV22	FAULT RESET	Acknowledge fault (when controlling via BACnet)	RESET / NO	0	1	C	r0054.7
BV24	CDS	Changeover drive control	Local / Remote	YES	NO	C	r0054.15
BV26	RUN ENA CMD	Enable converter operation		$\begin{aligned} & \text { ENA- } \\ & \text { BLED } \end{aligned}$	$\begin{aligned} & \text { DISA- } \\ & \text { BLED } \end{aligned}$	C	r0054.3
BV27	OFF2	Status OFF2	RUN / STOP	0	1	C	r0054.1
BV28	OFF3	Status OFF3 BV28 sets the r0054.4, r0054.5, and r0054.6 bits	RUN / STOP	0	1	C	r0054.2
BV50	ENABLE PID	Enable technology controller	ENABLED / DISABLED	$\begin{array}{\|l} \text { ENA- } \\ \text { BLED } \\ \hline \end{array}$	$\begin{aligned} & \text { DISA- } \\ & \text { BLED } \end{aligned}$	C	p2200
BV51	ENABLE PID 0	Enable technology controller 0	ENABLED / DISABLED	$\begin{aligned} & \text { ENA- } \\ & \text { BLED } \end{aligned}$	$\begin{aligned} & \text { DISA- } \\ & \text { BLED } \end{aligned}$	C	p11000
BV52	ENABLE PID 1	Enable technology controller 1	ENABLED / DISABLED	$\begin{array}{\|l} \text { ENA- } \\ \text { BLED } \\ \hline \end{array}$	$\begin{aligned} & \text { DISA- } \\ & \text { BLED } \end{aligned}$	C	p11100
BV53	ENABLE PID 2	Enable technology controller 2	ENABLED / DISABLED	ENA-	$\begin{aligned} & \text { DISA- } \\ & \text { BLED } \end{aligned}$	C	p11200
BV90	LOCAL LOCK	Use MANUAL (operator panel) to lock converter control		LOCK	$\begin{aligned} & \text { UN- } \\ & \text { LOCK } \end{aligned}$	C	p0806
BV91 ${ }^{\text {2) }}$	LOCK PANEL	Interlocking for operator panel and parameter changes	LOCK/UNLO	0	1	W	reserved
BV93	CTL OVERRIDE	Converter control using BACnet override control	ON/OFF	0	1	C	r0054.10

1) C: Commandable, R: Readable, W: Writable
${ }^{2)}$ reserved for future functional expansions

Analog Value AV...

In- stance ID	Object name	Description	Unit	Range	Access type $^{1)}$	Parameter
AV0	OUT FREQ HZ	Output frequency (Hz)	Hz	Converter-depend- ent	R	r0024
AV1	OUT FREQ PCT	Output frequency (\%)	$\%$	Converter-depend- ent	R	HIW

$\begin{array}{\|l} \hline \text { In- } \\ \text { stance } \\ \text { ID } \\ \hline \end{array}$	Object name	Description	Unit	Range	Access type ${ }^{1)}$	Parameter
AV2	OUTPUT SPEED	Motor speed	RPM	Converter-dependent	R	r0022
AV3	DC BUS VOLT	DC-link voltage.	V	Converter-dependent	R	r0026
AV4	OUTPUT VOLT	Output voltage	V	Converter-dependent	R	r0025
AV5	CURRENT	Motor current	A	Converter-dependent	R	r0027
AV6	TORQUE	Motor torque	Nm	Converter-dependent	R	r0031
AV7	POWER	Motor power	kW	Converter-dependent	R	r0032
AV8	DRIVE TEMP	Heat sink temperature	${ }^{\circ} \mathrm{C}$	Converter-dependent	R	r0037
AV9	MOTOR TEMP	Measured or calculated motor temperature	${ }^{\circ} \mathrm{C}$	Converter-dependent	R	r0035
AV10	KWH NR	Cumulative converter energy consumption (cannot be reset!)	kWh	Converter-dependent	R	r0039
AV12	INV RUN TIME	Motor's operating hours (is reset by entering "0")	h	0 ... 4294967295	W	p0650
AV13	INV MODEL	Code number of Power Module	---	Converter-dependent	R	r0200
AV14	INV FW VER	Firmware version	---	Converter-dependent	R	r0018
AV15	INV POWER	Rated power of the converter	kW	Converter-dependent	R	r0206
AV16	RPM STPT 1	Reference speed of the converter	RPM	6.0 ... 210000	W	p2000
AV17	FREQ SP PCT	Setpoint 1 (when controlling via BACnet)	\%	-199.99 ... 199.99	C	HSW
AV18	ACT FAULT	Number of the fault due to be dealt with	---	Converter-dependent	R	r0947[0]
AV19	PREV FAULT 1	Number of the last fault	---	Converter-dependent	R	r0947[1]
AV20	PREV FAULT 2	Number of the fault before last	---	Converter-dependent	R	r0947[2]
AV21	PREV FAULT 3	Number of the fault third from last	---	Converter-dependent	R	r0947[3]
AV22	PREV FAULT 4	Number of the fault fourth from last	---	Converter-dependent	R	r0947[4]
AV25	SEL STPT	Command to select the setpoint source	---	0... 32767	W	p1000
AV28	A01 ACT	Signal from AO 1	mA	Converter-dependent	R	r0774.0
AV29	AO2 ACT	Signal from AO 1	mA	Converter-dependent	R	r0774.1
AV30	MIN Speed	Minimum speed	RPM	0.000-19500.000	W	p1080

Advanced commissioning

8.3 Drive control

$\begin{array}{\|l} \hline \text { In- } \\ \text { stance } \\ \text { ID } \end{array}$	Object name	Description	Unit	Range	Access type ${ }^{1)}$	Parameter
AV31	MAX Speed	Maximum speed	RPM	$\begin{aligned} & 0.000 \ldots 210000.00 \\ & 0 \end{aligned}$	W	p1082
AV32	ACCEL TIME	Ramp-up time	S	0.00 ... 999999.0	W	p1120
AV33	DECEL TIME	Ramp-down time	S	0.00 ... 999999.0	W	p1121
AV34	CUR LIM	Current limit	A	Converter-dependent	R	p0640
AV39	ACT WARN	Indication of a pending alarm	---	Converter-dependent	R	r2110[0]
AV40	PREV WARN 1	Indication of the last alarm	---	Converter-dependent	R	r2110[1]
AV41	PREV WARN 2	Indication of the last but one alarm	---	Converter-dependent	R	r2110[2]
AV5000	RAMP UP TIME	Technology controller ramp-up time	S	$0 . . .650$	W	p2257
AV5001	RAMP DOWN TIME	Technology controller rampdown time	S	$0 . . .650$	W	p2258
AV5002	FILTER TIME	Technology controller actual value filter time constant	S	$0 \ldots 60$	W	p2265
AV5003	DIFF TIME	Technology controller differentiation time constant	s	$0 \ldots 60$	W	p2274
AV5004	PROP GAIN	Technology controller proportional gain	s	0 ... 1000	W	p2280
AV5005	INTEG TIME	Technology controller integral time	s	0 ... 1000	W	p2285
AV5006	OUTPUT MAX	Technology controller maximum limiting	\%	- 200 ... 200	W	p2291
AV5007	OUTPUT MIN	Technology controller minimum limiting	\%	- $200 . . .200$	W	p2292
AV5100	RAMP UP TIME 0	Technology controller 0 ramp-up time	S	$0 . . .650$	W	p11057
AV5101	RAMP DOWN TIME 0	Technology controller 0 rampdown time	s	$0 . . .650$	W	p11058
AV5102	FILTER TIME 0	Technology controller 0 actual value filter time constant	S	$0 \ldots 60$	W	p11065
AV5103	DIFF TIME 0	Technology controller 0 differentiation time constant	S	$0 \ldots 60$	W	p11074
AV5104	PROP GAIN 0	Technology controller 0 proportional gain	s	$0 . . .1000$	W	p11080
AV5105	INTEG TIME 0	Technology controller 0 integral time	s	0... 1000	W	p11085
AV5106	OUTPUT MAX 0	Technology controller 0 maximum limiting	\%	-200 ... 200	W	p11091
AV5107	OUTPUT MIN 0	Technology controller 0 minimum limiting	\%	-200 ... 200	W	p11092
AV5200	RAMP UP TIME 1	Technology controller 1 ramp-up time	s	0 ... 650	W	p11157

$\begin{array}{\|l\|} \hline \text { In- } \\ \text { stance } \\ \text { ID } \\ \hline \end{array}$	Object name	Description	Unit	Range	Access type ${ }^{1)}$	Parameter
AV5201	RAMP DOWN TIME 1	Technology controller 1 rampdown time	S	$0 . . .650$	W	p11158
AV5202	FILTER TIME 1	Technology controller 1 actual value filter time constant	S	$0 \ldots 60$	W	p11165
AV5203	DIFF TIME 1	Technology controller 1 differentiation time constant	S	$0 . . .60$	W	p11174
AV5204	PROP GAIN 1	Technology controller 1 proportional gain	S	$0 \ldots 1000$	W	p11180
AV5205	INTEG TIME 1	Technology controller integral time	S	0 ... 1000	W	p11185
AV5206	OUTPUT MAX 1	Technology controller 1 maximum limiting	\%	- 200 ... 200	W	p11191
AV5207	OUTPUT MIN 1	Technology controller 1 minimum limiting	\%	- 200 ... 200	W	p11192
AV5300	RAMP UP TIME 2	Technology controller 2 ramp-up time	S	$0 . . .650$	W	p11257
AV5301	RAMP DOWN TIME 2	Technology controller 2 rampdown time	S	$0 . . .650$	W	p11258
AV5302	FILTER TIME 2	Technology controller 2 actual value filter time constant	S	$0 . . .60$	W	p11265
AV5303	DIFF TIME 2	Technology controller 2 differentiation time constants	S	$0 . . .60$	W	p11274
AV5304	PROP GAIN 2	Technology controller 2 proportional gain	S	$0 . . .1000$	W	p11280
AV5305	INTEG TIME 2	Technology controller 2 integral time	S	$0 . . .1000$	W	p11285
AV5306	OUTPUT MAX 2	Technology controller 2 maximum limiting	\%	- $200 . . .200$	W	p11291
AV5307	OUTPUT MIN 2	Technology controller 2 minimum limiting	\%	- 200 ... 200	W	p11292

1) C: Commandable, R: Readable, W: Writable

8.3 Drive control

Multi-State Input MSI...

Instance ID	Object name	Description	Possible values	Access type	Parameter
MSIO	FAULT 1	Fault number 1	See "List of fault codes and alarm codes"	R	r0947[0]
MSI1	FAULT 2	Fault number 2		R	r0947[1]
MSI2	FAULT 3	Fault number 3		R	r0947[2]
MSI3	FAULT 4	Fault number 4		R	r0947[3]
MSI4	FAULT 5	Fault number 5		R	r0947[4]
MSI5	FAULT 6	Fault number 6		R	r0947[5]
MSI6	FAULT 7	Fault number 7		R	r0947[6]
MSI7	FAULT 8	Fault number 8		R	r0947[7]
MSI8	WARNING 1	Alarm number 1		R	r2110[0]
MSI9	WARNING 2	Alarm number 2		R	r2110[1]
MSI10	WARNING 3	Alarm number 3		R	r2110[2]
MSI11	WARNING 4	Alarm number 4		R	r2110[3]
MSI12	WARNING 5	Alarm number 5		R	r2110[4]
MSI13	WARNING 6	Alarm number 6		R	r2110[5]
MSI14	WARNING 7	Alarm number 7		R	r2110[6]
MSI15	WARNING 8	Alarm number 8		R	r2110[7]

1) R: Readable

8.3.8.6 Acyclic communication (general parameter access) via BACnet

Acyclic communication or general parameter access is realized via BACnet objects DS47IN and DS470UT.

Acyclic communication uses the octet string value objects OSV0 and OSV1.

Instance ID	Object name	Description	Access type
OSV0	DS47IN	Maximum length 242, of which two bytes header, 240 bytes user data	W
OSV1	DS47OUT	R	

The OSV are structured as follows:

Function Code	Request length	User data
$2 F(1$ Byte $)$	(1 byte)	Maximum 240 bytes

Write parameter request with OSV0 and read with OSV1

To read parameter r0002 write the following values into the present value window of OSVO

Table 8-74 Write parameter request via OSVO

	Byte	Description
2 F h	1	Function code 2F h (47),
0 h	2	Request length 10 bytes (0A h)
80 h	3	Request reference $=80 \mathrm{~h}$
01 h	4	Request identifier $=1 \mathrm{~h}$
01 h	5	DO-Id = 1
01 h	6	Number of parameters $=1$
10 h	7	Attribute
01 h	8	Number of elements $=1$
0002 h	9,10	Parameter number $=2$
0000 h	11,12	Subindex = 0

If the request was successfully processed, then you can read out the response precisely once from the present value window of the OSV1:

Table 8-75 Read parameter content via OSV1

	Byte	Description
2 F	1	Function code 2 F h (47)
08 h	2	Response length 8 bytes
80 h	3	Request reference $=80 \mathrm{~h}$
01 h	4	Request identifier $=1 \mathrm{~h}$
01 h	5	DO-Id $=1$
01 h	6	Number of parameters $=1$
10 h	7	Format
01 h	8	Number of elements $=1$
001 Fh	9,10	Parameter value $1 \mathrm{~F} \mathrm{~h}=31$

If the response is still not available, then you receive the following message via the present value window of the OSV1:

Table 8-76 Read parameter content via OSV1

	Byte	Description
2 F h	1	Function code 2F h (47)
00 h	2	Response length 0 (error)
0004 h	3,4	Error code 4 h (response still not available)

If you wish to read the response once more, then you obtain the following message via the present value window of the OSV1:

Table 8-77 Read parameter content again via OSV1

	Byte	Description
2 F h	1	Function code 2F h (47)
00 h	2	response length 0 (error)
0002 h	3,4	Error code 2 h (Invalid State)

Overview of the error codes

1 h : Invalid Length (invalid length)
2 h : Invalid State (action is not permitted in the actual converter state)
3 h : Invalid function Code (FC = 2 hex)
4 h : Response not ready (the response has still not been issued)
5 h: Internal Error (general system error)
Incorrect access operations to parameters via data set 47 are logged in objects OSV0 and OSV1.

8.3.9 Function diagrams for USS, Modbus and BACnet

8.3.9.1 Overview

The following fieldbuses are described in common function diagrams:

- USS
- Modbus
- BACNet

8.3.9.2 Function diagram 9310-Configuration, addresses and diagnostics

Figure 8-44 FP 9310

8.3.9.3 Function diagram 9342 - Control word

Figure 8-45 FP 9342

8.3.9.4 Function diagram 9352-Status word

Figure 8-46

8.3.9.5 Function diagram 9360 - Receive telegram

Figure 8-47

8.3.9.6 Function diagram 9370 - Send telegram

Figure 8-48 FP 9370

8.3.9.7 Function diagram 9372 - Status word free interconnection

Figure 8-49 FP 9372

8.3.10 Jogging

Overview

The "Jog" function is typically used to temporarily move a motor using local control commands.

Requirement

The OFF1 command must be active. With an active ON command, the converter ignores the commands "Jogging 1" and "Jogging 2".

Function description

Commands "Jog 1" or "Jog 2" switch the motor on and off.
The commands are only active when the converter is in the "Ready for switching on" state.

Figure 8-50 Behavior of the motor when "jogging"
After switching on, the motor accelerates to the setpoint, jog 1 or setpoint, jog 2. The two different setpoints can, for example, be assigned to motor clockwise and counter-clockwise rotation.

When jogging, the same ramp-function generator is active as for the ON/OFF1 command.

Example

Parameter	Description
p1055 $=722.0$	Jogging bit 0: Select jogging 1 via digital input 0
p1056 $=722.1$	Jogging bit 1: Select jogging 2 via digital input 1

Parameter

Number	Name	Factory setting
p1055[C]	BI: Jogging bit 0	Depending on the converter
p1056[C]	BI: Jogging bit 1	Depending on the converter
p1058[D]	Jogging 1 speed setpoint	150 rpm
p1059[D]	Jogging 2 speed setpoint	-150 rpm
p1082[D]	Maximum speed	1500 rpm
p1110[C]	BI: Inhibit negative direction	Depending on the converter
p1111[C]	BI: Inhibit positive direction	0
p1113[C]	BI: Setpoint inversion	0
p1120[D]	Ramp-function generator ramp-up time	Depending on the converter
p1121[D]	Ramp-function generator ramp-down time	Depending on the converter

8.3.11 Switching over the drive control (command data set)

Overview

Several applications require the option of switching over the master control to operate the converter.

Figure 8-51 Converter control either via fieldbus or via terminal strip

Function description

Command data set (CDS)

You can set the converter control in various ways and toggle between the settings.
The settings in the converter, which are assigned to a specific master control, are called the command data set.

You select the command data set using parameters p0810 and p0811. To do this, you must interconnect parameters p0810 and p0811 with control commands of your choice, e.g. a digital input.

Changing the number of command data sets

Up to 4 command data sets are possible.

1. Set $\mathrm{p} 0010=15$.
2. The number of command data sets is configured with p 0170 .
3. Set p0010 $=0$.

You have changed the number of command data sets.
\square

Copying command data sets

1. Set p 0809 [0] to the number of the command data set whose settings you wish to copy (source).
2. Set p0809[1] to the number of the command data set into which you wish to copy the settings.
3. Set $\mathrm{p} 0809[2]=1$
4. The converter sets $\mathrm{p} 0809[2]=0$.

You have copied the settings of a command data set into another command data set.
\square

8.3 Drive control

Example

The converter evaluates its control commands depending on digital input DI 3:

- Via a fieldbus from a central control system
- Via the converter digital inputs at the installation.

Note

The converter requires approx. 4 ms to switch over the command data set.

Parameters

Number	Name	Factory setting
p0010	Drive commissioning parameter filter	1
r0050	CO/BO: Command data set CDS effective	-
p0170	Number of command data sets (CDS)	2
p0809[0 ... 2]	Copy command data set CDS	0
p0810	BI: Command data set selection CDS bit 0	Dependent on the converter
p0811	BI: Command data set selection CDS bit 1	0

8.3.12 Selecting physical units

8.3.12.1 Motor standard

Selection options and parameters involved

The converter represents the motor data corresponding to motor standard IEC or NEMA in different system units: SI units or US units.

Table 8-78 Parameters involved when selecting the motor standard

Parameter	Designation	Motor standard IEC/NEMA, p0100 =		
		$0^{1)}$ IEC motor 50 Hz , SI units	1 NEMA motor 60 Hz , US units	2 NEMA motor $60 \mathrm{~Hz}, \mathrm{SI}$ units
r0206	Power Module rated power	kW	hp	kW
p0307	Rated motor power	kW	hp	kW
p0316	Motor torque constant	Nm/A	$\mathrm{lbf} \mathrm{ft} / \mathrm{A}$	Nm/A
r0333	Rated motor torque	Nm	lbf ft	Nm
p0341	Motor moment of inertia	kgm^{2}	$\mathrm{lb} \mathrm{ft}{ }^{2}$	kgm^{2}
p0344	Motor weight	kg	Lb	kg
r0394	Rated motor power	kW	hp	kW
r1493	Total moment of inertia, scaled	kgm^{2}	$\mathrm{lb} \mathrm{ft}{ }^{2}$	kgm^{2}

1) Factory setting

It is only possible to change the motor standard during quick commissioning.

8.3.12.2 Unit system

Some physical units depend on the system of units selected (SI or US), for example the power [kW or hp] or the torque [Nm or lbf ft]. You can select in which system of units the converter represents its physical values.

Options when selecting the system of units

The following options apply when selecting the system of units:

- p0505 = 1: System of units SI (factory setting) Torque [Nm], power [kW], temperature [${ }^{\circ} \mathrm{C}$ or K]
- p0505 = 2: Referred system of units/SI Represented as [\%]
- p0505 = 3: US system of units Torque [lbf ft], power [hp], temperature [${ }^{\circ} \mathrm{F}$]
- p0505 = 4: System of units, referred/US Represented as [\%]

Special features

The values for $\mathrm{p} 0505=2$ and for p0505 $=4$ - represented in the converter - are identical. However, the reference to SI or US units is required for internal calculations and to output physical variables.
For variables, which cannot be represented as [\%], then the following applies:

- p0505 = 1 corresponds to setting p0505 = 2
- p0505 $=3$ corresponds to setting p0505 $=4$

In the case of variables whose units are identical in the SI system and US system, and which can be displayed as a percentage, the following applies:

- p0505 = 1 corresponds to setting p0505 = 3
- p0505 $=2$ corresponds to setting p0505 $=4$

Reference variables

There is a reference variable in the converter for most parameters with physical units. When the referred representation [\%] is set, then the converter scales the physical variables based on the particular reference variable.
When the reference variable changes, then the significance of the scaled value also changes. Example:

- Reference speed $=1500 \mathrm{rpm} \rightarrow$ fixed speed $=80 \%$ corresponds to the speed $=1200 \mathrm{rpm}$
- Reference speed $=3000 \mathrm{rpm} \rightarrow$ fixed speed $=80 \%$ corresponds to the speed $=2400 \mathrm{rpm}$

For each parameter you can find the associated reference variable for scaling in the parameter list. Example: r0065 is scaled with reference variable p2000.

If scaling is not specified in the parameter list, then the converter always shows/displays the parameter unscaled.

Groups of units

In the parameter list you will find the following information for parameters with changeable units:

- Unit group

Designates the group to which the parameter belongs

- Unit selection

Designates the parameter that changes over the unit

Example:

Unit group: 7_1, unit selection: p0505

The parameter belongs to the unit group 7_1 and p0505 changes over the unit.

Table 8-79 Unit group (p0100)

Unit group	Unit selection for $\mathrm{p0100}=$		
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$7 _4$	Nm	lbf ft	Nm
$14 _6$	kW	hp	kW
$25 _1$	kg m		
$27 _1$	kg	${\mathrm{lbf} \mathrm{ft}^{2}}^{2}$	lb
$28 _1$	Nm / A	$\mathrm{lbf} \mathrm{ft} / \mathrm{A}$	kg

Table 8-80 Unit group (p0505)

Unit group	Unit selection for p0505 =				Reference value for \%
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$2 _1$	Hz	$\%$	Hz	$\%$	p 2000
$3 _1$	rpm	$\%$	rpm	$\%$	p 2000
$5 _1$	Vrms	$\%$	Vrms	$\%$	P 2001
$5 _2$	V	$\%$	V	$\%$	p 2001
5_3	V	$\%$	V	$\%$	p 2001
$6 _2$	Arms	$\%$	Arms	$\%$	p 2002
$6 _5$	A	$\%$	A	$\%$	p 2002
$7 _1$	Nm	$\%$	lbf ft	$\%$	p 2003
$7 _2$	Nm	Nm	lbf ft	lbf ft	-
$14 _5$	kW	$\%$	hp	$\%$	r 2004
$14 _10$	kW	kW	hp	hp	-
$21 _1$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	
$21 _2$	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
$39 _1$	$1 / \mathrm{s}^{2}$	$\%$	$1 / \mathrm{s}^{2}$	$\%$	-
		$\%$	p 2007		

8.3.12.3 Technological unit of the technology controller

Options when selecting the technological unit

p0595 defines in which technological unit the input and output variables of the technology controller are calculated, e.g. [bar], [m³/min] or [kg/h].

Reference variable

p0596 defines the reference variable of the technological unit for the technology controller.

Unit group

Parameters involved with p0595 belong to unit group 9_1.
The values that can be set and the technological units are shown in p0595.

Special features

You must optimize the technology controller after changing p0595 or p0596.

Additional technology controllers

You can set the technological unit for each additional technology controller.

	Technological unit	Reference variable for the technological unit	Unit group
Additional technology controller 0	p11026	p11027	9_2
Additional technology controller 1	p11126	p11127	9_3
Additional technology controller 2	p11226	p11227	9_4

8.3.13 Safe Torque Off (STO) safety function

8.3.13.1 Safe Torque Off (STO) safety function

Overview

The converter with active STO function prevents energy supply to the motor. The motor can no longer generate torque on the motor shaft.

Consequently, the STO function prevents the starting of an electrically-driven machine component.

The STO safety function conforms to IEC/EN 61800-5-2.
The STO function is defined in IEC/EN 61800-5-2:
"[...] [The converter] does not supply the motor with power that can generate a torque (or for a linear motor, a force)".

Precondition

The machine manufacturer has already performed a risk assessment, e.g. in compliance with EN ISO 1050, "Safety of machinery - Principles of risk assessment".

Function description

	Safe Torque Off (STO)	Standard converter functions linked with STO
1.	The converter detects that STO has been selected via the failsafe digital input.	---
2.	The converter prevents the energy supply to the motor.	If you use a motor holding brake, the converter closes the motor holding brake. If you use a line contactor, the converter opens the line contactor.

Figure 8-52 Functionality of STO when the motor is at standstill (A) and rotating (B)
(A): When selecting STO, if the motor is already stationary (zero speed), then STO prevents the motor from starting.
(B): If the motor is still rotating (B) when STO is selected, it coasts down to standstill.

Example

The STO function is suitable for applications where the motor is already at a standstill or will come to a standstill in a short, safe period of time through friction.

When STO is active, the converter can no longer electrically brake the motor, so that STO does not shorten the time that it takes for machine components to coast down to zero speed.

Application example	Possible solution
When the EMERGENCY STOP button is pressed, it is not permissible for a sta- tionary motor to inadvertently acceler- ate.	Connect the EMERGENCY STOP pushbutton with the fail- safe converter digital input. Select STO via the failsafe digital input.

More information

EN 60204-1 defines "EMERGENCY SWITCHING OFF" and "EMERGENCY STOP" as actions taken in an emergency. Further, it defines various stop categories for EMERGENCY STOP. "EMERGENCY SWITCHING OFF" and "EMERGENCY STOP" minimize different risks in the system or machine.

Table 8-81 The distinction between EMERGENCY OFF and EMERGENCY STOP

Action:	EMERGENCY SWITCHING OFF	EMERGENCY STOP
		Stop Category 0 according to EN 60204-1
Risk:	Electric shock	Unexpected movement
Measure to minimize risk:	Switch off Either completely or partially switch off hazardous voltages.	Prevent movement Prevent hazardous movement.
Classic solution:		Switch off the drive power supply
Solution with the STO safety function integrated in the drive:	Not possible. STO is not suitable for switching off a voltage.	Select STO It is not necessary to switch off the voltage to minimize risk.

8.3.13.2 Setting the feedback signal for Safe Torque Off

Overview

The converter signals that the STO safety function is controlled to the higher-level control system using two digital outputs.

Function description

Figure 8-53 Feedback signal "STO is active" via digital outputs
For converters FSA...FSG, you must interconnect the feedback signals "STO is active" with two digital outputs.

Procedure

1. Set $\mathrm{p} 0730=1838.3$
2. Set p0731 = 1838.4

You have interconnected the feedback signal for safety function STO with the digital outputs of the converter.
\square

Parameters

Number	Name	Factory setting
p0730	BI: CU signal source for terminal DO 0	52.3
p0731	BI: CU signal source for terminal DO 1	52.7
r1838	CO/BO: Gating unit status word 1 .031 signal: Shutdown path STO_B is inactive .041 signal: Shutdown path STO_A is inactive	---

8.3.14 Free function blocks

8.3.14.1 Overview

Overview

The free function blocks permit configurable signal processing in the converter.

Requirement

The free function blocks are only available on converters FSA ... FSG.

Function description

The following free function blocks are available:

Table 8-82 Free function blocks

Logic blocks	AND 0 AND 1 AND 2	OR 0 OR 1 OR 2	$\begin{aligned} & \text { XOR } 0 \\ & \text { XOR } 1 \\ & \text { XOR } 2 \end{aligned}$	NOT 0 NOT 1 NOT 2	
Calculation blocks	Adder	Subtractor	Multiplier	Divider	Comparator
	$\begin{array}{\|l} \hline \text { ADD } 0 \\ \text { ADD } 1 \end{array}$	$\begin{array}{ll} \hline \text { SUB } 0 \\ \text { SUB } 1 \end{array}$	MUL 0 MUL 1	$\begin{aligned} & \text { DIV } 0 \\ & \text { DIV } 1 \end{aligned}$	NCM 0 NCM 1
Timer blocks	Pulse generator	ON time	OFF delay		
	MFP 0 MFP 1 MFP 2	PDE 0 PDE 1 PDE 2	$\begin{aligned} & \text { PDF } 0 \\ & \text { PDF } 1 \\ & \text { PDF } 2 \end{aligned}$		
Memory block	RS flip-flop				
	$\begin{aligned} & \hline \text { RSR } 0 \\ & \text { RSR } 1 \\ & \text { RSR } 2 \end{aligned}$				
Breaker block	Analog switch				
	$\text { NSW } 0$				
Control block	Limiter				
	LIM 0 LIM 1				
Complex block	Limit monitor				
	LVM 0 LVM 1				

You can only use a function block once. The converter has 2 adders for instance, ADD 0 and ADD 1 . If you have already configured 2 adders, then no other adders are available.

8.3.14.2 Runtime groups and run sequence

In order to activate a free function block, you must assign it to a runtime group.

There are 3 runtime groups in different time slices.

Table 8-83 Permissible runtime groups of the free function blocks

Runtime group	4	5	6
Time slice	64 ms	128 ms	256 ms
AND, OR, XOR, NOT, RSR	\checkmark	\checkmark	\checkmark
ADD, SUB, MUL, DIV, NCM, MFP, PDE, PDF, NSW, LIM, LVM	-	\checkmark	\checkmark

\checkmark : You can assign the free function blocks to this runtime group
-: A free function block is not possible in this runtime group
Within a runtime group, the converter calculates the function blocks in an ascending run sequence.

8.3.14.3 List of free function blocks

Logic block AND

If a value of 1 is available at all inputs $10 \ldots$ I3, then $Q=1$. In all other cases, output $\mathrm{Q}=0$.

	AND 0	AND 1	AND 2
$10 \ldots$ I3	p20030[0 ... 3]	p20034[0 ... 3]	p20038[0 ... 3]
Q	r20031	r20035	r20039
Runtime group	p20032	p20036	p20040
Run sequence	p20033	p20037	p20041

Logic block OR

If a value of 0 is available at all inputs $10 \ldots$ I3, then $Q=0$. In all other cases, output $\mathrm{Q}=1$.

	OR 0	OR 1	OR 2
IO ... I3	p20046[0 ... 3]	p20050[0 ... 3]	p20054[0 ... 3]
Q	r20047	r20051	r20055
Runtime group	p20048	p20052	p20056
Run sequence	p20049	p20053	p20057

8.3 Drive control

Logic block XOR (EXKLUSIVE OR block)

The function block logically combines the binary quantities at inputs I according to a logical exclusive or function.

Table 8-84 Truth table

10	11	12	13	Q
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

	XOR 0	XOR 1	XOR 2
IO ... I3	p20062[0 ... 3]	p20066[0 ... 3]	p20070[0 ... 3]
Q	r20063	r20067	r20071
Runtime group	p20064	p20068	p20072
Run sequence	p20065	p20069	p20073

Logic block NOT (converter)

The function block inverts the input:

$$
\begin{aligned}
& I=0 \Rightarrow Q=1 \\
& I=1 \Rightarrow Q=0
\end{aligned}
$$

	NOT 0	NOT 1	NOT 2
I	p20078[0]	p20082[0]	p20086[0]
Q	r20079	r20083	r20087

	NOT 0	NOT 1	NOT 2
Runtime group	p20080	p20084	p20088
Run sequence	p20081	p20085	p20089

Calculation block ADD (adder)

$\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$
The function block adds inputs XO ... X 3 , and limits the result in the range -3.4E38 ... 3.4E38.

	ADD 0	ADD 1
$X 0 \ldots$ X3	p20094[0 ... 3]	p20098[0 ... 3]
Y	r20095	r20099
Runtime group	p20096	p20100
Run sequence	p20097	p20101

Calculation block SUB (subtractor)

$\mathrm{Y}=\mathrm{XO}-\mathrm{X} 1$
The function block subtracts input X1 from input X0 and limits the result in the range -3.4E38 ... 3.4 E 38 .

	SUB 0	SUB 1
X0, X1	p20102[0, 1]	p20106[0, 1]
Y	r20103	r20107
Runtime group	p20104	p20108
Run sequence	p20105	p20109

Calculation block MUL (multiplier)

$Y=X 0 \times X 1 \times X 2 \times X 3$
The function block multiplies inputs X0 ... X3, and limits the result in the range -3.4E38 ... 3.4E38.

	MUL 0	MUL 1
X0 ... X3	p20110[0 ... 3]	p20114[0 ... 3]
Y	r20111	r20115
Runtime group	p20112	p20116
Run sequence	p20113	p20117

8.3 Drive control

Calculation block DIV (divider)

$\mathrm{Y}=\mathrm{X0} / \mathrm{X} 1$
The function block divides the inputs and limits the result in the range $-3.4 \mathrm{E} 38 \ldots 3.4 \mathrm{E} 38$. With a division of $0 / 0, Y$ remains unchanged.

Significance of other outputs:

- YIN: Integer quotient
- $\mathrm{MOD}=(\mathrm{Y}-\mathrm{YIN}) \times \mathrm{X} 1$ (division remainder)
- QF: The converter sets $\mathrm{QF}=1$ when output value Y exceeds the permissible value range or for division by zero.

	DIV 0	DIV 1
X0, X1	p20118[0, 1]	p20123[0, 1]
Y, YIN, MOD	r20119[0 .. 2]	r20124[0 .. 2]
QF	r20120	r20125
Runtime group	p20121	p20126
Run sequence	p20122	p20127

Calculation block NCM (numeric comparator)

Table 8-85 Function table

Comparing inputs	QU	QE	QL
$X 0>X 1$	1	0	0
$X 0=X 1$	0	1	0
$X 0<X 1$	0	0	1

	NCM 0	NCM 1
X0, X1	p20312[0, 1]	p20318[0, 1]
QU	r20313	r20319
QE	r20314	r20320
QL	r20315	r20321
Runtime group	p20316	p20322
Run sequence	p20317	p20323

Timer block MFP - pulse generator

The pulse generator generates a pulse with a fixed duration. The rising edge of a pulse at input I sets output $\mathrm{Q}=1$ for pulse duration T .
The pulse generator cannot be subsequently triggered.

	MFP 0	MFP 1	MFP 2
I	p20138[0]	p20143[0]	p20354[0]
T	p20139	p20144	p20355
Q	r20140	p20145	p20356
Runtime group	p20141	p20146	p20357
Run sequence	p20142	p20147	p20358

Timer block PDE (ON delay)

The rising edge of a pulse at input I sets output $\mathrm{Q}=1$ after pulse delay time T .
When $\mathrm{I}=0$, then the function block sets $\mathrm{Q}=0$.

	PDE 0	PDE 1	PDE 2
I	p20158[0]	p20163[0]	p20334[0]
T	p20159	p20164	p20335
Q	r20160	r20165	r20336
Runtime group	p20161	p20166	p20337
Run sequence	p20162	p20167	p20338

8.3 Drive control

Timer block PDF (OFF delay)

When $\mathrm{I}=1$, then the function block sets $\mathrm{Q}=1$.
The falling edge of a pulse at input I sets output $\mathrm{Q}=0$ after OFF delay time T.
When input I returns to 1 before time T has expired, output Q remains 1.

	PDF 0	PDF 1	PDF 2
I	p20168[0]	p20173[0]	p20344[0]
T	p20169	p20174	p20345
Q	r20170	r20175	r20346
Runtime group	p20171	p20176	p20347
Run sequence	p20172	p20177	p20348

Memory block RSR (RS flip-flop)

Table 8-86 Truth table

\mathbf{S}	\mathbf{R}	\mathbf{Q}	QN
0	0	No change	
1	0	1	0
0	1	0	1
1	1	0	1

	RSR 0	RSR 1	RSR 2
S, R	p20188[0, 1]	p20193[0, 1]	p20324[0, 1]
Q	r20189	r20194	r20325
QN	r20190	r20195	r20326
Runtime group	p20191	p20196	p20327
Run sequence	p20192	p20197	p20328

Breaker block NSW (numeric changeover switch)

This function block switches one of two numeric input variables to the output:
When $I=0$, then $Y=X 0$.
When $I=1$, then $Y=X 1$.

	NSW 0	NSW 1
$\mathrm{X} 0, \mathrm{X} 1$	$\mathrm{p} 20218[0,1]$	$\mathrm{p} 20223[0,1]$
I	$\mathrm{p} 20219[0]$	$\mathrm{p} 20224[0]$
Y	r 20220	r 20225
Runtime group	p 20221	p 20226
Run sequence	p 20222	p 20227

Control block LIM (limiter)

The function block limits output Y to values within LL ... LU.

	LIM 0	LIM 1
X	p20228[0]	p20236[0]
LU $^{1)}$	p20229	p20237
LL $^{1)}$	p20230	p20238
Y	r 20231	r20239
QU	r 20232	r20240
QL	r20233	r20241
Runtime group	p20234	p20242
Run sequence	p20235	p20243

1) LU must be greater than LL

Complex block LVM (limit monitor)

The function block monitors an input quantity by comparing it with reference quantities.

	LVM 0	LVM 1
X	p20266[0]	p20275[0]
M	p20267	p20276
L	p20268	p20277
HY	p20269	p20278
QU	r20270	r20279
QM	r20271	r20280
QL	r20272	r20281
Runtime group	p20273	p20282
Run sequence	p20274	p20283

8.3.14.4 Activating free function blocks

Function description

None of the free function blocks in the converter are active in the factory setting.

Procedure

Proceed as follows to activate a free function block and interconnect it with signals:

1. Activate the function block: Assign the function block to a runtime group.
2. If you have assigned several function blocks to the same runtime group, define a sensible run sequence within the runtime group.
3. Interconnect the inputs and outputs of the function block with the required signals in the converter.

You have now activated a free function block and interconnected its inputs and outputs.
\square

Example

p20096 = 5 assigns ADD 0 to runtime group 5 .
p20097 < p20101 (factory setting): The converter first calculates ADD 0 and then ADD 1.

8.3.14.5 Function diagram 7200 - Sampling times of the runtime groups

Figure 8-54 FP 7200

8.3.14.6 Function diagram 7210 - Logic block AND

Figure 8-55 FP 7210

8.3.14.7 Function diagram 7212 - Logic block OR

Figure 8-56 FP 7212

8.3.14.8 Function diagram 7214 - Logic block EXCLUSIVE OR

Figure 8-57 FP 7214

8.3.14.9 Function diagram 7216 - Logic block INVERTER

Figure 8-58 FP 7216
8.3.14.10 Function diagram 7220 - Arithmetic blocks ADDER and SUBTRACTOR

Figure 8-59 FP 7220

8.3.14.11 Function diagram 7222 - Arithmetic blocks MULTIPLIER and DIVIDER

Figure 8-60 FP 7222

8.3.14.12 Function diagram 7225 - Arithmetic block COMPARATOR

Figure 8-61

8.3.14.13 Function diagram 7230-Timer block PULSE GENERATOR

Figure 8-62 FP 7230

8.3.14.14 Function diagram 7232 - Timer blocks SWITCH-ON DELAY

Figure 8-63 FP 7232

8.3.14.15 Function diagram 7233 - Timer blocks SWITCH-OFF DELAY

Figure 8-64 FP 7233

8.3.14.16 Function diagram 7240-Memory block RS flip-flop

Figure 8-65 FP 7240

8.3.14.17 Function diagram 7250 - Switch block NUMERICAL SWITCHOVER

Figure 8-66

8.3.14.18 Function diagram 7260 - Control block LIMITER

Figure 8-67 FP 7260

8.3.14.19 Function diagram 7270 - Block LIMIT MONITOR

Figure 8-68

8.3.15 Controlling clockwise and counter-clockwise rotation via digital inputs

The converter offers various methods to start and stop the motor and reverse its direction:

- Two-wire control, ON/reverse
- Two-wire control, clockwise/counter-clockwise rotation 1
- Two-wire control, clockwise/counter-clockwise rotation 2
- Three-wire control, enable/clockwise/counter-clockwise rotation
- Three-wire control, enable/ON/reverse

Reversing is disabled in the factory setting. To use the "Reverse" function, you must enable the negative rotational direction.
4] Enable direction of rotation (Page 466)

8.3.15.1 Two-wire control, On/reverse

Function description

Command "ON/OFF1" switches the motor on and off. The "Reversing" command inverts the motor direction of rotation.

Figure 8-69 Two-wire control, ON/reverse
Assign the following digital inputs to the commands:

- DI 0: ON/OFF1
- DI 1 or other available DI terminals: Reversing

Table 8-87 Function table

ON/OFF1	Reversing	Function
0	0	The motor stops
0	1	
1	0	Clockwise motor rotation
1	1	Counter-clockwise motor rotation

Example

The following parameter setting example is based on default macro p0015 $=57$.

Step	Parameter	Description
1	p0922 $=999$	Free telegram configuration with BICO
2	p1110 $=0$	Activate negative direction
3	p3334 $=0$	Default setting
4	p0840 $=$ r722.0	DI 0: ON/OFF1
5	p1113 $=\mathrm{r} 722.1$	DI 1: reversing (example)
6	p0971 $=1$	Save settings

Parameters

Parameter	Description	Factory setting
r0722.0...n	CO/BO: CU digital inputs, status	-
p0840[C]	BI: ON/OFF (OFF1)	0
p1110	BI: Inhibit negative direction	1
p1113[C]	BI: Setpoint inversion	0
p3330[C]	BI: 2/3 wire control command 1	0
p3331[C]	BI: 2/3 wire control command 2	0
r3333.0...n	CO/BO: 2/3 wire control control word	-
p3334	2/3 wire control selection $0:$ Two-wire control, ON/reverse	0

8.3.15.2 Two-wire control, clockwise/counter-clockwise rotation 1

Function description

Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter only accepts a new command when the motor is at a standstill.

Figure 8-70 Two-wire control, clockwise/counter-clockwise rotation 1

Assign the following digital inputs to the commands:

- DI 0: ON/OFF1 clockwise rotation
- DI 1 or other available DI terminals: ON/OFF1 counter-clockwise rotation

Table 8-88 Function table

ON/OFF1 clockwise rota- tion	ON/OFF1 counter-clock- wise rotation	Function
0	0	The motor stops.
1	0	Clockwise motor rotation.
0	1	Counter-clockwise motor rotation.
1	1	The motor direction of rotation is defined by the command that first reaches state "1".

Example

The following parameter setting example is based on default macro p0015=57.

Step	Parameter	Description
1	p0922 $=999$	Free telegram configuration with BICO
2	p1110 $=0$	Activate negative direction
3	p3334 $=1$	Select the two-wire control clockwise/counter-clockwise rotation 1
4	$\mathrm{p} 3330=r 722.0$	DI 0: ON/OFF1 clockwise rotation
5	$\mathrm{p} 3331=\mathrm{r} 722.1$	DI 1: ON/OFF1 counter-clockwise rotation (example)
6	$\mathrm{p} 0840=\mathrm{r} 3333.0$	Interconnect the signal source for ON/OFF1
7	$\mathrm{p} 1113=\mathrm{r} 3333.1$	Sets the signal source to invert the setpoint
8	p0971 $=1$	Save settings

Parameter

Parameter	Description	Factory setting
r0722.0...n	CO/BO: CU digital inputs, status	-
p0840[C]	BI: ON/OFF (OFF1)	0
p1110	BI: Inhibit negative direction	1
p1113[C]	BI: Setpoint inversion	0
p3330[C]	BI: 2/3 wire control command 1	0
p3331[C]	BI: 2/3 wire control command 2	0
r3333.0...n	CO/BO: 2/3 wire control control word	-
p3334	2/3 wire control selection 1: Two-wire control, clockwise/counter-clockwise rotation 1	0

8.3.15.3 Two-wire control, clockwise/counter-clockwise rotation 2

Function description

Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter accepts a new command at any time, independent of the motor speed.

Figure 8-71 Two-wire control, clockwise/counter-clockwise rotation
Assign the following digital inputs to the commands:

- DI 0: ON/OFF1 clockwise rotation
- DI 1 or other available DI terminals: ON/OFF1 counter-clockwise rotation

Table 8-89 Function table

ON/OFF1 clockwise rota- tion	ON/OFF1 counter-clock- wise rotation	Function
0	0	The motor stops.
1	0	Clockwise motor rotation.
0	1	Counter-clockwise motor rotation.
1	1	The motor stops.

Example

The following parameter setting example is based on default macro p0015 = 57.

Step	Parameter	Description
1	p0922 $=999$	Free telegram configuration with BICO
2	p1110 $=0$	Activate negative direction
3	p3334 $=2$	Select the two-wire control clockwise/counterclockwise rotation 2
4	p3330 $=\mathrm{r} 722.0$	DI 0: ON/OFF1 clockwise rotation
5	$\mathrm{p} 3331=\mathrm{r} 722.1$	DI 1: ON/OFF1 counterclockwise rotation (example)
6	$\mathrm{p} 0840=\mathrm{r} 3333.0$	Interconnect the signal source for ON/OFF1
7	$\mathrm{p} 1113=\mathrm{r} 3333.1$	Set the signal source to invert the setpoint
8	$\mathrm{p} 0971=1$	Save settings

Parameters

Parameter	Description	Factory setting
r0722.0...n	CO/BO: CU digital inputs, status	-
p0840[C]	BI: ON/OFF (OFF1)	0
p1110	BI: Inhibit negative direction	1
p1113[C]	BI: Setpoint inversion	0
p3330[C]	BI: 2/3 wire control command 1	0
p3331[C]	BI: 2/3 wire control command 2	0
r3333.0...n	CO/BO: 2/3 wire control control word	-
p3334	2/3 wire control selection 2: Two-wire control, clockwise/counter-clockwise rotation 2	0

8.3.15.4 Three-wire control, enable/clockwise/counter-clockwise rotation

Function description

The "Enable" command is a precondition for switching on the motor. Commands "ON clockwise rotation" and "ON counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. Removing the enable switches the motor off (OFF1).

Figure 8-72 Three-wire control, enable/clockwise/counter-clockwise rotation
Assign the following digital inputs to the commands:

- DI 0: ON/OFF1
- DI 1 or other available DI terminals: Clockwise rotation
- DI 2 or other available DI terminals: Counter-clockwise rotation

Table 8-90 Function table

Enable / OFF1	ON clockwise rota- tion	ON counter-clock- wise rotation	Function
0	0 or 1	0 or 1	The motor stops.
1	$0 \rightarrow 1$	0	Clockwise motor rotation.

Enable / OFF1	ON clockwise rota- tion	ON counter-clock- wise rotation	Function
1	0	$0 \rightarrow 1$	Counter-clockwise motor rotation.
1	1	1	The motor stops.

Example

The following parameter setting example is based on default macro p0015 $=57$.

Step	Parameter	Description
1	$\mathrm{p} 0922=999$	Free telegram configuration with BICO
2	$\mathrm{p} 1110=0$	Activate negative direction
3	$\mathrm{p} 3334=3$	Select the three-wire control enable/clockwise/counter- clockwise rotation
4	$\mathrm{p} 3330=\mathrm{r} 722.0$	DI 0: Enable/OFF1
5	$\mathrm{p} 3331=\mathrm{r} 722.1$	DI 1: ON clockwise rotation (example)
6	$\mathrm{p} 3332=\mathrm{r} 722.2$	DI 2: ON counter-clockwise rotation (example)
7	$\mathrm{p} 0840=\mathrm{r} 3333.0$	Interconnect the signal source for ON/OFF1
8	$\mathrm{p} 1113=\mathrm{r} 3333.1$	Set the signal source to invert the setpoint
9	$\mathrm{p} 0971=1$	Save settings

Parameter

Parameter	Description	Factory setting
r0722.0..n	CO/BO: CU digital inputs, status	-
p0840[C]	BI: ON/OFF (OFF1)	0
p1110	BI: Inhibit negative direction	1
p1113[C]	BI: Setpoint inversion	0
$p 3330[C]$	BI: 2/3 wire control command 1	0
$p 3331[C]$	BI: 2/3 wire control command 2	0
p3332[C]	BI: 2/3 wire control command 3	0
r3333.0...n	CO/BO: 2/3 wire control control word	-
p3334	2/3 wire control selection 3: Three-wire control enable/clockwise/counter-clockwise ro- tation	0

8.3.15.5 Three-wire control, enable/ON/reverse

Function description

The "Enable" command is a precondition for switching on the motor. The "ON" command switches the motor on. The "Reversing" command inverts the motor direction of rotation. Removing the enable switches the motor off (OFF1).

Figure 8-73 Three-wire control, enable/ON/reverse
Assign the following digital inputs to the commands:

- DI 0: ON/OFF1
- DI 1 or other available DI terminals: ON
- DI 2 or other available DI terminals: Reversing

Table 8-91 Function table

Enable / OFF1	ON	Reversing	Function
0	0 or 1	0 or 1	The motor stops.
1	$0 \rightarrow 1$	0	Clockwise motor rotation.
1	$0 \rightarrow 1$	1	Counter-clockwise motor rotation.

Example

The following parameter setting example is based on default macro p0015 $=57$.

Step	Parameter	Description
1	$\mathrm{p} 0922=999$	Free telegram configuration with BICO
2	$\mathrm{p} 1110=0$	Activate negative direction
3	$\mathrm{p} 3334=4$	Select the three-wire control enable/ON/reverse rotation
4	$\mathrm{p} 3330=\mathrm{r} 722.0$	DI 0: Enable/OFF1
5	$\mathrm{p} 3331=\mathrm{r} 722.1$	DI 1: ON clockwise rotation (example)
6	$\mathrm{p} 3332=\mathrm{r} 722.2$	DI 2: ON counter-clockwise rotation (example)
7	$\mathrm{p} 0840=\mathrm{r} 3333.0$	Interconnect the signal source for ON/OFF1
8	$\mathrm{p} 1113=\mathrm{r} 3333.1$	Sets the signal source to invert the setpoint
9	$\mathrm{p} 0971=1$	Save settings

Parameter

Parameter	Description	Factory setting
r0722.0..n	CO/BO: CU digital inputs, status	-
p0840[C]	BI: ON/OFF (OFF1)	0
p1110	BI: Inhibit negative direction	1
p1113[C]	BI: Setpoint inversion	0
p3330[C]	BI: 2/3 wire control command 1	0
p3331[C]	BI: 2/3 wire control command 2	0
p3332[C]	BI: 2/3 wire control command 3	0
r3333.0...n	CO/BO: 2/3 wire control control word	-
p3334	2/3 wire control selection 4: Three-wire control enable/ON/reverse	0

8.3.15.6 Function block diagram 2272 - Two-wire control

Figure 8-74

8.3.15.7 Function block diagram 2273 - Three-wire control

Figure 8-75

8.4 Pump control

8.4.1 Multi-pump control

Overview

Multi-pump control is suitable for applications that require simultaneous operation of up to six pumps, for example, equalizing significantly fluctuating water pressures or flow rates. After the function is enabled, you can configure the following four sub-functions based on your particular requirements:

- Pump switch-in/switch-out (Page 428)
- Stop mode (Page 432)
- Pump switchover (Page 435)
- Service mode (Page 437)

Multi-pump control provides a flexible and cost-effective solution for the following:

- Smoothly start and stop every pump to ensure the best performance of the water supply system
- Simplify the control system

Note

When using the multi-pump function, I/O Extension Module is required to support more than two pumps. For information about wiring the I/O Extension Module, see Section "Terminal strips (Page 129)".

Precondition

Before using the multi-pump control function, make sure that you have connected pumps of the same power rating.

Function description

The converter uses six relays (KP1 to KP6), which are connected to digital outputs DO 0 to DO 5, to switch pumps in and out according to the technology controller system deviation (r2273). In addition, two groups of contactors, KDs and KMs, are designed to switch the pumps between converter operation and line operation. Maximally only one motor can be connected to the converter at any time. Soft pump switching can be realized as all motors start/stop with ramp speeds, so as to minimize the shock to the pipes.

Parameter p29520 is used to enable the multi-pump control.

Figure 8-76 Mains circuit

Figure 8-77 External relay control circuit

Depending on the parameter p29521, the DO configuration about multi-pump control is as follows:

Parameters	p29521 = 0	p29521 = 1	p29521 = 2	p29521 = 3	p29521 = 4	p29521 = 5	p29521 = 6
p0730	52.3	52.3	52.3	52.3	r29529.0	r29529.0	r29529.0
p0731	52.2	52.2	52.2	r29529.0	r29529.1	r29529.1	r29529.1
p0732	52.0	52.0	r29529.0	r29529.1	r29529.2	r29529.2	r29529.2
p0733	52.7	r29529.0	r29529.1	r29529.2	r29529.3	r29529.3	r29529.3
p0734	--	--	--	--	r29529.4	r29529.4	
p0735	--	--	--	--	r29529.5		

Note

When using the multi-pump control for the first time, make sure that the circuit breakers are disconnected until the relevant parameters are configured.

Note

Multi-pump control motor quantity not matched

- When you configure the multi-pump control function, make sure that the motor quantity set in p29521 matches with the quantity of digital outputs (mapped in r29529). Otherwise, there will be fault F52966 and alarm A07929.
- When using the multi-pump control function for more than two pumps, make sure that the I/O Extension Module is installed when the converter is in the power-off state and check r0719 = 1 to ensure that the I/O Extension Module is recognized after installing.

Note

When the multi-pump control is enabled ($\mathrm{p} 29520=1$), the minimum value and default value of p1274 (Bypass switch monitoring time: [0] = Switch motor/drive, [1] = Switch motor/line supply) will be set to 40 ms and 50 ms respectively.

Note

Motor current peaks when switching the motor from converter operation to line operation
If the motor is switched from converter operation to the line supply, this can result in a high surge current > $10 \times$ I_rated in the motor, depending on the random phase shift between converter and line voltage.

Note

The multi-pump control does not support motor direction inversion (p1113).

Note

If you need to reverse the rotation of the line-controlled motor(s) under the ESM mode, extra circuit and control is required.

Further information

Interaction with other functions:

- When activating the essential service mode, if the multi-pump control is active, the motor connection status remains unchanged and the converter-controlled motor switches the speed setpoint to "ESM setpoint source".
- When activating the hibernation mode, if the multi-pump control is active, the hibernation mode only works when there is only one operating motor and the conditions for hibernation are satisfied.

8.4.1.1 Pump switch-in/switch-out

Pump switch-in

If the pump controlled by the converter runs at the maximum speed (p1082) and the technology controller system deviation (r2273) exceeds the switch-in threshold (p29523) but is lower than the overcontrol threshold (p29526) for a specified time (p29524), the converter first switches the pump from converter operation to line operation, and then switches on an idle pump. This pump is softly started with a ramp-up speed and runs in converter operation mode.

Note

If the technology controller system deviation rises above the overcontrol threshold (p29526), the converter skips the delay time (p29524) and performs the switch-in operation immediately.

Parameter p29522 is used to define the selection mode for switching in motors. It is a predefined parameter and cannot be changed via DI or by operators.

- p29522 = 0: Selecting the next pump according to the fixed sequence. The converter switches in the pump by following the sequence $\mathrm{M} 1 \rightarrow \mathrm{M} 2 \rightarrow \mathrm{M} 3 \rightarrow \mathrm{M} 4 \rightarrow \mathrm{M} 5 \rightarrow \mathrm{M} 6$.
- p29522 = 1: Selecting the next pump according to the operating hours. The converter switches in the pump with the least absolute operating hours (p29530[0...5]).

Figure 8-78 Pump switch-in

Pump switch-out

If the pump controlled by the converter runs at a speed lower than the switch-out threshold (p29528 + p1080) and the technology controller system deviation is lower than the switch-out threshold (-p29523) for a specified time (p29525), the converter switches off a line-controlled pump based on the selection mode.

Note

If the technology controller system deviation drops below the overcontrol threshold (-p29526), the converter skips the delay time (p29525) and performs the switch-out operation immediately.

Parameter p29522 is used to define the selection mode for switching out motors. Bits 00 to 05 of r29529 indicate the motor which is stopped depending on p29522. Only the line-controlled motors switch out and the converter-controlled motor remains unchanged.

- p29522 = 0: Selecting the next pump according to the fixed sequence. The converter switches off the line-controlled pumps, following the reverse sequence they are switched in $(\mathrm{M} 5 \rightarrow \mathrm{M} 4 \rightarrow \mathrm{M} 3 \rightarrow \mathrm{M} 2 \rightarrow \mathrm{M} 1$).
- p29522 = 1: Selecting the next pump according to the operating hours. The converter switches off the line-controlled pumps with the most absolute operating hours (p29530[0...5]).

Conditions for pump switch-out:
(a) f_act $=$ p29528 + p1080
(b) - p29526 $\leq \triangle$ PID $\leq-p 29523$
(C) $\mathrm{t}>\mathrm{p} 29525$

Figure 8-79 Pump switch-out

Parameters

Number	Name	Factory setting
p0730 ... p0735	BI: Signal source for digital outputs DO 0 ... DO 5	-
p1080[0...n]	Minimum speed	Depending on the converter
p1082[0...n]	Maximum speed	1500 rpm

8.4 Pump control

Number	Name	Factory setting
p1120	Ramp-function generator ramp-up time	Depending on the converter
p1274[0..1]	Bypass switch monitoring time	50 ms
p29520	Multi-pump control enable	0
p29521	Multi-pump control motor configuration	0
p29522	Multi-pump control motor selection mode	0
p29523	Multi-pump control switch-in threshold	20%
p29524	Multi-pump control switch-in delay	30 s
p29525	Multi-pump control switch-out delay	30 s
p29526	Multi-pump control overcontrol threshold	25%
p29527	Multi-pump control interlocking time	0 s
p29528	Multi-pump control switch-out speed offset	100 rpm
r29529	BO/CO: Multi-pump control status word	-
p29530[0...5]	Multi-pump control absolute operating hours	0 h
p29537	Multi-pump control disconnection lockout time	0 s
r29538	Multi-pump control variable-speed motor	-
r29545	CO/BO: Multi-pump control bypass command	-
p29546	Multi-pump control deviation threshold	20%
p29551	Multi-pump control switch in/out speed	90%
p29552[0...3]	Multi-pump control holding time for boost	0 s

8.4.1.2 Stop mode

Function description

Two stop modes are available as follows:

- Normal stop: All pumps running in line operation are switched off simultaneously as soon as the stop command is received. The pump in converter operation stops under the control of the converter. Normal stop aims to quickly stop all the pumps under emergency situations such as pipe cracks or leakages.
- Sequence stop: The pumps running in line operation stop one by one in the reverse sequence in which they are switched on. There is a delay time (p29537) between every pump stop. The pump in converter operation stops under the control of the converter after the first pump in line operation is switched off. Sequence stop aims to reduce the water hammer effect to pipes especially in systems with high power range.

After the OFF command is received, the pumps are switched off in either of the two stop modes:

- With OFF1 command received, the pump stop mode is selected in parameter p29533 as follows:
- p29533 = 0: normal stop
- p29533 = 1: sequence stop

Note that parameter p29533 is a predefined parameter and cannot be changed via DI or by operators.

- With OFF2/OFF3 command received, the pumps are switched off with normal stop.

Note

Sequence stop

During sequence stop, the motors are switched off in the reverse sequence in which they are switched on. It is therefore important that the motor configuration parameter p29533 is not changed while the converter is running. Otherwise, the parameter value may no longer correspond to the mapping of the motors connected.

8.4 Pump control

Figure 8-80 Stop mode

Parameters

Number	Name	Factory setting
r29529	CO/BO: Multi-pump control status word	-
p29533	Multi-pump control switch-off sequence	0
p29537	Multi-pump control disconnection lockout time	0 s
r29538	Multi-pump control variable-speed motor	-

8.4.1.3 Pump switchover

Function description

With pump switchover enabled (with p29539), the converter monitors the operation status of all running pumps.

- If the continuous operating hours (p29547) of the pump in converter operation exceed the threshold (p29531), the converter switches off the pump and then switches in an idle pump to keep constant output power.
- If the continuous operating hours (p29547) of a pump in line operation exceed the threshold (p29531), the converter first switches off the pump, switches out the converter-controlled pump to line operation, and then switches in an idle pump to run in converter operation to keep constant output power.

You can use parameter p29522 to define the selection mode for the next pump. The internal counters (p29530[0...5] and p29547[0...5]) are used to calculate the operating hours of the pumps.

- p29522 = 0: Selecting the next pump according to the fixed sequence.

The converter first switches out the pump with the most continuous operating hours (p29547[0..5]) and then switches in a pump following the sequence of $\mathrm{M} 1 \rightarrow \mathrm{M} 2 \rightarrow \mathrm{M} 3 \rightarrow$ M4 \rightarrow M5 \rightarrow M6.

- p29522 = 1: Selecting the next pump according to the operating hours.

The converter switches out the pump with the most continuous operating hours (p29547[0..5]) and then switches in the pump with the least absolute operating hours (p29530[0...5]).
When a pump is switched off, the continuous operating hours (p29547) of this pump reset to 0 automatically.
This function balances the operation time of each pump, extends the lifetime expectancy of the system and reduces downtime.

8.4 Pump control

Figure 8-81 Pump switchover

Note

Possible alarms and faults

With pump switchover enabled, if the continuous operating hours (p29547) of the pump exceed the threshold (p29531) while the pump switchover is not possible (r29529.19 = 1), alarm A52962 appears. In this case, increase p29531 or reset p29547 to clear the alarm.

Parameters

Number	Name	Factory setting
p1274	Bypass switch monitoring time	1000 ms
p29522	Multi-pump control motor selection mode	0
r29529.19	CO/BO: Multi-pump control status word: pump switchover is not possible	-
p29530[0...5]	Multi-pump control motors absolute operating hours	-
p29531	Multi-pump control maximum time for continuous operation	24 h
p29532	Multi-pump control switchover speed threshold	90%
p29534	Multi-pump control switchover lockout time	0.5 h
p29539	Multi-pump control switchover enable	0
p29547[0...5]	Multi-pump control motors continuous operating hours	-
r29538	Multi-pump control variable-speed motor	-

8.4.1.4 Service mode

Function description

When a pump is in the service mode, the converter locks the corresponding relay. Then you can perform troubleshooting of this pump without interrupting the operation of other pumps. You can use parameters p29540 to p29543 to set the pumps to work in service mode respectively. Pumps set to service mode are skipped in further multi-pump control process.

$\$ WARNING

Risk of electric shock due to incorrectly connected low-voltage circuit breakers
If a low-voltage circuit breaker is not connected correctly to a pump set in service mode, hazardous voltages can be present at the pump when the converter relay malfunctions. Troubleshooting the service pump can result in serious personal injury or death.

- Make sure that all pumps are connected correctly to the mains and converter through lowvoltage circuit breakers.
- After a pump is set in service mode, make sure that its low-voltage circuit breaker is open before performing any troubleshooting operation.

Figure 8-82 Service mode

Figure 8-83 Service mode - no idle motor

Note

Possible alarms and faults

- If the technology controller system deviation r2273 exceeds the threshold p29546 and no pump is available for switch-in, alarm A52963 appears.
- If there is only one pump that is not under service or locked manually, alarm A52964 appears.
- If all motors are under service or locked manually, fault F52965 appears.

For more information about the causes and remedies of the possible alarms and faults, see Section "Warnings, faults and system messages (Page 1179)".

Parameters

Number	Name	Factory setting
p29522	Multi-pump control motor selection mode	0
r29529.0...19	CO/BO: Multi-pump control status word	-
r29538	Multi-pump control variable-speed motor	-
p29540	Multi-pump control service mode enable	0
p29542	BO/CO: Multi-pump control service mode interlock manually	-
p29543[0..5]	BI: Multi-pump control motor under repair	[0] p29542.0
		[1] p29542.1
		[2] p29542.2
		[3] p29542.3 p29542.4
r29544	Multi-pump control index of motors under repair	-
p29550	Multi-pump control time for motor stopping	3s

8.4.2 Frost protection

Overview

The freezing water inside of the pump will damage the pump. With the frost protection enabled, if the surrounding temperature falls below a given threshold, the motor turns automatically to prevent freezing.

Precondition

Before enabling the frost protection, make sure that p0840 $=r 29659.0, \mathrm{p} 0844=r 29659.1$, $\mathrm{p} 1143=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

Function description

WARNING
 Unexpected machine motion caused by the active frost protection function
 When the "frost protection" function is active (p29622 > 1), the motor automatically starts if the surrounding temperature falls below a given threshold. Unexpected movement of machine parts can result in serious injury and material damage.
 - Block off hazardous areas within the machine to prevent inadvertent access.

- OFF1/OFF3: OFF3 disables frost protection function while OFF1 enables this function again.
- OFF2/fault: The motor stops and the frost protection function is deactivated.

Note

If you want to run frost protection, make sure that Operator Panels (BOP-2 or IOP-2) or G120 Smart Access does not get control of the motor in the JOG/Hand mode.

Parameters

Number	Name	Factory setting
p29622	BI: Frost protection enable	0
p29623	Frost protection speed	0 rpm

8.4.3 Condensation protection

Overview

Condensation is a serious problem for motors in the humid and cold environment, resulting in motor failure. This problem can be avoided by slightly increasing the surface temperature of the motor during work break. If an external condensation sensor detects excessive condensation, the converter applies a DC current to keep the motor warm to prevent condensation.

Precondition

Before enabling the condensation protection, make sure that p0840 = r29659.0, p0844 = $\mathrm{r} 29659.1, \mathrm{p} 1143=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

Function description

- OFF1/OFF3: OFF3 disables the condensation protection function while OFF1 enables this function again.
- OFF2/fault: The motor stops and the condensation protection function is deactivated.

If the converter is not running and the protection signal becomes active, protection measure is applied as follows:

- If frost protection speed p29623 $=0$ (default 0), frost protection is activated by applying the specified speed to the motor.
- If frost protection speed p29623 = 0 and condensation protection current p29624 $=0$, condensation protection is activated by applying the specified current to the motor.

Parameters

Number	Name	Factory setting
p29622	BI: Frost protection enable	0
p29624	Condensation protection current	30%

8.4.4 Cavitation protection

Overview

Cavitation occurs when air bubbles are generated around the surface of the impeller, resulting in pump damage, unexpected noise, and decreased flow or pressure of the pipe system. The cavitation protection will generate a fault/warning when cavitation conditions are deemed to be present. If the converter gets no feedback from the pump transducer, it will trip to prevent cavitation damage. This function saves the maintenance efforts and extends the lifetime expectancy of the system.

Function description

To use cavitation protection, a sensor is required to monitor the actual flow or pressure and feedback value. You can use parameter p29625 to enable/disable cavitation protection:

- p29625 = 0: cavitation protection is disabled
- p29625 = 1: cavitation protection triggers fault F52960
- p29625 = 2: cavitation protection triggers warning A52961

To enable cavitation protection, set p29625 = 1 or 2 .
After you have enabled cavitation protection, the following preconditions should also be satisfied to activate cavitation protection:

- Cavitation protection threshold p29626 is set according to experience (The value is lower than the normal actual flow or pressure).
p29626 is a percentage of feedback output for triggering a fault or warning. r2272 is the scaled actual value of technology controller. For example, if the maximum range for the pressure sensor is $20 \mathrm{~mA} / 25 \mathrm{bar}$ and the actual sensor value is $12 \mathrm{~mA} / 12.5$ bar, then r2272 is 50%. If r2272 < p29626, cavitation protection can be triggered after delay time p29627. The range of delay time is 1 s to 65500 s .
- The technology controller has reached the minimum limit (status of r 53.10 is 1) or the maximum limit (status of r 53.11 is 1).
- The converter operation is enabled (status of r52.2 is 1).
- The technology controller is enabled $(\mathrm{p} 2200=1)$.

Parameters

Number	Name	Factory setting
p29625	Cavitation protection enable	0
p29626	Cavitation protection threshold	40%
p29627	Cavitation protection time	30 s

8.4.5 Deragging

Overview

Blockage (such as plastic bags) in the wastewater pumps can reduce the efficiency of the system and decrease the pump life time. With the deragging (pump clearing) function enabled, any clogs on the pump impellers, pipes or valves can be cleared automatically by executing the forward and reverse rotations of the pumps. This function saves the maintenance efforts for manually cleaning the pumps and also reduces system downtime.

Precondition

Deragging is not possible with permanent magnet-synchronous motors.
Before enabling the deragging, make sure that $\mathrm{p} 1143=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

Function description

The deragging mode consists of forward and reverse runs of the motors. Parameter p29590 is used to select the deragging mode.

- p29590 = 1: enabled on first run after power-up
- p29590 = 2: enabled on every run
- p29590 = 3: enabled by a Binector input (p29591)
- p29590 = 4: enabled by a Binector input (p29591) while running

Deragging counter (p 29605) is used to display the number of times that deragging is performed during a specific period of time (p29606).

Note

To enable the deragging by a Binector input (p29590 = 3), make sure that the converter is in OFF state.

Parameters

Number	Name	Factory setting
p29590	Deragging mode	0
p29591	BI: Deragging enable	0
p29592	Deragging forward speed	500 rpm
p29593	Deragging reverse speed	500 rpm
p29594	Ramp-up time	5 s
p29595	Ramp-down time	5 s
p29596	Deragging forward time	5 s
p29597	Deragging reverse time	5 s
p29598	Deragging cycle	1
r29599	Deragging status word	0
p29605	Deragging counter	0
p29606	Deragging monitoring time	3600 s
p29607	Maximum deragging counter	5

Interaction with other functions

- Deragging signal is ignored if the converter is restarted under the command of essential service mode, bypass operation, automatic restart, hibernation mode or multi-pump switching-in.
- Deragging is interrupted if essential service mode, bypass, or hibernation mode is activated.

8.4.6 Pipe filling

Overview

In the water supply systems, the rapid inrush of water into an empty pipe can cause hammer effect and thus damage the pipe or the valve. With the pipe filling function enabled, the converter fills the pipe slowly and smoothly after each power-up or switch on to avoid hammer effect to the pipe. If the pipe filling is interrupted (for example, fault occurs), the function continues after the converter is recovered. This function is used in horizontal, vertical, and mixed piping systems.

Precondition

Before enabling the pipe filling, make sure that $\mathrm{p} 1143=\mathrm{r} 29640.0$ and $\mathrm{p} 1144=\mathrm{r} 29641$.

Function description

After the pipe filling is enabled, you can select from the following two filling modes:

- Time mode:
- p29611 = 0

The converter fills the pipe with a low speed for a specified time (p29613) after each power-up and then changes the speed to the setpoint.

- p29611 = 2

The converter fills the pipe with a low speed for a specified time (p29613) after each switch on and then changes the speed to the setpoint.

- Pressure mode:
- p29611 = 1

The converter fills the pipe according to the PID feedback from the pressure sensor after each power-up. The filling stops when the actual pressure (r2272) \geq the threshold (p 29614) for a specified time (p 29615).

- p29611 = 3

The converter fills the pipe according to the PID feedback from the pressure sensor after each switch on. The filling stops when the actual pressure ($r 2272$) \geq the threshold (p 29614) for a specified time (p 29615).

Note

Priority of deragging and pipe filling

The priority of functions is as follows: deragging > pipe filling.

Parameters

Number	Name	Factory setting
p29609	Pipe filling activate	p29610
p29610	Pipe filling enable	0
p29611	Pipe filling mode	0
p29612	Pipe filling speed	900 rpm
p29613	Pipe filling time	50 s
p29614	Pipe filling threshold	10%
p29615	Pipe filling monitoring time	0 s
r29629.0	Status word: application	0
r29640.0	Extended setpoint channel selection output	0

8.5 Setpoints and setpoint processing

8.5.1 Setpoints

Overview

The converter receives its main setpoint from the setpoint source. The main setpoint generally specifies the motor speed.

Figure 8-84 Setpoint sources for the converter
You have the following options when selecting the source of the main setpoint:

- Converter fieldbus interface
- Analog input of the converter
- Motorized potentiometer emulated in the converter
- Fixed setpoints saved in the converter

You have the same selection options when selecting the source of the supplementary setpoint.
Under the following conditions, the converter switches from the main setpoint to other setpoints:

- When the technology controller is active and appropriately interconnected, its output specifies the motor speed.
- When jogging is active
- When controlling from an operator panel
- When controlling from SINAMICS G120 Smart Access

8.5.1.1 Analog input as setpoint source

Function description

Figure 8-85 Example: Analog input 0 as setpoint source
In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the analog input can be interconnected with the main setpoint.

Example

Setting with analog input 0 as setpoint source:

Parameter	Description
p1070 $=755[0]$	Interconnects main setpoint with analog input 0
p1075 $=755[0]$	Interconnects supplementary setpoint with analog input 0

Parameters

Number	Name	Factory setting
r0755[0 ... 1]	CO: CU analog inputs, actual value in percent	$-\%$
p1070[C]	CI: Main setpoint	Dependent on the converter
p1071[C]	CI: Main setpoint scaling	1
r1073	CO: Main setpoint active	- rpm
p1075[C]	CI: Supplementary setpoint	0
p1076[C]	CI: Supplementary setpoint scaling	1
r1077	CO: Supplementary setpoint effective	- rpm

8.5.1.2 Specifying the setpoint via the fieldbus

Function description

Figure 8-86 Fieldbus as setpoint source
In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the receive word PZD02 can be interconnected with the main setpoint.

Example

Setting with receive word PZDO2 as setpoint source:

Parameter	Description
p1070 $=2050[1]$	Interconnects the main setpoint with the receive word PZD02 from the fieldbus.
p1075 $=2050[1]$	Interconnects the supplementary setpoint with receive word PZD02 from the field- bus.

Parameters

Number	Name	Factory setting
p1070[C]	Cl: Main setpoint	Dependent on the converter
p1071[C]	Cl: Main setpoint scaling	1
r1073	CO: Main setpoint active	- rpm
p1075[C]	Cl: Supplementary setpoint	0
p1076[C]	CI: Supplementary setpoint scaling	1
r1077	CO: Supplementary setpoint effective	- rpm
r2050[0...11]	CO: PROFIdrive PZD receive word	-

8.5.1.3 Motorized potentiometer as setpoint source

Function description

The "Motorized potentiometer" function emulates an electromechanical potentiometer. The output value of the motorized potentiometer can be set with the "higher" and "lower" control signals.

Figure 8-87 Motorized potentiometer as setpoint source

Figure 8-88 Function chart of the motorized potentiometer

Example

Setting with the motorized potentiometer as setpoint source:

Parameter	Description
p1070 $=1050$	Interconnects the main setpoint with the motorized potentiometer output.

Parameter

Table 8-92 Basic setup of motorized potentiometer

Number	Name	Factory setting
p1035[C]	BI: Motorized potentiometer setpoint higher	0
p1036[C]	BI: Motorized potentiometer setpoint lower	Dependent on the converter
p1040[D]	Motorized potentiometer start value	0 rpm
p1047[D]	Motorized potentiometer, ramp-up time	10 s
p1048[D]	Motorized potentiometer, ramp-down time	10 s
r1050	Motorized potentiometer, setpoint after the ramp-function generator	-rpm
p1070[C]	CI: Main setpoint	Dependent on the converter
p1071[C]	CI: Main setpoint scaling	1
r1073	CO: Main setpoint active	- rpm
p1075[C]	CI: Supplementary setpoint	0
p1076[C]	CI: Supplementary setpoint scaling	1

Table 8-93 Extended setup of motorized potentiometer

Number	Name	Factory setting
p1030[D]	Motorized potentiometer configuration	00000110 bin
p1037[D]	Motorized potentiometer, maximum speed	0 rpm
p1038[D]	Motorized potentiometer, minimum speed	0 rpm
p1043[C]	BI: Motorized potentiometer, accept setting value	0
p1044[C]	Cl: Motorized potentiometer, setting value	0

8.5.1.4 Fixed speed setpoint as setpoint source

Function description

Figure 8-89 Fixed speed setpoint as setpoint source
The converter makes a distinction between two methods when selecting the fixed speed setpoints:

- Direct selection (p1016=1)
- Binary selection (p1016 = 2)

Directly selecting a fixed speed setpoint

Figure 8-90 Direct selection of the fixed speed setpoint

Table 8-94 Resulting setpoint

p1023	p1022	$\mathbf{p 1 0 2 1}$	p1020	Resulting setpoint
0	0	0	0	0
0	0	0	1	p1001
0	0	1	0	p1002
0	0	1	1	p1001 + p1002
0	1	0	0	p1003
0	1	0	1	p1001 + p1003
0	1	1	0	p1002 + p1003

p1023	p1022	p1021	p1020	Resulting setpoint
0	1	1	1	p1001 + p1002 + p1003
1	0	0	0	p1004
1	0	0	1	p1001 + p1004
1	0	1	0	p1002 + p1004
1	0	1	1	p1001 + p1002 + p1004
1	1	0	0	p1003 + p1004
1	1	0	1	p1001 + p1003 + p1004
1	1	1	0	p1002 + p1003 + p1004
1	1	1	1	p1001 + p1002 + p1003 + p1004

Selecting the fixed speed setpoint, binary

Figure 8-91 Binary selection of the fixed speed setpoint

Table 8-95 Resulting setpoint

$\mathbf{p} 1023$	$\mathbf{p} 1022$	$\mathbf{p} 1021$	$\mathbf{p} 1020$	Resulting setpoint
0	0	0	0	0
0	0	0	1	p1001
0	0	1	0	p1002
0	0	1	1	p1003
0	1	0	0	p1004
0	1	0	1	p1005
0	1	1	0	p1006
0	1	1	1	p1007
1	0	0	0	p1008
1	0	0	1	p1009
1	0	1	0	p1010
1	1	1	1	p1011
1	1	0	0	$p 1012$
1	1	0	1	p1013
1	1	1	0	p1014
1	1	1	1	p1015

Parameter

Number	Name	Factory setting
p1001[D]	CO: Fixed speed setpoint 1	0 rpm
p1002[D]	CO: Fixed speed setpoint 2	0 rpm
p1003[D]	CO: Fixed speed setpoint 3	0 rpm
p1004[D]	CO: Fixed speed setpoint 4	0 rpm
p1005[D]	CO: Fixed speed setpoint 5	0 rpm
p1006[D]	CO: Fixed speed setpoint 6	0 rpm
p1007[D]	CO: Fixed speed setpoint 7	0 rpm
p1008[D]	CO: Fixed speed setpoint 8	0 rpm
p1009[D]	CO: Fixed speed setpoint 9	0 rpm
p1010[D]	CO: Fixed speed setpoint 10	0 rpm
p1011[D]	CO: Fixed speed setpoint 11	0 rpm
p1012[D]	CO: Fixed speed setpoint 12	0 rpm
p1013[D]	CO: Fixed speed setpoint 13	0 rpm
p1014[D]	CO: Fixed speed setpoint 14	0 rpm
p1015[D]	CO: Fixed speed setpoint 15	0 rpm
p1016	Fixed speed setpoint selection mode	1
p1020[C]	Fixed speed setpoint selection, bit 0	0
p1021[C]	Fixed speed setpoint selection, bit 1	0
p1022[C]	Fixed speed setpoint selection, bit 2	0
p1023[C]	Fixed speed setpoint selection, bit 3	0
r1024	Fixed speed setpoint active	- rpm
r1025.0	Fixed speed setpoint status	-
p1070[C]	Cl : Main setpoint	Dependent on the converter
p1071[C]	CI: Main setpoint scaling	1
r1073	CO: Main setpoint active	- rpm
p1075[C]	CI: Supplementary setpoint	0
p1076	CI: Supplementary setpoint scaling	1
r1077	CO: Supplementary setpoint effective	- rpm

8.5.1.5 Function diagram 3001 - Overview setpoint channel

Figure 8-92
8.5.1.6 Function diagram 3010 - Fixed speed setpoints binary selection

Figure 8-93

8.5.1.7 Function diagram 3011 - Fixed speed setpoints direct selection

Figure 8-94

8.5.1.8 Function diagram 3020 - Motorized potentiometer

Figure 8-95

Figure 8-96

8.5.2 Setpoint processing

8.5.2.1 Overview

Overview

$\sqrt{ }$
Setpoint processing influences the setpoint using the following functions:

- "Invert" inverts the motor direction of rotation.
- The "direction of rotation deactivate" function prevents the motor rotating in the incorrect direction.
- The "Skip frequency bands" prevent the motor from being continuously operated within these skip bands. This function avoids mechanical resonance effects by only permitting the motor to operate briefly at specific speeds.
- The "Speed limitation" function protects the motor and the driven load against excessively high speeds.
- The "Ramp-function generator" function prevents the setpoint from suddenly changing. As a consequence, the motor accelerates and brakes with a reduced torque.

Figure 8-97 Setpoint processing in the converter

8.5.2.2 Invert setpoint

Function description

The function inverts the sign of the setpoint using a binary signal.

Example

To invert the setpoint via an external signal, interconnect parameter p1113 with a binary signal of your choice.

Table 8-96 Application examples showing how a setpoint is inverted

Parameter	Description
p1113 $=722.1$	Digital input 1 = 0: Setpoint remains unchanged. Digital input 1 = 1: Converter inverts the setpoint.
p1113 = 2090.11	Inverts the setpoint via the fieldbus (control word 1, bit 11).

Parameter

Number	Name	Factory setting
p1113 [C]	BI: Setpoint inversion	Dependent on the converter

8.5.2.3 Enable direction of rotation

Function description

In the factory setting of the converter, the negative direction of rotation of the motor is inhibited.
Set parameter p1110 $=0$ to permanently enable the negative direction of rotation.
Set parameter p1111 = 1 to permanently inhibit the positive direction of rotation.

Parameter

Table 8-97 Application examples for inhibiting and enabling the direction of rotation

Number	Name	Factory setting
p1110	BI: Inhibit negative direction	1
p1111	BI: Inhibit positive direction	0

8.5.2.4 Skip frequency bands and minimum speed

Overview

The converter has a minimum speed and four skip frequency bands:

- The minimum speed prevents continuous motor operation at speeds less than the minimum speed.
- Each skip frequency band prevents continuous motor operation within a specific speed range.

Function description

Minimum speed

Speeds where the absolute value is less than the minimum speed are only possible when the motor is accelerating or braking.

Skip frequency bands

Additional information on the skip frequency bands is provided in the function diagram.

Parameter

Table 8-98 Minimum speed

Number	Name	Factory setting
p1051[C]	Cl: Speed limit of ramp-function generator, positive direction of rotation	9733
p1052[C]	Cl: Speed limit of ramp-function generator, negative direction of rotation	1086
p1080[D]	Minimum speed	0 rpm
p1083[D]	CO: Speed limit in positive direction of rotation	210000 rpm
r1084	CO: Speed limit positive active	-rpm
p1085[C]	Cl: Speed limit in positive direction of rotation	1083

Number	Name	Factory setting
p1091[D]	Skip speed 1	0 rpm
p1092[D]	Skip speed 2	0 rpm
p1093[D]	Skip speed 3	0 rpm
p1094[D]	Skip speed 4	0 rpm
p1098[C]	CI: Skip speed scaling	1
r1099	CO/BO: Skip frequency band of status word	-
p1106	CI: Minimum speed signal source	0
r1112	CO: Speed setpoint according to minimum limit	-rpm
r1114	CO: Setpoint after direction limiting	-rpm
r1119	CO: Ramp-function generator setpoint at the input	-rpm
r1170	CO: Speed controller setpoint sum	-rpm

NOTICE

Incorrect direction of motor rotation if the parameterization is not suitable
If you are using an analog input as speed setpoint source, then for a setpoint $=0 \mathrm{~V}$, noise voltages can be superimposed on the analog input signal. After the on command, the motor accelerates up to the minimum frequency in the direction of the random polarity of the noise voltage. A motor rotating in the wrong direction can cause significant material damage to the machine or system.

- Inhibit the motor direction of rotation that is not permissible.

8.5.2.5 Speed limitation

The maximum speed limits the speed setpoint range for both directions of rotation.

The converter generates a message (fault or alarm) when the maximum speed is exceeded.
If you must limit the speed depending on the direction of rotation, then you can define speed limits for each direction.

Parameters

Table 8-99 Parameters for the speed limitation

Number	Name	Factory setting
p1082[D]	Maximum speed	1500 rpm
p1083[D]	CO: Speed limit in positive direction of rotation	210000 rpm
p1085[C]	Cl: Speed limit in positive direction of rotation	1083
p1086[D]	CO: Speed limit in negative direction of rotation	-210000 rpm
p1088[C]	Cl: Speed limit in negative direction of rotation	1086

8.5.2.6 Ramp-function generator

The ramp-function generator in the setpoint channel limits the rate change of the speed setpoint (acceleration). A reduced acceleration reduces the accelerating torque of the motor. As a consequence, the motor reduces the stress on the mechanical system of the driven machine.

The extended ramp-function generator not only limits the acceleration, but by rounding the setpoint, also acceleration changes (jerk). This means that the motor does not suddenly generate a torque.

Extended ramp-function generator

The ramp-up and ramp-down times of the extended ramp-function generator can be set independently of each other. The optimal times depend on the application, and can lie in the range from a few 100 ms to several minutes.

Initial and final rounding permit smooth, jerk-free acceleration and braking.
The ramp-up and ramp-down times of the motor are increased by the rounding times:

- Effective ramp-up time $=$ p1120 $+0.5 \times(p 1130+\mathrm{p} 1131)$.
- Effective ramp-down time $=$ p1121 $+0.5 \times(\mathrm{p} 1130+\mathrm{p} 1131)$.

Parameter

Table 8-100 Additional parameters to set the extended ramp-function generator

Number	Name	Factory setting
p1120[D]	Ramp-function generator ramp-up time	Dependent on the converter
p1121[D]	Ramp-function generator ramp-down time	
p1130[D]	Ramp-function generator initial rounding time	0 0 (continuous smoothing)
p1131[D]	Ramp-function generator final rounding time	Dependent on the converter
p1134[D]	Ramp-function generator rounding type	0 s
p1135[D]	OFF3 ramp-down time	1
p1136[D]	OFF3 initial rounding time	1
p1137[D]	OFF3 final rounding time	Dependent on the converter
p1138[C]	CI: Ramp-function generator ramp-up time scaling	Cl: Ramp-function generator ramp-down time scaling p1139[C]
p1140[C]	BI: Enable ramp-function generator/disable ramp-function generator	BI: Continue ramp-function generator/freeze ramp-function generator
p1141[C]	BI: Enable setpoint/inhibit setpoint	0
p1142[C]	BI: Accept ramp-function generator setting value	0
p1143[C]	Cl: Ramp-function generator setting value	19.8 rpm
p1144[C]	Ramp-function generator tolerance for ramp-up and ramp- down active	-
p1148[D]	CO: Ramp-function generator acceleration	
r1149		

Setting the extended ramp-function generator

Procedure

1. Enter the highest possible speed setpoint.
2. Switch on the motor.
3. Evaluate your drive response.

- If the motor accelerates too slowly, then reduce the ramp-up time.

An excessively short ramp-up time means that the motor will reach its current limiting when accelerating, and will temporarily not be able to follow the speed setpoint. In this case, the drive exceeds the set time.

- If the motor accelerates too fast, then extend the ramp-up time.
- Increase the initial rounding if the acceleration is jerky. In the case of a permanent magnet synchronous motor, initial rounding can prevent the motor from tilting during startup.
- In most applications, it is sufficient when the final rounding is set to the same value as the initial rounding.

4. Switch off the motor.
5. Evaluate your drive response.

- If the motor decelerates too slowly, then reduce the ramp-down time. The minimum ramp-down time that makes sense depends on your particular application. Depending on the Power Module used, for an excessively short ramp-down time, the converter either reaches the motor current, or the DC link voltage in the converter becomes too high.
- Extend the ramp-down time if the motor is braked too quickly or the converter goes into a fault condition when braking.

6. Repeat steps 1 ... 5 until the drive behavior meets the requirements of the machine or plant. You have set the extended ramp-function generator.

\square

8.5.2.7 Dual ramp function

Overview

When operating at low speeds, pumps, e.g. submersible pumps, cannot be adequately lubricated or cooled. This causes the pump to wear out more quickly.

To reduce wear, you can use the "dual ramp function". The "dual ramp function" shortens the time it takes for the pump to operate below a critical speed.

Precondition

Before enabling the dual ramp function, adjust the ramp function generator.

Function description

Enabling

Connect the outputs of the dual ramp function with the scaling inputs of the ramp-function generator

- \quad Set p1138 = r29576
- \quad Set p1139 = r29577
- Set $\mathrm{p} 29580=1$

Ramp up

- Converter starts ramp-up using ramp time from p1120 • p29570.
- When the actual speed r0063 > p29571, switch to ramp time from p1120 • p29572.

Ramp down

- Converter starts ramp-down using ramp time from p1121 • p29573.
- When the actual speed r0063 < p29574, switch to ramp time from p1121 • p29575.

Parameters

Parameter	Description	Factory setting
p29570[D]	Ramp-up scaling 1	100%
p29571[D]	Threshold speed 2	30 rmp
p29572[D]	Ramp-up scaling 2	100%
p29573[D]	Ramp-down scaling 1	100%
p29574[D]	Threshold speed 3	30 rmp
p29575[D]	Ramp-down scaling 2	100%
r29576	CO: Ramp-up scaling output	-
r29577	CO: Ramp-down scaling output	-
p29578[C]	CI: Ramp-up scaling input	1
p29579[C]	CI: Ramp-down scaling input	1
p29580	BI: Dual ramp enable	0

For more information about the parameters, see Chapter "Parameters (Page 663)".
8.5 Setpoints and setpoint processing
8.5.2.8 Function diagram 3040 - Direction limitation and direction reversal

Figure 8-98 FP 3040

8.5.2.9 Function diagram 3050 - Skip frequency bands

Figure 8-99 FD 3050

Figure 8-100 FP 3070

8.5.2.11 Function diagram 3080 - Ramp-function generator status word

Figure 8-101

8.6 Technology controller

8.6.1 PID technology controller

Overview

The technology controller controls process variables, e.g. pressure, temperature, level or flow.

Figure 8-102 Example: Technology controller as a level controller

Requirement

The U/f control or the vector control have been set.

Function description

Function diagram

The technology controller is implemented as a PID controller (controller with proportional, integral, and derivative action).

(1) The converter uses the start value when all the following conditions are simultaneously satisfied:

- The technology controller supplies the main setpoint (p2251 = 0).
- The ramp-function generator output of the technology controller has not yet reached the start value.

Figure 8-103 Simplified representation of the technology controller

Basic settings

The settings required as a minimum are marked in gray in the function diagram:

- Interconnect setpoint and actual values with signals of your choice
- Set ramp-function generator and controller parameters K_{p}, T_{1} and T_{d}.

Set controller parameters K_{p}, T_{1} and T_{d}.

Procedure

1. Temporarily set the ramp-up and ramp-down times of the ramp-function generator (p2257 and p2258) to zero.
2. Enter a setpoint step and monitor the associated actual value.

The slower the response of the process to be controlled, the longer you must monitor the controller response. Under certain circumstances (e.g. for a temperature control), you need to wait several minutes until you can evaluate the controller response.

	Optimum controller response for applications that do not permit any overshoot. The actual value approaches the setpoint without any significant overshoot.

	The actual value only slowly approaches the setpoint. - Increase the proportional component $\mathrm{K}_{\mathrm{p}}(\mathrm{p} 2280)$ and reduce the integration time T_{1} (p2285).
	The actual value only slowly approaches the setpoint with slight oscillation. - Increase the proportional component $\mathrm{K}_{\mathrm{p}}(\mathrm{p} 2280)$ and reduce the rate time $\mathrm{T}_{\mathrm{d}}(\mathrm{p} 2274)$
	The actual value quickly approaches the setpoint, but overshoots too much. - Decrease the proportional component $\mathrm{K}_{\mathrm{p}}(\mathrm{p} 2280)$ and increase the integration time T_{1} (p2285).

3. Set the ramp-up and ramp-down times of the ramp-function generator back to their original value.
You have manually set the technology controller.
\square

Limiting the output of the technology controller

In the factory setting, the output of the technology controller is limited to \pm maximum speed. You must change this limit, depending on your particular application. Example: The output of the technology controller supplies the speed setpoint for a pump. The pump should only run in the positive direction.

Parameter

Table 8-101 Basic settings

Number	Name	Factory setting
r0046[0...31]	CO/BO: Missing enable signals	-
r0052[0...15]	CO/BO: Status word 1	-
r0056[0...15]	CO/BO: Status word, closed-loop control	-
r1084	CO: Speed limit positive active	-
r1087	CO: Speed limit negative active	- rpm
p2200[C]	BI: Technology controller enable	0
p2252	Technology controller configuration	See parameter list
p2253[C]	Cl: Technology controller setpoint 1	0
p2254[C]	Cl: Technology controller setpoint 2	0
p2255	Technology controller setpoint 1 scaling	100%
p2256	Technology controller setpoint 2 scaling	100%
p2257	Technology controller ramp-up time	1 s
p2258	Technology controller ramp-down time	1 s
r2260	CO: Technology controller setpoint after ramp-function gen- erator	$-\%$
p2261	Technology controller setpoint filter time constant	0 s
r2262	CO: Technology controller setpoint after filter	$-\%$
p2263	Technology controller type	0
r2273	CO: Technology controller system deviation	$-\%$
p2274	Technology controller differentiation time constant	0 s
p2280	Technology controller proportional gain	See parameter list
p2285	Technology controller integral time	See parameter list
p2286	Bl: Hold technology controller integrator	56.13
p2289[C]	Cl: Technology controller precontrol signal	0
p2306	Technology controller system deviation inversion	0
p2339	Technology controller threshold value for I proportion stop at skip speed	$-s$
r2344	CO: Technology controller last speed setpoint (smoothed)	$-\%$
p2345	Technology controller fault response	0
r2349[0...13]	CO/BO: Technology controller status word	-
r3889[0...10]	CO/BO: ESM status word	-

Table 8-102 Limiting the output of the technology controller

Number	Name	Factory setting
p2290[C]	BI: Technology controller limitation enable	1
p2291	CO: Technology controller maximum limiting	100%
p2292	CO: Technology controller minimum limiting	0%
p2293	Technology controller ramp-up/ramp-down time	1 s

8.6 Technology controller

Number	Name	Factory setting
r2294	CO: Technology controller output signal	$-\%$
p2295	CO: Technology controller output scaling	100%
p2296[C]	CI: Technology controller output scaling	2295
p2297[C]	CI: Technology controller maximum limiting signal source	1084
p2298[C]	CI: Technology controller minimum limiting signal source	1087
p2299[C]	CI: Technology controller limitation offset	0
p2302	Technology controller output signal start value	0%

Table 8-103 Adapting the actual value of the technology controller

Number	Name	Factory setting
p2264[C]	Cl: Technology controller actual value	0
p2265	Technology controller actual value filter time constant	0 s
p2266	CO: Technology controller actual value after filter	$-\%$
p2267	Technology controller upper limit actual value	100%
p2268	Technology controller lower limit actual value	-100%
p2269	Technology controller gain actual value	100%
p2270	Technology controller actual value function	0
p2271	Technology controller actual value inversion	0
r2272	CO: Technology controller actual value scaled	$-\%$

Table 8-104 PID technology controller, fixed values (binary selection)

Number	Name	Factory setting
p2201[D]	CO: Technology controller fixed value 1	10\%
p2202[D]	CO: Technology controller fixed value 2	20\%
p2203[D]	CO: Technology controller fixed value 3	30\%
p2204[D]	CO: Technology controller fixed value 4	40\%
p2205[D]	CO: Technology controller fixed value 5	50\%
p2206[D]	CO: Technology controller fixed value 6	60\%
p2207[D]	CO: Technology controller fixed value 7	70\%
p2208[D]	CO: Technology controller fixed value 8	80\%
p2209[D]	CO: Technology controller fixed value 9	90\%
p2210[D]	CO: Technology controller fixed value 10	100\%
p2211[D]	CO: Technology controller fixed value 11	110\%
p2212[D]	CO: Technology controller fixed value 12	120\%
p2213[D]	CO: Technology controller fixed value 13	130\%
p2214[D]	CO: Technology controller fixed value 14	140\%
p2215[D]	CO: Technology controller fixed value 15	150\%
p2216[D]	Technology controller fixed value selection method	1
r2224	CO: Technology controller fixed value active	- \%

Number	Name	Factory setting
r2225	CO/BO: Technology controller fixed value selection status word	$-\%$
r2229	Technology controller number actual	-

Table 8-105 PID technology controller, fixed values (direct selection)

Number	Name	Factory setting
$p 2216[\mathrm{D}]$	Technology controller fixed value selection method	1
$p 2220[\mathrm{C}]$	BI: Technology controller fixed value selection bit 0	0
$p 2221[\mathrm{C}]$	BI: Technology controller fixed value selection bit 1	0
p2222[C]	BI: Technology controller fixed value selection bit 2	0
p2223[C]	BI: Technology controller fixed value selection bit 3	0
r2224	CO: Technology controller fixed value active	$-\%$
r2225	CO/BO: Technology controller fixed value selection status word	$-\%$
r2229	Technology controller number actual	-

Table 8-106 PID technology controller, motorized potentiometer

Number	Name	Factory setting
r2231	Technology controller motorized potentiometer setpoint memory	$-\%$
p2235[C]	BI: Technology controller motorized potentiometer, setpoint, raise	0
p2236[C]	BI: Technology controller motorized potentiometer, setpoint, lower	0
p2237[D]	Technology controller motorized potentiometer maximum value	100%
p2238[D]	Technology controller motorized potentiometer minimum value	-100%
p2240[D]	Technology controller motorized potentiometer start value	0%
r2245	CO: Technology controller motorized potentiometer, setpoint before RFG	$-\%$
p2247[D]	Technology controller motorized potentiometer ramp-up time	10 s
p2248[D]	Technology controller motorized potentiometer ramp-down time	10 s
r2250	CO: Technology controller motorized potentiometer, setpoint after RFG	$-\%$

Further information

You will find additional information on the following PID controller components on the Internet at:

- Setpoint input: Analog value or fixed setpoint
- Setpoint channel: Scaling, ramp-function generator and filter
- Actual value channel: Filter, limiting and signal processing
- PID controller: Principle of operation of the D component, inhibiting the I component and the control sense
- Enable, limiting the controller output and fault response
(2) FAQ (http://support.automation.siemens.com/WW/view/en/92556266)

8.6.1.1 Autotuning the PID technology controller

Overview

Autotuning is a converter function for the automatic optimization of the PID technology controller.

Requirement

The following requirements apply:

- The motor closed-loop control is set
- The PID technology controller must be set the same as when used in subsequent operation:
- The actual value is interconnected.
- Scalings, filter and ramp-function generator have been set.
- The PID technology controller is enabled (p2200 = 1 signal).

Function description

For active autotuning, the converter interrupts the connection between the PID technology controller and the speed controller. Instead of the PID technology controller output, the autotuning function specifies the speed setpoint.

Figure 8-104 Autotuning using closed-loop level control as example
The speed setpoint results from the technology setpoint and a superimposed rectangular signal with amplitude p2355. If actual value $=$ technology setpoint \pm p2355, the autotuning function switches the polarity of the superimposed signal. This causes the converter to excite the process variable for an oscillation.

Figure 8-105 Example for speed setpoint and actual process value for autotuning
The converter calculates the parameters of the PID controller from the determined oscillation frequency.

Executing autotuning

1. Select with p2350 the appropriate controller setting.
2. Switch on the motor.

The converter signals Alarm A07444.
3. Wait until alarm A07444 goes away.

The converter has recalculated parameters p2280, p2274 and p2285.
If the converter signals fault F07445:

- If possible, double p2354 and p2355.
- Repeat the autotuning with the changed parameters.

4. Back up the calculated values so that they are protected against power failure, e.g. using the BOP-2: OPTIONS \rightarrow RAM-ROM.

You have auto tuned the PID controller.
\square

Parameter

Number	Name	Factory setting
p2274	Technology controller differentiation time constant	0.0 s
p2280	Technology controller proportional gain	See parameter list
p2285	Technology controller integral time	See parameter list

Number	Name	Factory setting
p2350	Enable PID autotuning Automatic controller setting based on the "Ziegler Nichols" method. After completion of the autotuning, the converter sets p2350 $=0$. 0: No function 1: The process variable follows the setpoint after a sudden setpoint change (step function) relatively quickly, however with an overshoot. 2: Faster controller setting than for p2350 = 1 with larger overshoot of the controlled variable. 3: Slower controller setting than for p2350 = 1. Overshoot of the controlled variable is, to a large extent, avoided. 4: Controller setting after completion of the autotuning as for p2350 = 1. Optimize only the P and I action of the PID controller.	0
p2354	PID autotuning monitoring time	240 s
p2355	PID autotuning offset	5\%

8.6.1.2 Function diagram 7950-Technology controller fixed setpoints binary selection

Figure 8-106

8.6.1.3 Function diagram 7951-Technology controller fixed setpoints direct selection

Figure 8-107

8.6.1.4 Function diagram 7954 - Technology controller motorized potentiometer

Figure 8-108
8.6.1.5

Function diagram 7958-Technology controller closed-loop control

Figure 8-109
FP 7958

8.6.1.6 Function diagram 7959 - Technology controller Kp/Tn adaptation

Figure 8-110

8.6.2 Free technology controllers

Overview

The converter has three additional technology controllers.
The three "free technology controllers" have fewer setting options compared with the PID technology controller described above.

PID technology controller (Page 478)

Function description

$\mathrm{n}=0 \quad$ Free technology controller 0
$\mathrm{n}=1 \quad$ Free technology controller 1
$\mathrm{n}=2 \quad$ Free technology controller 2
Figure 8-111 Simplified function chart of the additional PID technology controllers, $\mathrm{n}=0 \ldots 2$
The additional technology controllers allow several process variables to be simultaneously controlled using one converter.

Example

An HVAC system with heating and cooling valves to process the air:

- The main controller controls the speed of the fan drive.
- The additional technology controllers control the cooling and heating via the two analog outputs.

Parameters

Table 8-107 Parameters for the free technology controller 0

Number	Name	Factory setting
p11000	BI: Free tec_ctrl 0 enable	0
p11026	Free tec_ctrl 0 unit selection	$1(\%)$
p11027	Free tec_ctrl 0 unit reference variable	1.00
p11028	Free tec_ctrl 0 sampling time	$2(256 \mathrm{~ms})$
r11049.0...11	CO/BO: Free tec_ctrl 0 status word	-

Number	Name	Factory setting
p11053	Cl: Free tec_ctrl 0 setpoint signal source	0
p11057	Free tec_ctrl 0 setpoint ramp-up time	1 s
p11058	Free tec_ctrl 0 setpoint ramp-down time	1 s
p11063	Free tec_ctrl 0 error signal inversion	0
p11064	Cl : Free tec_ctrl 0 actual value signal source	0
p11065	Free tec_ctrl 0 actual value smoothing time constant	0 s
p11067	Free tec_ctrl 0 actual value upper limit	100\%
p11068	Free tec_ctrl 0 actual value lower limit	-100 \%
p11071	Free tec_ctrl 0 actual value inversion	0
r11072	CO: Free tec_ctrl 0 actual value after limiter	-
r11073	CO: Free tec_ctrl 0 control deviation	-
p11074	Free tec_ctrl 0 differentiation time constant (T_{d})	0 s
p11080	Free tec_ctrl 0 proportional gain (K_{p})	1
p11085	Free tec_ctrl 0 integral time (T_{1})	30 s
p11091	CO: Free tec_ctrl 0 maximum limit	100\%
p11092	CO: Free tec_ctrl 0 minimum limit	0\%
p11093	Free tec_ctrl 0 ramp-up/ramp-down time limit	1 s
r11094	CO: Free tec_ctrl 0 output signal	-
p11097	CI: Free tec_ctrl 0 maximum limit signal source	11091[0]
p11098	Cl: Free tec_ctrl 0 minimum limit signal source	11092[0]
p11099	CI: Free tec_ctrl 0 offset limit signal source	0

8.6.3 Cascade control

Overview

?
The cascade control is ideal for applications in which, for example, significantly fluctuating pressures or flow rates are equalized.

Figure 8-112 Example: Cascade control for the pressure in a liquid pipe
Depending on the control deviation of the technology controller, the converter cascade control switches a maximum of three additional motors directly to the line supply via contactors.

Requirement

To deploy the cascade control, you must activate the technology controller.

Function description

Activate uncontrolled motors $\mathrm{M}_{1} \ldots \mathrm{M}_{2}$

Figure 8-113 Activate uncontrolled motors $M_{1} \ldots M_{2}$
Procedure for connecting an uncontrolled motor:

1. The speed-controlled motor turns with maximum speed p1082.
2. The control deviation of the technology controller is greater than p 2373 .
3. Time p2374 has expired.

The converter brakes the speed-controlled motor with ramp-down time p1121 to the activation/deactivation speed p2378. Until the activation/deactivation speed p2378 is attained, the converter deactivates the technology controller temporarily.
4. After switch-on delay p2384, the converter connects an uncontrolled motor.

Deactivate uncontrolled motors $M_{1} \ldots M_{2}$

Figure 8-114 Deactivate uncontrolled motors $M_{1} \ldots M_{2}$
Procedure for switching off an uncontrolled motor:

1. The speed-controlled motor turns with minimum speed p1080.
2. The control deviation of the technology controller is less than -p2373.
3. Time p2375 has expired.

The converter accelerates the speed-controlled motor with ramp-up time p1120 to the activation/deactivation speed p2378. Until the activation/deactivation speed p2378 is attained, the converter deactivates the technology controller temporarily.
4. After shutdown delay p2386, the converter disconnects an uncontrolled motor.

Sequence for activating and deactivating the $M_{1} \ldots M_{2}$ motors

Table 8-108 p2371 specifies the sequence for activating and deactivating the motors

p2371	$\rightarrow \rightarrow \rightarrow$ Sequence for activating motors $\rightarrow \rightarrow \rightarrow$			Power of the activated $M_{1} \ldots M_{3}$ motors compared with the speed-controlled DM motor	
	$\rightarrow \rightarrow \rightarrow$ Sequence for deactivating motors $\rightarrow \rightarrow \rightarrow$				
	Stage 1	Stage 2	Stage 3	$1 \times \mathrm{M}_{\mathrm{D}}$	$2 \times \mathrm{M}_{\text {D }}$
1	M_{1}			M_{1}	---
2	M_{1}	$\mathrm{M}_{1}+\mathrm{M}_{2}$		$\mathrm{M}_{1}, \mathrm{M}_{2}$	---
3	M_{1}	M_{2}	$\mathrm{M}_{1}+\mathrm{M}_{2}$	M_{1}	M_{2}

Parameter

Number	Name	Factory setting
p2200	Technology controller enable	0
p2251	Technology controller mode	0
p2370	Cascade control enable	0
p2371	Cascade control configuration	0
p2372	Cascade control motor selection mode	0
p2373	Cascade control activation threshold	20%
p2374	Cascade control activation delay	30 s
p2375	Cascade control deactivation delay	30 s
p2376	Cascade control overload threshold	25%
p2377	Cascade control interlock time	0 s
p2378	Cascade control activation/deactivation speed	50%
r2379	Cascade control status word	---
p2380	Cascade control operating hours	0 h
p2381	Cascade control maximum time for continuous mode	24 h
p2382	Cascade control absolute operating time limit	24 h
p2383	Cascade control deactivation sequence	0
p2384	Cascade control motor switch-on delay	0 s
p2385	Cascade control stop time activation speed	0 s
p2386	Cascade control motor switch-off delay	0 s
p2387	Cascade control stop time deactivation speed	0 s

More information

Interaction with the "Hibernation mode" function

In order that the "Cascade control" and "Hibernation mode" functions do not influence each other, you must make the following settings in the cascade control:

- p2392 < p2373

The restart value of the hibernation mode p2392 must be lower than the activation threshold for the cascade control p2373.

- p2373 < p 2376

The activation threshold for the cascade control p2373 must be lower than the overload threshold for the cascade control p2376.

- It is not permissible for the main drive to be in the hibernation mode.
- The actual speed must be higher than the restart speed for hibernation mode $(p 1080+p 2390) \times 1.05$.
- The value for the activation delay of the cascade control p2374 must be higher than the rampup time t_{y} from hibernation mode.
$\mathrm{t}_{\mathrm{y}}=(\mathrm{p} 1080+\mathrm{p} 2390) \times 1.05 \times \mathrm{p} 1120 \times \mathrm{p} 1139 / \mathrm{p} 1082$

8.6.4 Real time clock (RTC)

The real-time clock is the basis for time-dependent process controls, e.g.:

- To reduce the temperature of a heating control during the night
- To increase the pressure of a water supply at certain times during the day

Accept the real-time clock in the alarm and fault buffer

Using the real-time clock, you can track the sequence of alarms and faults over time. When an appropriate message occurs, the converter converts the real-time clock into the UTC time format (Universal Time Coordinated):

Date, time \Rightarrow 01.01.1970, 0:00 + d (days) +m (milliseconds)
The converter takes the number "d" of the days and the number " m " of the milliseconds in the alarm and fault times of the alarm and/or fault buffer.

Warnings, faults and system messages (Page 1179)

Converting UTC to RTC

An RTC can again be calculated in the UTC format from the saved fault or alarm time. In the Internet, you will find programs to convert from UTC to RTC, e.g.

UTC to RTC (http://unixtime-converter.com/)

Example:

Saved as alarm time in the alarm buffer:
r2123[0] = 2345 [ms]
r2145[0] = 14580 [days]
Number of seconds $=2345 / 1000+14580 \times 86400=1259712002$
Converting this number of seconds to RTC provides the date: 02.12.2009, 01:00:02.
The times specified for alarms and faults always refer to standard time.

Function and settings

The real time clock starts as soon as the converter's power supply is switched on for the first time. The real-time clock comprises the time in a 24 hour format and the date in the "day, month, year" format.

After a power supply interruption, the real time clock continues to run for approx. five days. If you wish to use the real-time clock, you must set the time and date once when commissioning. If you restore the converter factory setting, the converter only resets parameters p8402 and p8405 of the real-time clock. P8400 and p8401 are not reset.

Parameters

Number	Name	Factory setting
p8400[0 .. 2]	RTC time	0
p8401[0 .. 2]	RTC date	1.1 .1970
p8402[0 .. 8]	RTC daylight saving time setting	0
r8403	RTC daylight saving time actual difference	-
r8404	RTC weekday	-
p8405	Activate/deactivate RTC alarm A01098	1

8.6.5 Time switch (DTC)

The "time switch" (DTC) function, along with the real-time clock in the converter, offers the option of controlling when signals are switched on and off.

Examples:

- Switching temperature control from day to night mode.
- Switching a process control from weekday to weekend.

Principle of operation of the time switch (DTC)

The converter has three independently adjustable time switches. The time switch output can be interconnected with every binector input of your converter, e.g. with a digital output or a technology controller's enable signal.

Figure 8-115 Example of the response of the time switch.

Settings for the example with DTC1

- Enable parameterization of the DTC: $\mathrm{p} 8409=0$.

As long as the parameterization of the DTC is enabled, the converter holds the output of all three DTC ($\mathrm{r} 84 \times 3, x=1,2,3 ; r 84 \times 3.0$ normal, $\mathrm{r} 84 \times 3.1$ inverted status message) at LOW.

- Activate/deactivate the weekday
- p8410[0] = $0 \quad$ Monday
- p8410[1] = $1 \quad$ Tuesday
- p8410[2] = 1 Wednesday
- p8410[3] = $0 \quad$ Thursday
- p8410[4] = $1 \quad$ Friday
- p8410[5] = $1 \quad$ Saturday
- p8410[6] = $0 \quad$ Sunday
- Setting switching times:
- ON: p8411[0] = 20 (hh), p8411[1] = 0 (MM)
- OFF: p8412[0] = 10 (hh), p4812[1] = 0 (MM)
- Enable the setting: p8409 = 1 .

The converter re-enables the DTC output.

8.6.6
 Function diagram 7030-Technology functions, free technology controller

Figure 8-116 FP 7030
8.6.7

Function diagram 7036-Technology functions, free technology controller

Figure 8-117 FP 7036

8.7 Motor control

Overview

(M) The converter has two alternative methods to ensure the motor speed follows the configured

- U/f control
- Vector control

8.7.1 Reactor, filter and cable resistance at the converter output

Overview

Components between the converter and the motor influence the closed-loop control quality of the converter:

- Output reactor

In the factory setting, the converter assumes for the motor data identification that no output reactor is connected at the converter output.

- Motor cable with unusually high cable resistance.

For the motor data identification, the converter assumes a cable resistance $=20 \%$ of the stator resistance of the cold motor.

Function description

You must correctly set the components between the converter and motor to achieve an optimum closed-loop control quality

Procedure

1. Set $\mathrm{p} 0010=2$.
2. Set the cable resistance in p0352.
3. Set p0230 to the appropriate value.
4. Set p0235 to the appropriate value.
5. Set $\mathrm{p} 0010=0$.
6. Carry out the quick commissioning and the motor identification again.
\checkmark Quick commissioning using the BOP-2 operator panel (Page 203)
You have set the reactor, filter and cable resistance between the converter and motor. -

Parameters

Number	Name	Factory setting
p0010	Drive commissioning parameter filter	1
p0230	Drive filter type, motor side	0
p0235	Number of motor reactors in series	1
p0350[M]	Motor stator resistance, cold	0Ω
p0352[M]	Cable resistance	0Ω

8.7.2 Setting the saturation characteristic of the permanent magnet synchronous motor (third-party motor)

Overview

The motor control of the converter requires the simulation of the saturation characteristic "Quadrature axis flux over quadrature axis current" of the permanent magnet synchronous motor.

The saturation characteristics of Siemens motors are stored in the converter.
For non-Siemens motors, you need to set the saturation characteristic using the motor data sheet, for example.

Precondition

Quick commissioning has been completed.
The saturation characteristic for a third-party motor is available.

Procedure

1. Determine the following values using the motor data sheet:

- Set the current value of the saturation characteristic iq[0] ... iq[4].
- Determine the flux values psiq[0] ... psiq[4] associated with the current values.

Figure 8-118 Saturation characteristic of the permanent magnet synchronous motor

If the saturation characteristic of the third-party motor is not available, leave parameters p356 and p362 ... p369 in their factory settings.
Commissioning usually leads to a satisfactory control behavior only with a correctly set saturation characteristic.
2. Set p0356 $=$ psiq[0] $/(20 \% \cdot p 0305)$
3. Set the following parameters:

- p0362 = psiq[1] / (p0356 • p0305) 100%
- p0363 = psiq[2] / (p0356 • p0305) • 100%
- p0364 = psiq[3] / (p0356 • p0305) • 100%
- p0365 = psiq[4] / (p0356 \cdot p0305) $\cdot 100 \%$
- p0366 = iq[1] / p0305 • 100 \%
- p0367 = iq[2] / p0305 • 100 \%
- p0368 = iq[3] / p0305 • 100 \%
- p0369 = iq[4] / p0305 • 100%

Alternatively, you can calculate parameters p0362 ... p0365 based on inductances L1 ... L4:

- p0362 = L1 / p0356 • p0366
- p0363 = L2 / p0356 • p0367
- p0364 = L3 / p0356 • p0368
- p0365 = L4 / p0356 • p0369

Result

The parameters for emulating the saturation characteristic are defined in the converter in ascending order:

- $20 \%<\mathrm{p} 0362<\mathrm{p} 0363<\mathrm{p} 0364<\mathrm{p} 0365$
- $20 \%<$ p0366 < p $0367<$ p $0368<$ p0369

The converter extrapolates the characteristic curve linearly for currents iq > iq[4].

8.7.3 V/f control

8.7.3.1 U/f control

Overview

1) In the "Flux Current Control (FCC)" U/f version, the converter controls the motor current (starting current) at low speeds.
Figure 8-119 Simplified function diagram of the U/f control
The U/f control is a speed feedforward control with the following properties:

- The converter sets the output voltage on the basis of the U/f characteristic.
- The output frequency is essentially calculated from the speed setpoint and the number of pole pairs of the motor.
- The slip compensation corrects the output frequency depending on the load and thus increases the speed accuracy.
- The omission of a control loop means that the U/f control is stable in all cases.
- In applications with higher speed accuracy requirements, a load-dependent voltage boost can be selected (flux current control, FCC)

For operation of the motor with U/f control, you must set at least the following subfunctions appropriate for your application:

- U/f characteristic
- Voltage boost

Function description

The converter has different U/f characteristics.

(1) The voltage boost of the characteristic optimizes motor start-up
(2) With flux current control (FCC), the converter compensates the voltage drop across the stator resistance of the motor

Figure 8-120 U/f characteristics of the converter
With increasing speed or output frequency, the converter increases its output voltage U. The maximum possible output voltage of the converter depends on the line voltage.

The converter can increase the output frequency even at the maximum output voltage. The motor is then operated with field weakening.

The value of the output voltage at the rated motor frequency also depends on the following variables:

The value of the output voltage at the rated motor frequency p0310 also depends on the following variables:

- Ratio between the converter size and the motor size
- Line voltage
- Line impedance
- Actual motor torque

The maximum possible output voltage as a function of the input voltage is provided in the technical data.

Table 8-109 Linear and parabolic characteristics

Requirement	Application examples	Remark	Characteristic	Parameter
The required tor- que is independ- ent of the speed	Eccentric-worm pump, compressor	-	Linear	p1300 $=0$
	The converter compensates for the voltage drops across the stator resistance. Recom- mended for motors less than 7.5 kW. Precondition: The motor data has been set according to the rating plate and the motor has been identified after the basic commis- sioning.	Linear with Flux Current Control (FCC)	p1300=1	
The required tor- que increases with the speed	Centrifugal pumps, radi- al fans, axial fans, com- pressors	Lower losses in the motor and converter than for a linear characteristic.	Parabolic	p1300=2

Table 8-110 Characteristics for special applications
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Requirement } & \text { Application examples } & \text { Remark } & \text { Characteristic } & \text { Parameter } \\
\hline \begin{array}{l}\text { Applications with a } \\
\text { low dynamic re- } \\
\text { sponse and con- } \\
\text { stant speed }\end{array} & \begin{array}{l}\text { Centrifugal pumps, radi- } \\
\text { al fans, axial fans }\end{array} & \begin{array}{l}\text { The ECO mode saves more energy than the } \\
\text { parabolic characteristic. } \\
\text { Ifthe speed setpoint is reached and remains } \\
\text { unchanged for 5 seconds, the converter re- } \\
\text { duces its output voltage again. }\end{array} & \text { ECO mode } & \begin{array}{l}\text { p1300 }=4 \\
\text { (linear char- } \\
\text { acteristic } \\
\text { ECO) }\end{array}
$$

or

p1300=7

(parabolic

characteris-

tic ECO)\end{array}\right]\)| |
| :--- |

Parameters

Number	Name	Factory setting
r0025	CO: Output voltage, smoothed	- Vrms
r0066	CO: Output frequency	-Hz
r0071	Output voltage, maximum	- Vrms
p0304[M]	Rated motor voltage	0 Vrms
p0310[M]	Rated motor frequency	0 Hz
p1300[D]	Open-loop/closed-loop control operating mode	See parameter list
p1333[D]	U/f control FCC starting frequency	0 Hz
p1334[D]	U/f control slip compensation starting frequency	0 Hz
p1335[D]	Slip compensation scaling	0%
p1338[D]	U/f mode resonance damping gain	0

8.7.3.2 Optimizing motor starting

Overview

After selection of the U/f characteristic, no further settings are required in most applications. In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

To improve the starting behavior of the motor, a voltage boost can be set for the U/f characteristic at low speeds.

Requirement

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s (<1 kW) ... $10 \mathrm{~s}(>10 \mathrm{~kW})$.

Function description

Setting the voltage boost for U/f control

The converter boosts the voltage corresponding to the starting currents p1310 ... p1312.

Figure 8-121 The resulting voltage boost using a linear characteristic as example
Increase parameter values p1310 ... p1312 in steps of $\leq 5 \%$. Excessively high values in p1310 ... p1312 can cause the motor to overheat and switch off (trip) the converter due to overcurrent.
If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

Procedure

1. Switch on the motor with a setpoint of a few revolutions per minute.
2. Check whether the motor rotates smoothly.
3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
4. Accelerate the motor to the maximum speed with maximum load.
5. Check that the motor follows the setpoint.
6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

You have set the voltage boost.
\square

Parameter

Number	Name	Factory setting
r0071	Output voltage, maximum	Vrms
p0310[M]	Rated motor frequency	0 Hz
p1310[D]	Starting current (voltage boost) permanent	50%
p1311[D]	Starting current (voltage boost) when accelerating	0%
p1312[D]	Starting current (voltage boost) when starting	0%

8.7.3.3 U/f control with Standard Drive Control application class

Overview

Figure 8-122 Default setting of the U/f control after selecting Standard Drive Control
Selecting application class Standard Drive Control in the quick commissioning adapts the structure and the setting options of the U/f control as follows:

- Starting current closed-loop control: At low speeds, a controlled motor current reduces the tendency of the motor to oscillate.
- With increasing speed, the converter changes from closed-loop starting current control to U/ f control with load-dependent voltage boost.
- The slip compensation is activated.
- Soft starting is not possible.
- Reduced setting options

Function description

Characteristics after selecting the application class Standard Drive Control

(1) The closed-loop starting current control optimizes the speed control at low speeds
(2) The converter compensates the voltage drop across the motor stator resistance

Figure 8-123 Characteristics after selecting Standard Drive Control

The application class Standard Drive Control reduces the number of characteristics and setting options:

- A linear and a parabolic characteristic are available.
- Selecting a technological application defines the characteristics.

Table 8-111 Linear and parabolic characteristics

Requirement	Application exam- ples	Remark	Charac- teristic	Parameter
The required torque is inde- pendent of the speed	Eccentric-worm pump, compressor	-	Linear	p0501 =0
The required torque increa- ses with the speed	Centrifugal pumps, radial fans, axial fans	Lower losses in the motor and con- verter than for a linear characteris- tic.	Parabol- ic	p0501=1

Parameter

Number	Name	Factory setting
r0025	CO: Output voltage, smoothed	- Vrms
r0066	CO: Output frequency	-Hz
r0071	Output voltage, maximum	- Vrms
p0310[M]	Rated motor frequency	0 Hz
p501	Technology application	0

8.7.3.4 Optimizing motor starting using Standard Drive Control

Overview

After selecting application class Standard Drive Control, in most applications no additional settings need to be made.

At standstill, the converter ensures that at least the rated motor magnetizing current flows. Magnetizing current p0320 approximately corresponds to the no-load current at 50%... 80% of the rated motor speed.
In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

The current can be increased at low speeds to improve the starting behavior of the motor.

Requirement

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s (< 1 kW) ... $10 \mathrm{~s}(>10 \mathrm{~kW}$).

Function description

Starting current (boost) after selecting the application class Standard Drive Control

Figure 8-124 The resulting voltage boost using a linear characteristic as example
The converter boosts the voltage corresponding to the starting currents p1310 ... p1312. Increase parameter values p1310 ... p1312 in steps of $\leq 5 \%$. Excessively high values in p1310 ... p1312 can cause the motor to overheat and switch off (trip) the converter due to overcurrent.

If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

Procedure

1. Switch on the motor with a setpoint of a few revolutions per minute.
2. Check whether the motor rotates smoothly.
3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
4. Accelerate the motor with the maximum load.
5. Check that the motor follows the setpoint.
6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

You have set the voltage boost.
\square

Parameter

Number	Name	Factory setting
r0071	Output voltage, maximum	Vrms
p0310[M]	Rated motor frequency	0 Hz
p0320[M]	Rated motor magnetizing current / short-circuit current	0 Arms
p1310[D]	Starting current (voltage boost) permanent	50%
p1311[D]	Starting current (voltage boost) when accelerating	0%
p1312[D]	Starting current (voltage boost) when starting	0%

8.7.3.5 Function diagram 6300-U/f control, overview

Figure 8-125 FP 6300

8.7.3.6 Function diagram 6301 - U/f control, characteristic and voltage boost

Figure 8-126

8.7.3.7 Function diagram 6310 - U/f control, resonance damping and slip compensation

Figure 8-127 FP 6310

8.7.3.8 Function diagram 6320 - U/f control, Vdc_max and Vdc_min controllers

Figure 8-128 FP 6320

8.7.3.9 Function diagram 6850-Standard Drive Control, overview

Figure 8-129 FP 6850
8.7.3.10 Function diagram 6851 - Standard Drive Control, characteristic and voltage boost

Figure 8-130
8.7.3.11 Function diagram 6853-Standard Drive Control, resonance damping and slip compensation

Figure 8-131 FP 6853
8.7.3.12 Function diagram 6854 - Standard Drive Control, Vdc_max and Vdc_min controllers

Figure 8-132 FP 6854
8.7.3.13 Function diagram 6855 - Standard Drive Control, DC quantity control

Figure 8-133 FP 6855
8.7.3.14 Function diagram 6856 - Standard Drive Control, interface to the Power Module

Figure 8-134 FP 6856

8.7.4 Encoderless vector control

8.7.4.1 Structure of vector control without encoder (sensorless)

Overview

The vector control comprises closed-loop current control and a higher-level closed-loop speed control.

1) for induction motors
2) Settings that are required

Figure 8-135 Simplified function diagram for sensorless vector control with speed controller
Using the motor model, the converter calculates the following closed-loop control signals from the measured phase currents and the output voltage:

- Current component I_{q}
- Current component I_{q}
- Speed actual value

The setpoint of the current component I_{d} (flux setpoint) is obtained from the motor data. For speeds above the rated speed, the converter reduces the flux setpoint along the field weakening characteristic.

When the speed setpoint is increased, the speed controller responds with a higher setpoint for current component I_{q} (torque setpoint). The closed-loop control responds to a higher torque setpoint by adding a higher slip frequency to the output frequency. The higher output frequency also results in a higher motor slip, which is proportional to the accelerating torque. I_{q} and
I_{d} controllers keep the motor flux constant using the output voltage, and adjust the matching current component I_{q} in the motor.

Settings that are required

Restart quick commissioning and select the vector control in quick commissioning.
C Commissioning (Page 193)
In order to achieve a satisfactory control response, as a minimum you must set the partial functions - shown with gray background in the diagram above - to match your particular application:

- Motor and current model: In the quick commissioning, correctly set the motor data on the rating plate corresponding to the connection type (Y / Δ), and carry out the motor data identification routine at standstill.
- Speed limits and torque limits: In the quick commissioning, set the maximum speed (p 1082) and current limit (p0640) to match your particular application. When exiting quick commissioning, the converter calculates the torque and power limits corresponding to the current limit. The actual torque limits are obtained from the converted current and power limits and the set torque limits.
- Speed controller: Start the rotating measurement of the motor data identification. You must manually optimize the controller if the rotating measurement is not possible.

Default settings after selecting the application class Dynamic Drive Control

Selecting application class Dynamic Drive Control adapts the structure of the vector control and reduces the setting options:

	Vector control after selecting the applica- tion class Dynamic Drive Control	Vector control without se- lecting an application class
Hold or set the integral component of the speed controller	Not possible	Possible
Acceleration model for precontrol	Default setting	Can be activated
Motor data identification at standstill or with rotating measurement	Shortened, with op- tional transition into operation	Complete

8.7.4.2 Optimizing the speed controller

Optimum control response - post optimization not required

Preconditions for assessing the controller response:

- The moment of inertia of the load is constant and does not depend on the speed
- The converter does not reach the set torque limits during acceleration
- You operate the motor in the range $40 \% \ldots 60 \%$ of its rated speed

If the motor exhibits the following response, the speed control is well set and you do not have to adapt the speed controller manually:

The speed setpoint (broken line) increases with the set ramp-up time and rounding.
The speed actual value follows the setpoint without any overshoot.

Control optimization required

In some cases, the self optimization result is not satisfactory, or self optimization is not possible as the motor cannot freely rotate.

Initially, the speed actual value follows the speed setpoint with some delay, and then overshoots the speed setpoint.

First, the actual speed value increases faster than the speed setpoint. Before the setpoint reaches its final value, it passes the actual value. Finally, the actual value approaches the setpoint without any significant overshoot.

In the two cases describe above, we recommend that you manually optimize the speed control.

Optimizing the speed controller

Requirements

- Torque precontrol is active: p1496 = 100%.
- The load moment of inertia is constant and independent of the speed.
- The converter requires $10 \% \ldots 50 \%$ of the rated torque to accelerate. When necessary, adapt the ramp-up and ramp-down times of the ramp-function generator (p1120 and p1121).

Procedure

1. Switch on the motor.
2. Enter a speed setpoint of approximately 40% of the rated speed.
3. Wait until the actual speed has stabilized.
4. Increase the setpoint up to a maximum of 60% of the rated speed.
5. Monitor the associated characteristic of the setpoint and actual speed.
6. Optimize the controller by adapting the ratio of the moments of inertia of the load and motor (p0342):

Initially, the speed actual value follows the speed setpoint with
some delay, and then overshoots the speed setpoint.

7. Switch off the motor.
8. Set $\mathrm{p} 0340=4$. The converter again calculates the speed controller parameters.
9. Switch on the motor.
10. Over the complete speed range check as to whether the speed control operates satisfactorily with the optimized settings.

You have optimized the speed controller.
\square
When necessary, set the ramp-up and ramp-down times of the ramp-function generator (p 1120 and p 1121) back to the value before optimization.

Mastering critical applications

The drive control can become unstable for drives with a high load moment of inertia and gearbox backlash or a coupling between the motor and load that can possibly oscillate. In this case, we recommend the following settings:

- Increase p1452 (smoothing the speed actual value).
- Increase p1472 (integral time T_{1}): $\mathrm{T}_{1} \geq 4 \cdot \mathrm{p} 1452$
- If, after these measures, the speed controller does not operate with an adequate dynamic performance, then increase p1470 (gain K_{p}) step-by-step.

Parameters

Table 8-112 Encoderless speed control

Number	Name	Factory setting
p0342[M]	Ratio between the total and motor moments of inertia	1
p1452	Speed controller actual speed value smoothing time (enco- derless)	10 ms
p1470[D]	Speed controller encoderless operation P gain	0.3
p1472[D]	Speed controller encoderless operation integral time	20 ms
p1496[D]	Acceleration precontrol scaling	0%

8.7.4.3 Optimizing operation of the permanent magnet synchronous motor

Overview

An unfavorable parameter setting can lead to malfunctions or unwanted behavior of the motor during operation of the permanent magnet synchronous motor.

Description

Problem	Possible cause	Solution
The converter reports the F07807 fault (fault current, overcurrent or ground fault) during the standstill measurement of the motor identification or during the pole position identification.	The value of the rated motor voltage is too high.	1. Check the motor wiring and insulation resistance. 2. Start quick commissioning. 3. Reduce the rated motor voltage p0304 by 5 V ... 10 V . 4. Restart the standstill measurement of the motor identification or the pole position identification. 5. If the converter reports the F07807 fault again, go back to step 2.
The motor current increases significantly when operating at low speeds continually, despite no mechanical problems being present.	You are operating the motor continuously at a speed < p1755 or < 15% of the rated speed.	Set p1080 > p1755.
The converter signals one of the following faults: - F07967 - F07969	The motor has significant pole saliency.	Change the PolID technique: p1980 $=4$ or p1980 $=10$.
	The current is too high during pole position identification.	Decrease the value of p329 incrementally by 10%.
The motor stalls or starts with difficulty.	The converter does not generate enough starting torque	Increase the value of p1610 or/ and p1611 incrementally by 10%. Let the motor cool down before each start attempt.
	Motor is oversaturated.	Decrease p1610 and p1611 incrementally by 10%. Increase ramp-up time p1120. Increase initial rounding time p1130.

Problem	Possible cause	Solution
The motor speed tends to oscil- late.	The transition from open loop to closed loop phase during acceler- ation is not stable.	Increase p1755 incrementally by approx. 10% until the motor ac- celerates smoothly and stably.
	The speed controller gain is too high.	Optimize the speed controller.
Motor overspeed	The speed overshoots after the motor accelerates.	Increase ramp-up time p1120 or final rounding time p1131. Optimize the speed controller.

Parameters

Number	Name	Factory setting
p0304[M]	Rated motor voltage	0 V
p0305[M]	Rated motor current	0 A
p0307[M]	Rated motor power	0 kW
p0310[M]	Rated motor frequency	0 Hz
p0311[M]	Rated motor speed	0 rpm
p0314[M]	Motor pole pair number	0
p0316[M]	Motor torque constant	$0 \mathrm{Nm} / \mathrm{A}$
p0329[M]	Motor pole position identification current	0 A
p1080[D]	Minimum speed	0 rpm
p1120[C]	Ramp-function generator ramp-up time	Dependent on rated power
p1131[C]	Ramp-function generator final rounding time	0 s
p1610[D]	Torque setpoint static (sensorless)	50 \%
p1611[D]	Additional acceleration torque (sensorless)	30%
p1755[D]	Motor model changeover speed sensorless operation	210000 rpm
p1980	PolID technique	4

Additional information

You can find more information on the Internet.
Commissioning a permanent magnet synchronous motor (https:// support.industry.siemens.com/cs/us/en/view/109780815)

8.7.4.4 Function diagram 6020 - Vector control, overview

Figure 8-136 FP 6020
8.7 Motor control

8.7.4.5 Function diagram 6030 - Vector control, speed setpoint

Figure 8-137 FP 6030

8.7.4.6
 Function diagram 6031 - Vector control, acceleration model

Figure 8-138

8.7.4.7 Function diagram 6040 - Vector control, speed controller

Figure 8-139

8.7.4.8 Function diagram 6050 - Vector control, Kp and Tn adaptation

Figure 8-140 FP 6050

8.7.4.9 Function diagram 6060 - Vector control, torque setpoint

Figure 8-141 FP 6060
8.7.4.10 Function diagram 6220 - Vector control, Vdc_max and Vdc_min controllers

Figure 8-142 FP 6220
8.7.4.11 Function diagram 6490 - Vector control, closed-loop speed control configuration

Figure 8-143

8.7.4.12 Function diagram 6491 - Vector control, flux control configuration

Figure 8-144

8.7.4.13 Function diagram 6630 - Vector control, upper and lower torque limits

Figure 8-145 FP 6630
8.7.4.14 Function diagram 6640 - Vector control, current/power/torque limits

Figure 8-146 FP 6640

Figure 8-147 FP 6700

8.7.4.16 Function diagram 6710 - Vector control, current setpoint filter

Figure 8-148 FP 6710

8.7.4.17 Function diagram 6714 - Vector control, Iq and Id controllers

Figure 8-149 FP 6714

8.7.4.18
 Function diagram 6721 - Vector control, Id setpoint

Figure 8-150 FP 6721

Figure 8-151

Figure 8-152

8.7.4.21 Function diagram 6724 - Vector control, field weakening controller

Figure 8-153 FP 6724
8.7.4.22 Function diagram 6730-Vector control, interface to the induction motor

Figure 8-154 FP 6730
8.7.4.23 Function diagram 6731 - Vector control, interface to the synchronous motor

Figure 8-155 FP 6731
8.7.4.24 Function diagram 6790 - Vector control, flux setpoint reluctance motor

Figure 8-156

8.7.4.25 Function diagram 6791 - Vector control, Id setpoint reluctance motor

Figure 8-157
8.7.4.26 Function diagram 6792 - Vector control, interface to the reluctance motor

Figure 8-158 FP 6792
8.7.4.27 Function diagram 6797 - Vector control, closed-loop DC quantity control

Figure 8-159 FP 6797
8.7.4.28 Function diagram 6799 - Vector control, display signals

Figure 8-160
FP 6799

8.7.4.29
 Function diagram 6820 - Dynamic Drive Control, overview

Figure 8-161

Figure 8-162 FP 6821

8.7.4.31 Function diagram 6822 - Dynamic Drive Control, acceleration model

Figure 8-163 FP 6822
8.7.4.32 Function diagram 6824 - Dynamic Drive Control, speed controller

Figure 8-164
FP 6824

8.7.4.33 Function diagram 6826 - Dynamic Drive Control, torque setpoint

Figure 8-165 FP 6826

8.7.4.34 Function diagram 6827 - Dynamic Drive Control, Vdc_max and Vdc_min controller

Figure 8-166 FP 6827
8.7.4.35 Function diagram 6828 - Dynamic Drive Control, current/power/torque limits

Figure 8-167 FP 6828

8.7.4.36 Function diagram 6832 - Dynamic Drive Control, current setpoint filter

Figure 8-168
FP 6832

8.7.4.37 Function diagram 6833 - Dynamic Drive Control, Iq and Id controllers

Figure 8-169

8.7.4.38 Function diagram 6834 - Dynamic Drive Control, flux setpoint

Figure 8-170 FP 6834
8.7.4.39 Function diagram 6835 - Dynamic Drive Control, Id setpoint reluctance motor

Figure 8-171
FP 6835
8.7.4.40 Function diagram 6836 - Dynamic Drive Control, Id setpoint synchronous motor

Figure 8-172
FP 6836
8.7.4.41 Function diagram 6837 - Dynamic Drive Control, field weakening characteristic

Figure 8-173
FP 6837
8.7.4.42 Function diagram 6838-Dynamic Drive Control, field weakening controller induction motor

Advanced commissioning
8.7 Motor control

Figure 8-174 FP 6838
8.7.4.43 Function diagram 6839 - Dynamic Drive Control, field weakening controller synchronous motor

Advanced commissioning
8.7 Motor control

Figure 8-175 FP 6839
8.7.4.44 Function diagram 6841 - Dynamic Drive Control, interface to the induction motor

Figure 8-176 FP 6841

Figure 8-177 FP 6842

Figure 8-178 FP 6843

8.7.4.47 Function diagram 6844 - Dynamic Drive Control, DC quantity control

Figure 8-179 FP 6844

8.7.5 Electrically braking the motor

Overview

Braking with the motor in generator operation

If the motor brakes the connected load electrically, it converts the kinetic energy of the motor into electrical energy. The electrical energy E released on braking the load is proportional to the moment of inertia J of the motor and load and to the square of the speed n . The motor attempts to pass the energy on to the converter.

Main features of the braking functions

DC braking

DC braking prevents the motor from transferring the braking energy to the converter. The converter impresses a DC current into the motor, which brakes the motor. The motor converts the braking energy E of the load into heat.

- Advantage: The motor brakes the load without the converter having to process regenerative power.
- Disadvantages: significant increase in the motor temperature; no defined braking characteristics; no constant braking torque; no braking torque at standstill; braking energy E is lost as heat; does not function when the power fails

Compound braking

One version of DC braking. The converter brakes the motor with a defined ramp-down time and superimposes a DC current on the output current.

8.7.5.1 DC braking

Requirement

DC braking is not possible with a permanent magnet synchronous motor.

Function description

NOTICE

Motor overheating as a result of DC braking
The motor will overheat if you use DC braking too frequently or use it for too long. This may damage the motor.

- Monitor the motor temperature.
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

With DC braking, the converter outputs an internal OFF2 command for the time that it takes to de-energize the motor p0347-and then impresses the braking current for the duration of the DC braking.

The DC-braking function is possible only for induction motors.
4 different events initiate DC braking
DC braking when falling below a starting speed

DC braking when a fault occurs

DC braking initiated by a control command

DC braking when the motor is switched off

Parameters

Settings for DC braking

Number	Name	Factory setting
$p 0347[\mathrm{M}]$	Motor de-excitation time	0 s
$\mathrm{p} 1230[\mathrm{C}]$	BI: DC braking activation	0
$\mathrm{p} 1231[\mathrm{M}]$	Configuring DC braking	0
$\mathrm{p} 1232[\mathrm{M}]$	DC braking, braking current	0 Arms
$\mathrm{p} 1233[\mathrm{M}]$	DC braking duration	1 s
$\mathrm{p} 1234[\mathrm{M}]$	Speed at the start of DC braking	210000 rpm
$\mathrm{r} 1239[8 \ldots 13]$	CO/BO: DC braking status word	-

Table 8-113 Configuring DC braking as a response to faults

Number	Name	Factory setting
p2100[0...19]	Changing the fault reaction, fault number	0
p2101[0...19]	Changing the fault reaction, reaction	0

8.7.5.2 Compound braking

Requirement

Compound braking is not possible with a permanent magnet synchronous motor.

Function description

Figure 8-180 Motor brakes with and without active compound braking
Compound braking prevents the DC-link voltage increasing above a critical value. The converter activates compound braking depending on the DC-link voltage. Above a DC-link voltage threshold (r1282), the converter adds a DC current to the motor current. The DC current brakes the motor and prevents an excessive increase in the DC-link voltage.

Note

Compound braking is possible only with the U/f control.
Compound braking does not operate in the following cases:

- The "flying restart" function is active
- DC braking is active
- Vector control is selected

NOTICE

Overheating of the motor due to compound braking

The motor will overheat if you use compound braking too frequently or for too long. This may damage the motor.

- Monitor the motor temperature
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

Parameters

Table 8-114 Setting and enabling compound braking

Number	Name	Factory setting
r1282	Vdc_max controller, switch-on level (U/f)	- V
p3856[D]	Compound braking current (\%)	0%
r3859.0	CO/BO: Compound braking/DC quantity control status word	-

8.7.5.3 Function diagram 7017-Technology functions, DC braking

Figure 8-181 FP 7017

8.7.6 Pulse frequency wobbling

Note

This function is only available for the converters of frame sizes FSH and FSJ.

Overview

Pulse frequency wobbling damps the spectral components, which can generate unwanted noise in the motor. Wobbling is activated by default for the converters of frame sizes FSH and FSJ.

Wobbling causes the pulse frequency in a modulation interval to deviate from the setpoint frequency. This means that the actual pulse frequency might be higher than the average pulse frequency required.

A noise generator can be used to vary the pulse frequency around an average value. In this case, the average pulse frequency is equal to the setpoint pulse frequency. The pulse frequency can be varied in every current controller cycle if the cycle is constant. Current measurement errors resulting from asynchronous pulse and control intervals are compensated by a correction in the actual current value.

Parameter p1811[0...n] can be set to adjust the magnitude of variation in the pulse frequency wobble between 0 and 20%. The factory setting is 10%. For a wobble amplitude of p1811=0\%, the maximum possible pulse frequency is $\mathrm{p} 1800=2 \times 1 /$ current controller cycle (4 kHz). With a wobble amplitude setting of p1811>0, the maximum possible pulse frequency is p1800 $=1$ / current controller cycle (2 kHz). These conditions apply to all indices.

Parameters

Parameter	Description	Factory setting
p1811	Pulse frequency wobbulation amplitude	10%

F For more information about the parameters, see Chapter "Parameter list (Page 666)".

8.7.7 Pole position identification

Overview

The converter must know the pole position of the rotor in the motor in order to be able to control the torque and speed of a synchronous motor.

For encoderless motors, the converter determines the pole position of the motor via a measurement.

Precondition

The motor remains at a standstill.

Function description

The pole position of a synchronous motor is the deviation between the magnetic axis in the rotor and the magnetic axis in the stator.
The image below shows you the pole position of a synchronous motor in a simplified cross-section.

For permanent magnet synchronous motors, the following methods are possible for pole position identification:

- p 1980 = 1: The most reliable and fastest, but also the loudest method During quick commissioning the converter sets p1980 $=1$.
- $\mathrm{p} 1980=4$: Comparatively quiet method in two steps
- $\mathrm{p} 1980=10$: Comparatively slow method. This method is only possible if the motor can rotate freely during pole position identification.

If you are using a Siemens motor, then the converter automatically selects the appropriate technique to determine the pole position.

Each time the motor is switched on (ON/OFF1 command), the converter identifies the pole position.

Pole position identification
Figure 8-182 Pole position identification after switching on the motor
As a result of the pole position identification, the motor responds to an ON command with a delay of up to 1 second. The motor shaft can rotate slightly during the pole position identification.

Parameters

Parameters	Description	Factory setting
p1980	PolID technique	4
r1992	CO/BO: PolID diagnostics	-
p1998[D]	PolID circle center point	0.0 [A]

8.8 Drive protection

8.8.1 Overcurrent protection

Overview

The U/f control prevents too high a motor current by influencing the output frequency and the motor voltage (I-max controller).

Requirement

You have selected U/f control.
The application must allow the motor torque to decrease at a lower speed.

Function description

The I-max controller influences the output frequency and the motor voltage.
If the motor current reaches the current limit during acceleration, the I-max controller extends the acceleration operation.

If the motor load is so high during steady-state operation that the motor current reaches the current limit, then the I-max controller reduces the speed and the motor voltage until the motor current returns to the permissible range again.

If the motor current reaches the current limit during deceleration, the I-max controller extends the deceleration operation.

Changing the settings

The factory setting for proportional gain and the integral time of the I-max controller ensures faultless operation in the vast majority of cases.

The factory setting of the I-max controller must only be changed in the following exceptional cases:

- Speed or torque of the motor tend to cause vibrations upon reaching the current limit.
- The converter goes into the fault state with an overcurrent message.

Parameter

Number	Name	Factory setting
r0056.0 \ldots 13	CO/BO: Status word, closed-loop control	-
p0305[M]	Rated motor current	0 Arms
p0640[D]	Current limit	0 Arms
p1340[D]	I_max frequency controller proportional gain	0
p1341[D]	I_max frequency controller integral time	0.300 s
r1343	CO: I_max controller frequency output	- rpm

8.8.2 Converter protection using temperature monitoring

Overview

The converter temperature is essentially defined by the following effects:
- The ambient temperature

- The ohmic losses increasing with the output current
- Switching losses increasing with the pulse frequency

Monitoring types

The converter monitors its temperature using the following monitoring types:

- $I^{2} t$ monitoring (alarm A07805, fault F30005)
- Measuring the chip temperature of the Power Module (alarm A05006, fault F30024)
- Measuring the heat sink temperature of the Power Module (alarm A05000, fault F30004)

Function description

Overload response for p0290 $=0$
The converter responds depending on the control mode that has been set:

- In vector control, the converter reduces the output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.
If the measure cannot prevent a converter thermal overload, then the converter switches off the motor with fault F30024.

Overload response for $\mathbf{p 0 2 9 0}=1$
The converter immediately switches off the motor with fault F30024.
Overload response for p0290 = 2
We recommend this setting for drives with square-law torque characteristic, e.g. fans.

The converter responds in 2 stages:

1. If you operate the converter with increased pulse frequency setpoint p 1800 , then the converter reduces its pulse frequency starting at p1800.
In spite of the temporarily reduced pulse frequency, the base-load output current remains unchanged at the value that is assigned to parameter p1800.

Figure 8-183 Derating characteristic and base load output current for overload
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
2. If it is not possible to temporarily reduce the pulse frequency, or the risk of thermal overload cannot be prevented, then stage 2 follows:

- In vector control, the converter reduces its output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Overload response for $\mathbf{p 0 2 9 0}=3$
If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

In spite of the temporarily reduced pulse frequency, the maximum output current remains unchanged at the value that is assigned to the pulse frequency setpoint. Also see p0290 $=2$.

Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Overload response for p0290 = 12

The converter responds in 2 stages:

1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800.
There is no current derating as a result of the higher pulse frequency setpoint.
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
2. If it is not possible to temporarily reduce the pulse frequency, or the risk of converter thermal overload cannot be prevented, then stage 2 follows:

- In vector control, the converter reduces the output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Overload response for p0290 $=13$

We recommend this setting for drives with a high starting torque.
If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

There is no current derating as a result of the higher pulse frequency setpoint.
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

Parameters

Number	Name	Factory setting
r0036	CO: Power unit overload I2t	$\%$
r0037[0...19]	Power unit temperatures	${ }^{\circ} \mathrm{C}$
p0290	Power unit overload response	2
p0292[0...1]	Power unit temperature alarm threshold	$[0] 5^{\circ} \mathrm{C},[1] 15^{\circ} \mathrm{C}$
p0294	Power Module alarm for I2t overload	95%

8.8.3 Motor protection with temperature sensor

Overview

The converter can evaluate one of the following sensors to protect the motor against overtemperature:

- Pt100

Evaluated via a converter analog input

Function description

KTY84 sensor

Ter
Using a $K T Y$ sensor, the converter monitors the motor temperature in the range $-48^{\circ} \mathrm{C} \ldots+248^{\circ} \mathrm{C}$ and the sensor itself for wire breakage or short-circuit.

NOTICE

Overheating of the motor due to KTY sensor connected with the incorrect polarity
If a KTY sensor is connected with incorrect polarity, the motor can be damaged by overheating, as the converter cannot detect a motor overtemperature condition.

- Connect the KTY sensor with the correct polarity.

Settings:

- Temperature monitoring:
- Overtemperature alarm (A07910):
- motor temperature $>$ p0604 and p0610 $=0$
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature > p0605
- motor temperature $>\mathrm{p} 0604$ and p0610 >0
- Sensor monitoring (A07015 or F07016):
- Wire-break:

The converter interprets a resistance $>2120 \Omega$ as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

- Short-circuit:

The converter interprets a resistance $<50 \Omega$ as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

Bimetallic switch

The converter interprets a resistance $\geq 100 \Omega$ as an opened bimetallic switch and responds according to the setting for p0610.

PTC sensor

The converter interprets a resistance $>1650 \Omega$ as being an overtemperature and responds according to the setting for p0610.

The converter interprets a resistance $<20 \Omega$ as being a short-circuit and responds with alarm A07015. If the alarm is present for longer than 100 milliseconds, the converter shuts down with fault F07016.

Pt1000 sensor

Using a Pt1000 sensor, the converter monitors the motor temperature in the range $-48^{\circ} \mathrm{C} \ldots$ $+248^{\circ} \mathrm{C}$ and the sensor itself for wire breakage or short-circuit.

Settings:

- Temperature monitoring:
- Overtemperature alarm (A07910):
- motor temperature > p0604 and p0610 $=0$
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature > p0605
- motor temperature > p0604 and p0610 > 0
- Sensor monitoring (A07015 or F07016):
- Wire-break:

The converter interprets a resistance $>2120 \Omega$ as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

- Short-circuit:

The converter interprets a resistance $<603 \Omega$ as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

Pt100 sensor

Using a Pt100 sensor, the converter monitors the motor temperature.
When using a Pt100 sensor, you require a free analog output and a free analog input of the converter.

You can connect the sensor at analog input AI 0 as well as at analog input AI 1.

Figure 8-184 Two-wire connection, three-wire connection and four-wire connection

Settings:

- Analog output AO and analog input AI:
p0776[0] = 0 : AO is current output $0 \mathrm{~mA} . .20 \mathrm{~mA}$, corresponding to the factory setting 0% ... 100 \%
$\mathrm{p} 0756[\mathrm{x}]=0$: Al x is voltage input $0 \mathrm{~V} \ldots 10 \mathrm{~V}$, corresponding to the factory setting $0 \% \ldots$ 100 \%. Also set the associated switch on the converter to "U".
$\mathrm{p} 29701=\mathrm{r} 0755[\mathrm{x}] . \mathrm{x}$ is the number of the analog input where the Pt100 is connected. $\mathrm{p} 771[0]=\mathrm{r} 29706$.
- Temperature monitoring: The converter evaluates the motor temperature in the range from $-48^{\circ} \mathrm{C} \ldots+248^{\circ} \mathrm{C}$.
- Number of Pt100 connected in series: p29700
- Overtemperature alarm (A07910):
- motor temperature > p0604 and p0610 = 0
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature > p0605
- motor temperature > p0604 and p0610 > 0
- The converter does not monitor the sensor.

Parameters

Table 8-115 General parameters

Number	Name	Factory setting
r0035	CO: Motor temperature	$\left[{ }^{\circ} \mathrm{C}\right]$
p0335[M]	Type of motor cooling	0
p0601[M]	Motor temperature sensor type	0
p0604[M]	Mot_temp_mod 2/sensor alarm threshold	$130^{\circ} \mathrm{C}$
p0605[M]	Mot_temp_mod 1/2/sensor threshold and temperature value	$145^{\circ} \mathrm{C}$
p0610[M]	Motor overtemperature response	12
p0640[D]	Current limit	0 Arms

Table 8-116 Additional parameters for Pt100

Number	Name	Factory setting
p29700[D]	Temperature sensor type	0
p29701	CI: Temperature sensor voltage source	0
p29704	Cable resistance	0Ω
r29706	CO: temperature sensor excitation current	$[\%]$
r29707	CO: temperature sensor resistance value	$[\Omega]$

8.8.4 Motor protection by calculating the temperature

Overview

The converter calculates the motor temperature based on a thermal motor model. After commissioning, the converter sets the thermal motor type to match the motor.

The thermal motor model responds far faster to temperature increases than a temperature sensor.

If the thermal motor model is used together with a temperature sensor, e.g. a Pt1000, then the converter corrects the model according to the measured temperature.

Function description

Thermal motor model 2 for induction motors

The thermal motor model 2 for induction motors is a thermal 3-mass model, consisting of stator core, stator winding and rotor. Thermal motor model 2 calculates the temperatures - both in the rotor as well as in the stator winding.

Figure 8-185 Thermal motor model 2 for induction motors

Parameter

Table 8-117 Thermal motor model 2 for induction motors

Number	Name	Factory setting
r0034	CO: Thermal motor load	$-\%$
r0068[0 ... 1]	CO: Absolute actual current value	- Arms
p0344[M]	Motor weight (for thermal motor model)	0 kg
p0604[M]	Mot_temp_mod 2/KTY alarm threshold	$130^{\circ} \mathrm{C}$
p0605[M]	Mot_temp_mod 1/2/sensor threshold and temperature value	$145^{\circ} \mathrm{C}$
p0610[M]	Motor overtemperature response	12
p0612[M]	Mot_temp_mod activation	000000100000
p0625[M]	Motor ambient temperature during commissioning	$20^{\circ} \mathrm{C}$
p0627[M]	Motor overtemperature, stator winding	80 K
r0632[M]	Mot_temp_mod stator winding temperature	$-{ }^{\circ} \mathrm{C}$
p0640[D]	Current limit	0 Arms

Thermal motor model 1 for synchronous reluctance motors

Thermal motor model 1 calculates the temperature of the stator winding from the motor current and the thermal time constant of the motor model.

Figure 8-186 Thermal motor model 1 for reluctance motors

Parameters

Table 8-118 Thermal motor model 1 for reluctance motors

Number	Name	Factory setting
r0034	CO: Thermal motor load	$-\%$
r0068[0 ... 1]	CO: Absolute actual current value	- - Arms
p0318[M]	Motor stall current	0 Arms
p0610[M]	Motor overtemperature response	12
p0611[M]	I2t thermal motor model time constant	0 s
p0612[M]	Mot_temp_mod activation	000000100000
p0613[M]	Mot_temp_mod 1/3 ambient temperature	$20^{\circ} \mathrm{C}$
p0625[M]	Motor ambient temperature during commissioning	$20^{\circ} \mathrm{C}$
p0627[M]	Motor overtemperature, stator winding	80 K
r0632[M]	Mot_temp_mod stator winding temperature	$-{ }^{\circ} \mathrm{C}$
p5390[M]	Mot_temp_mod 1/3 alarm threshold	$110^{\circ} \mathrm{C}$
p5391[M]	Mot_temp_mod 1/3 fault threshold	$120^{\circ} \mathrm{C}$

No thermal motor model for permanent magnet synchronous motor

Protect the permanent magnet synchronous motor against overtemperature by evaluating a Pt1000 sensor of the motor in the converter.

8.8.5 How do I achieve a motor overload protection in accordance with IEC/UL 61800-5-1?

Overview

The thermal motor model of the converter fulfills motor overload protection according to IECI UL 61800-5-1.

Abstract

motor model may also need to be adjusted.

Requirement

For motor overload protection according to IEC/UL 61800-5-1, some parameters of the thermal

You have correctly entered the motor data during quick commissioning.

NOTICE

Thermal overload of third-party motors due to a trip threshold that is too high
With a Siemens motor, the converter sets the trip threshold of the thermal motor model to match the motor. With a third-party motor, the converter cannot ensure in every case that the trip threshold is exactly right for the motor. A trip threshold that is set too high can lead to a thermal overload, thus causing damage to the motor.

- If required for a third-party motor, reduce the corresponding trip threshold p0605, p0615, or p5391.

Procedure

1. Set $\mathrm{p} 0610=12$.
2. Set the following parameters depending on the motor:

- Induction motor:
p0612.1 = 1
p0612.9 = 1
For a motor without temperature sensor: p0625 $=40^{\circ} \mathrm{C}$
- Synchronous motor
p0612.0 = 1
p0612.8 = 1
For a motor without temperature sensor: p0613 $=40^{\circ} \mathrm{C}$
The trip threshold p0605, p0615 or p5391 parameterized in the motor data set may not be increased.

Changing additional parameters of the thermal motor model can lead to the converter no longer satisfying the motor overload protection in accordance with IEC/UL 61800-5-1.

8.8.6 Motor and converter protection by limiting the voltage

Overview

An electric motor converts electrical energy into mechanical energy to drive the load. If the motor is driven by its load, e.g. by the inertia of the load during braking, the energy flow reverses: The motor operates temporarily as a generator, and converts mechanical energy into electrical energy. The electrical energy flows from the motor to the converter. The converter stores the energy in its DC-link capacitors. As a consequence, the DC link voltage Vdc in the converter is higher.

An excessively high DC link voltage damages both the converter and the motor. The converter therefore monitors its DC-link voltage and, when necessary, switches off the connected motor and outputs the fault "DC-link overvoltage".

Function description

Protecting the motor and converter against overvoltage

Figure 8-187 Simplified representation of the Vdc_max control
The Vdc_max control lengthens the motor ramp-down time when braking. Consequently, the motor feeds only so much energy back into the converter to cover the losses in the converter. The DC link voltage remains within the permissible range.
Electrically braking the motor (Page 579)

Parameter

The parameters differ depending on the motor control mode.

Table 8-119 Parameters for U/f control

Number	Name	Factory setting
p0210	Device supply voltage	400 V
p1280[D]	Vdc controller configuration (U/f)	1
r1282	Vdc_max controller switch-on level (U/f)	-V
p1283[D]	Vdc_max controller, dynamic factor (U/f)	100%
p1284[D]	Vdc_max controller, time threshold (U/f)	4 s
p1290[D]	Vdc controller proportional gain (U/f)	1
p1291[D]	Vdc controller integral time (U/f)	40 ms
p1292[D]	Vdc controller derivative-action time (U/f)	10 ms
p1294	Vdc_max controller ON level for automatic detection (U/f)	0

Table 8-120 Parameters for vector control

Number	Name	Factory setting
p0210	Device supply voltage	400 V
p1240[D]	Vdc controller configuration (vector control)	1
r1242	Vdc_max controller, switch-on level	- V
p1243[D]	Vdc_max controller, dynamic factor	100%
p1250[D]	Vdc controller proportional gain	1
p1251[D]	Vdc controller integral time	0 ms
p1252[D]	Vdc controller derivative-action time	0 ms
p1254	Vdc_max controller ON level for automatic detection	0

8.8.7 Function diagram 6220 - Vector control, Vdc_max and Vdc_min controllers

Figure 8-188

8.8.8 Function diagram 6320 - U/f control, Vdc_max and Vdc_min controllers

Figure 8-189 FP 6320

8.8.9
 Function diagram 6854 - Standard Drive Control, Vdc_max and Vdc_min controllers

Figure 8-190 FP 6854

8.8.10 Function diagram 8017 - motor temperature model 1

Figure 8-191

8.8.11 Function diagram 8018 - motor temperature model 2

Figure 8-192

8.9 Monitoring the driven load

In many applications, the speed and the torque of the motor can be used to determine whether the driven load is in an impermissible operating state. The use of an appropriate monitoring function in the converter prevents failures and damage to the machine or plant.

Examples:

- For fans, an excessively low torque indicates a torn drive belt.
- For pumps, insufficient torque can indicate a leakage or dry-running.
- The motor can be blocked by an excessively high torque at a low speed.

Functions for monitoring the driven load

The converter provides the following options to monitor the driven load based on the output current:

| The stall protection recognizes a stalled asynchronous motor. |
| :--- | :--- |

Monitoring the driven load using a binary signal:

The speed monitoring evaluates a periodic binary signal. A signal failure indicates that the motor and the load are no longer mechanically connected with each other.

8.9.1 Stall protection

Function description

If the load of a standard induction motor exceeds the stall torque of the motor, the motor can also stall during operation on the converter. A stalled motor is stationary and does not develop sufficient torque to accelerate the load.

If the "Motor model fault signal stall detection" r1746 for the time p2178 is present via the "Motor model error threshold stall detection" p1745, the converter signals "Motor stalled" and fault F07902.

Parameter

Number	Name	Factory setting
r1408[0 \ldots 14]	CO/BO: Status word, current controller	-
p1745[D]	Motor model error threshold stall detection	5%
r1746	Motor model fault signal stall detection	$-\%$
p2178[D]	Motor stalled delay time	0.01 s
r2198	CO/BO: Status word monitoring functions 2	-

8.9.2 No-load monitoring

Function description

An insufficient motor current indicates that the motor cable is disconnected.
If the motor current for the time p2180 lies below the current level p2179, the converter signals the alarm A07929.

Parameters

Number	Name	Factory setting
r0068[0 ... 1]	CO: Absolute actual current value	- Arms
p2179[D]	Output load detection current limit	0 Arms
p2180[D]	Output load detection delay time	2000 ms
r2197[0 ... 13]	CO/BO: Status word monitoring functions 1	-

8.9.3 Blocking protection

Function description

If the mechanical load is too high, the motor may block. For a blocked motor, the motor current corresponds to the set current limit without the speed reaching the specified setpoint.

If the speed lies below the speed threshold p2175 for the time p2177 while the motor current reaches the current limit, the converter signals "Motor blocked" and fault F07900.

Parameter

Number	Name	Factory settings
p0045	Display values of smoothing time constant	4 ms
r0063	CO: Speed actual value	-rpm
p2175[D]	Motor blocked speed threshold	120 rpm
p2177[D]	Motor blocked delay time	3 s
r2198	Status word monitoring functions 2	-

8.9.4 Torque monitoring

Function description

In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.
The converter monitors the torque based on the envelope curve depending on the speed against a lower and upper torque.

If the torque lies in the impermissible range longer than time p2192, the converter reacts as specified in p2181.

The monitoring is not active below speed threshold 1 and above speed threshold 3 .

Setting monitoring

1. Operate the drive at three different speeds in succession.
2. Set the speed thresholds p2182 ... p2184 to the respective values.
3. Set the torque thresholds for each speed. The converter displays the current torque in r0031.
4. Set $\mathrm{p} 2193=1$.

You have now set monitoring.
\square

Parameter

Number	Name	Factory setting
r0031	Torque actual value, smoothed	-
p2181[D]	Load monitoring, response	0
p2182[D]	Load monitoring, speed threshold 1	150 rpm
p2183[D]	Load monitoring, speed threshold 2	900 rpm
p2184[D]	Load monitoring, speed threshold 3	1500 rpm

Number	Name	Factory setting
p2185[D]	Load monitoring, torque threshold 1, upper	10000000 Nm
p2186[D]	Load monitoring torque threshold 1, lower	0 Nm
p2187[D]	Load monitoring torque threshold 2, upper	10000000 Nm
p2188[D]	Load monitoring torque threshold 2, lower	0 Nm
p2189[D]	Load monitoring torque threshold 3, upper	10000000 Nm
p2190[D]	Load monitoring torque threshold 3, lower	0 Nm
p2191[D]	Load monitoring torque threshold, no load	0 Nm
p2192[D]	Load monitoring, delay time	10 s
p2193[D]	Load monitoring configuration	1

8.9.5 Blocking protection, leakage protection and dry-running protection

Overview

In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.

Function description

If the torque and speed lie in the impermissible range longer than time p2192, the converter reacts as specified in p2181.

For applications with pumps, the converter detects the following states of the driven load:

- Blocked
- Leakage
- Dry running

For applications with fans or compressors, the converter detects the following states of the driven load:

- Blocked
- Torn belt

The monitoring is not active below speed threshold 1 and above speed threshold 3.
When using the control mode "U/f control" (p1300<10), the "Blocking protection" function becomes active when the current limit is reached.
4] Blocking protection (Page 608)

Setting pump monitoring

1. Set p2193 $=4$.
2. The converter sets the monitoring as shown.

$$
\mathrm{p} 2183=(\mathrm{p} 1080+\mathrm{p} 1082) / 2
$$

Figure 8-193 Default settings for pumps
3. The converter sets monitoring response $\mathrm{p} 2181=7$
4. If necessary, adjust the speed thresholds p2182 ... p2184.
5. If necessary, adjust the torque threshold for each speed.

The converter displays the current torque in r0031.
You have now set monitoring.
\square

Setting fan and compressor monitoring

1. Set $\mathrm{p} 2193=5$.
2. The converter sets the monitoring as shown.

Figure 8-194 Default settings for fans and compressors
3. The converter sets monitoring response $\mathrm{p} 2181=7$
4. If necessary, adjust the speed thresholds p2182 ... p2184.
5. Set the torque threshold for each speed.

The converter displays the current torque in r0031.
You have now set monitoring.
\square

Parameter

Number	Name	Factory setting
r0031	Torque actual value, smoothed	-
p0311[M]	Rated motor speed	0 rpm
r0333[M]	Rated motor torque	-
p1080[D]	Minimum speed	0 rpm
p1082[D]	Maximum speed	1500 rpm
p1300[D]	Open-loop/closed-loop control operating mode	See parameter list
p2165[D]	Load monitoring blocking monitoring threshold, upper	0 rpm
p2168[D]	Load monitoring blocking monitoring torque threshold	10000000 Nm
p2181[D]	Load monitoring, response	0
p2182[D]	Load monitoring, speed threshold 1	150 rpm
p2183[D]	Load monitoring, speed threshold 2	900 rpm
p2184[D]	Load monitoring, speed threshold 3	1500 rpm
p2186[D]	Load monitoring torque threshold 1, lower	0 Nm
p2188[D]	Load monitoring torque threshold 2, lower	0 Nm
p2190[D]	Load monitoring torque threshold 3, lower	0 Nm
p2191[D]	Load monitoring torque threshold, no load	0 Nm
p2192[D]	Load monitoring, delay time	10 s
p2193[D]	Load monitoring configuration	1

Further information

If you deselect monitoring with p2193 < 4, the converter then resets the load monitoring parameters to factory settings.

8.9.6 Rotation monitoring

Function description

The converter monitors the speed or velocity of a machine component via an electromechanic or electronic encoder, e.g. a proximity switch. Examples of how the function can be used:

- Drive belt monitoring for fans
- Blocking protection for pumps

The converter checks whether the encoder consistently supplies a 24 V signal during motor operation. If the encoder signal fails for time p2192, the converter signals fault F07936.

Figure 8-195 Function plan and time response of the speed monitoring

Setting monitoring

1. Set $\mathrm{p} 2193=1$.
2. Interconnect p3232 with a digital input of your choice.
3. If necessary, adjust the delay time.

You have now set monitoring.
\square

Parameter

Number	Name	Factory setting
r0722	CO/BO: CU digital inputs, status	-
p2192[D]	Load monitoring, delay time	10 s
p2193[D]	Load monitoring configuration	1
p3232[C]	BI: Load monitoring, failure detection	1

8.9.7 Function diagram 8005-Monitoring, overview

Figure 8-196 FP 8005

8.9.8 Function diagram 8010 - Monitoring, speed signals $1 / 2$

Figure 8-197 FP 8010

8.9.9 Function diagram 8011 - Monitoring, speed signals $2 / 2$

Figure 8-198
FP 8011

8.9.10 Function diagram 8012 - Monitoring, motor blocked

Figure 8-199

8.9.11 Function diagram 8013 - Monitoring, load monitoring $1 / 2$

Figure 8-200
FP 8013
8.9 Monitoring the driven load

8.9.12 Function diagram 8014 - Monitoring, load monitoring $2 / 2$

Figure 8-201

8.10 Drive availability

8.10.1 Flying restart - switching on while the motor is running

Overview

If you switch on the motor while it is still rotating, without the "Flying restart" function, there is a high probability that a fault will occur as a result of overcurrent (F30001 or FO7801). Examples of applications involving an unintentionally rotating motor directly before switching on:

- The motor rotates after a brief line interruption.
- A flow of air turns the fan impeller.
- A load with a high moment of inertia drives the motor.

Requirement

The converter may operate precisely one motor only.
It is not permissible that you enable the "Flying restart" function if the converter is simultaneously driving several motors. Exception: a mechanical coupling ensures that all of the motors always operate with the same speed.

The "Flying restart" function is not possible with a permanent magnet synchronous motor.

Function description

The "Flying restart" function comprises the following steps:

1. After the on command, the converter impresses the search current in the motor and increases the output frequency.
2. When the output frequency reaches the actual motor speed, the converter waits for the motor excitation build up time.
3. The converter accelerates the motor to the actual speed setpoint.

Figure 8-202 Principle of operation of the "flying restart" function

Parameters

Number	Name	Factory setting
p1200[D]	Flying restart operating mode	0
r0331[M]	Actual motor magnetizing current / short-circuit current	- Arms
p0346[M]	Motor excitation build-up time	0 s
p0347[M]	Motor de-excitation time	0 s
p1201[C]	BI: Flying restart enable signal source	1
p1202[D]	Flying restart detection current	$90 \% \ldots 100 \%$
p1203[D]	Flying restart search rate factor	$150 \% \ldots 100 \%$

8.10.2 Automatic restart

Overview

The automatic restart includes two different functions:

- The converter automatically acknowledges faults.
- After a fault occurs or after a power failure, the converter automatically switches-on the motor again.

The converter interprets the following events as power failure:

- The converter signals fault F30003 (undervoltage in the DC link), after the converter line voltage has been briefly interrupted.
- All the converter power supplies have been interrupted and all the energy storage devices in the converter have discharged to such a level that the converter electronics fail.

Function description

Setting the automatic restart function

WARNING

Unexpected machine motion caused by the active automatic restart function

When the "automatic restart" function is active ($\mathrm{p} 1210>1$), the motor automatically starts after a line supply phase. Unexpected movement of machine parts can result in serious injury and material damage.

- Block off hazardous areas within the machine to prevent inadvertent access.

If it is possible that the motor is still rotating for a longer period of time after a power failure or after a fault, then you must also activate the "flying restart" function.
$\$$ Flying restart - switching on while the motor is running (Page 621)
Using p1210, select the automatic restart mode that best suits your application.

Figure 8-203
Automatic restart modes

The principle of operation of the other parameters is explained in the following diagram and in the table below.

${ }^{1)}$ The converter automatically acknowledges faults under the following conditions:

- $\mathrm{p} 1210=1$ or 26 : Always.
- $\mathrm{p} 1210=4$ or 6 : If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).
- p1210 = 14 or 16: Never.

2) The converter attempts to automatically switch the motor on under the following conditions:

- $\mathrm{p} 1210=1$: Never.
- $\mathrm{p} 1210=4,6,14,16$, or 26 : If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).
${ }^{3}$) If, after a flying restart and magnetization (r0056.4 = 1) no fault occurs within one second, then the start attempt was successful.
Figure 8-204 Time response of the automatic restart

Advanced settings

If you with to suppress the automatic restart function for certain faults, then you must enter the appropriate fault numbers in p1206[0 ... 9].
Example: $\mathrm{p} 1206[0]=07331 \Rightarrow$ No restart for fault F07331.

Suppressing the automatic restart only functions for the setting p1210 $=6,16$ or 26 .

Note

Motor starts in spite of an OFF command via the fieldbus

The converter responds with a fault if fieldbus communication is interrupted. For one of the settings p1210 $=6,16$ or 26 , the converter automatically acknowledges the fault and the motor restarts, even if the higher-level control attempts to send an OFF command to the converter.

- In order to prevent the motor automatically starting when the fieldbus communication fails, you must enter the fault number of the communication error in parameter p1206.

Parameter

Number	Name	Factory setting
p1206	Automatic restart faults not active	0
p1210	Automatic restart mode	0
p1211	Automatic restart, start attempts	3
p1212	Automatic restart, wait time start attempts	1 s
p1213[0]	Automatic restart monitoring time for restart	60 s
p1213[1]	Reset automatic restart monitoring time for start-up counter	0 s
p29630	Activate continuous operation	0

8.10.3 Kinetic buffering (Vdc min control)

Overview

B
Kinetic buffering increases the drive availability. The kinetic buffering utilizes the kinetic energy of the load to buffer line dips and failures. During a line dip, the converter keeps the motor in the switched-on state for as long as possible. One second is a typical maximum buffer time.

Precondition

The following conditions have to be fulfilled to use the "kinetic buffering" function advantageously:

- The driven machine has a sufficiently high inertia.
- The application allows a motor to be braked during a power failure.

Function description

When the line supply dips, the DC-link voltage in the converter decreases. The kinetic buffering ($\mathrm{V}_{\mathrm{DC} \text { min }}$ control) intervenes at an adjustable threshold. The $\mathrm{V}_{\mathrm{DC} \text { min }}$ control forces the load to go into slightly regenerative operation. As a consequence, the converter covers its power loss and the losses in the motor with the kinetic energy of the load. The load speed decreases, but the DC-link voltage remains constant during the kinetic buffering. After the line supply returns, the converter immediately resumes normal operation.

Figure 8-205 Principle mode of operation of kinetic buffering

Parameters

Number	Name	Factory setting
r0056[0...15]	CO/BO: Status word, closed-loop control	-
p0210	Device supply voltage	400 V
p1240[D]	Vdc controller configuration (vector control)	1

Number	Name	Factory setting
p1245[D]	Vdc_min controller, switch-on level (kinetic buffering)	See parameter list
r1246	Vdc_min controller, switch-on level (kinetic buffering)	- - V
p1247[D]	Vdc_min controller, dynamic factor (kinetic buffering)	300%
p1255[D]	Vdc_min controller, time threshold	0 s
p1257[D]	Vdc_min controller, speed threshold	50 rpm

8.10.4 Essential service mode

Overview

\leftrightarrow

In essential service mode (ESM), the converter attempts to operate the motor for as long as possible despite irregular ambient conditions.

The converter logs the essential service mode and any faults that occur during essential service mode. The log is accessible only for the service and repair organization.

Note

Warranty is lost in the essential service mode

When the essential service mode is active, and faults occur in the converter, all warranty claims associated with the converter become null and void. The faults can have the following causes:

- Exceptionally high temperatures inside and outside the converter
- Open fire inside and outside the converter
- Emissions of light, noise, particles or gases

Function description

Activating and terminating essential service mode

Signal p3880 $=1$ activates the essential service mode.
Signal p3880 $=0$ deactivates the essential service mode .

Switching the motor on and off during active essential service mode

The OFF1, OFF2 and OFF3 commands for switching off the motor have no effect.
The converter blocks all functions that switch off the motor to save energy, e.g. PROFlenergy or hibernation mode.

The "Safe Torque Off" safety function terminates the essential service mode.

WARNING

Unexpected exiting of the essential service mode by selecting "Safe Torque Off"
An active Safe Torque Off (STO) safety function switches the motor off, thus terminating the essential service mode. The termination of essential service mode can cause severe injury or death, e.g. for the failure of a flue gas extraction.

- Prevent the STO safety function from being selected in essential service mode by controlling the converter appropriately.
- Take the unintentional selection of the STO safety function into account in the risk analysis of the system.

Setpoint during active essential service mode

The converter changes the speed setpoint to the ESM setpoint source.
P3881 determines the ESM setpoint source. If you have defined an analog input as setpoint source using p3881, the converter can switch over to setpoint p3882 in case of wire breakage.

Reaction to faults during active essential service mode

In "essential service mode", the converter does not switch off the motor when faults develop, but rather reacts differently depending on the fault type:

- The converter ignores faults, which do not directly result in the destruction of the converter or the motor.
- Faults with the reaction "OFF2" switch the motor off immediately.

In this case, the converter attempts to automatically acknowledge the faults using the automatic restart function.

- For faults that cannot be acknowledged, it is possible to switch over the motor to line operation using the bypass function.

Automatic restart during active essential service mode

The converter ignores the settings in p1206 (faults without automatic restart) and works with the setting "restart after a fault with further start attempts" (p1210=6).

The converter carries out the maximum number of restart attempts set in $p 1211$ corresponding to the settings in p1212 and p1213. The converter outputs fault F07320 if the restart attempts are not successful.

Interaction for bypass and essential service mode

- If the bypass mode is active when the essential service mode is activated, the converter changes to converter mode. This ensures that the converter uses the ESM setpoint source.
- If faults are still present after the number of start attempts parameterized in p1211, then the converter goes into a fault condition with F07320. In this case, there is an option of switching over to bypass operation and then directly connecting the motor to the line supply.

Procedure: Commissioning the essential service mode

1. Interconnect a free digital input as signal source for the ESM activation.

You must use a negated digital input if the essential service mode should also be active for a ground fault - or if the control cable is interrupted.
Example for negated digital input DI 3: Set p3880=723.3.
It is not permissible to interconnect the digital input for ESM activation with other functions.
2. Set the ESM setpoint source via p3881.
3. Set the alternative ESM setpoint source via p3882.
4. Set the source to select the direction of rotation.

- p3881 = 0, 1, 2, 3 :

When you interconnect p3883 with a free digital input of your choice, p3883 inverts the direction of rotation during essential service mode.
For example, to interconnect p3883 with DI 4 , set p3883 $=722.4$.

- p3881 = 4:

The technology setpoint direction of rotation is valid.
5. Optional switching to bypass mode

If the converter is not able to acknowledge pending faults with automatic restart, it signals fault F07320 and does not make any other attempts to restart.
If the motor still continues to operate in this case, you must set the following:

- Set p1266 = 3889.10. The converter switches the motor to bypass mode with r3889.10 = 1 .
- Ensure that the direction of rotation does not change when switching over to bypass operation.
- Set p1267.0 = 1. The converter switches the motor to bypass mode independent of the speed with control signal p1266.
- Commission the "Bypass" function. Bypass (Page 637)
You have commissioned the essential service mode.

Example

To improve the air circulation in the stairwells, the ventilation control creates an underpressure in the building. With this control, a fire would mean that flue gases enter into the stairwell. This would then mean that the stairs would be blocked as escape or evacuation route.

Using the essential service mode function, the ventilation switches over to the control of an overpressure. The essential service mode prevents the propagation of flue gas in the stairwell, thereby keeping the stairs free as an evacuation route as long as possible.

An application example for the essential service mode can be found on the Internet:
(3) http://support.automation.siemens.com/WW/view/en/63969509 (http://
support.automation.siemens.com/WW/view/en/63969509)

Parameters

Number	Name	Factory setting
p1206[0...9]	Automatic restart faults not active	0
p1210	Automatic restart mode	0
p1211	Automatic restart, start attempts	3
p1212	Automatic restart, wait time start attempts	1 s
p1213	Automatic restart monitoring time for restart	60 s
p1213	Automatic restart reset monitoring time for start counter	0 s
p1266	BI: Bypass control command	0
p1267	Bypass changeover source configuration	0000 bin
p3880	BI: ESM activation signal source	0
$p 3881$	ESM setpoint source	0
p3882	ESM alternative setpoint source	0
p3883	BI: ESM direction of rotation signal source	0
$p 3884$	CI: ESM technology controller setpoint	0
r3889[0...10]	CO/BO: ESM status word	-

8.10 .5

Function diagram 7033-Technology functions, essential service mode

Figure 8-206

8.11 Energy saving

8.11.1 Efficiency optimization

Overview

The efficiency optimization reduces the motor losses as far as possible.
Active efficiency optimization has the following advantages:

- Lower energy costs
- Lower motor temperature rise
- Lower motor noise levels

Active efficiency optimization has the following disadvantage:

- Longer acceleration times and more significant speed dips during torque surges.

The disadvantage is only relevant when the motor must satisfy high requirements relating to the dynamic performance. Even when efficiency optimization is active, the converter closed-loop motor control prevents the motor from stalling.

Requirement

Efficiency optimization functions under the following preconditions:

- Operation with an induction motor
- Vector control is set in the converter.

Function description

Figure 8-207 Efficiency optimization by changing the motor flux
The three variables that the converter can directly set, which define efficiency of an induction motor, are speed, torque and flux.

However, in all applications, speed and torque are specified by the driven machine. As a consequence, the remaining variable for the efficiency optimization is the flux.
The converter has two different methods of optimizing the efficiency.

Efficiency optimization, method 2

Generally, energy efficiency optimization method 2 achieves a better efficiency than method 1 .
We recommend that you set method 2.

Figure 8-208 Determining the optimum flux from the motor thermal model
Based on its thermal motor model, the converter continually determines - for the actual operating point of the motor - the interdependency between efficiency and flux. The converter then sets the flux to achieve the optimum efficiency.

(1) Efficiency optimization is not active
(2) Efficiency optimization is active

Figure 8-209 Qualitative result of efficiency optimization, method 2
Depending on the motor operating point, the converter either decreases or increases the flux in partial load operation of the motor.

Efficiency optimization, method 1

Figure 8-210 Reduce the flux setpoint in the partial load range of the motor
The motor operates in partial load mode between no-load operation and the rated motor torque. Depending on p1580, in the partial load range, the converter reduces the flux setpoint linearly with the torque.

Figure 8-211 Qualitative result of efficiency optimization, method 1
The reduced flux in the motor partial load range results in higher efficiency.

Parameters

Table 8-121 Efficiency optimization, method 2

Number	Name	Factory setting
p1401[D]	Flux control configuration	000000000000 $0110 ~ b i n ~$
p1570[D]	CO: Flux setpoint	100%
p3315[D]	Efficiency optimization 2 minimum flux limit value	50%
p3316[D]	Efficiency optimization 2 maximum flux limit value	110%

Table 8-122 Efficiency optimization, method 1

Number	Name	Factory setting
p1570[D]	CO: Flux setpoint	100%
p1580[D]	Efficiency optimization	80%

8.11.2 ECO mode

Overview

ECO mode works by slightly changing the output voltage either up or down in order to find the minimum input power. It is suitable for applications with a low dynamic response and constant speed setpoint, and allows energy savings of up to 40% in the ideal case.

Precondition

The ECO mode can only work under conditions when the load characteristic is low dynamic.
You have selected the "Expert" application class and one of the following control modes in the quick commissioning:

- $\mathrm{p} 1300=4$ (U/f control with linear characteristic and ECO)
- p1300 = 7 (U/f control for a parabolic characteristic and ECO)

Slip compensation (p1335) is set to 100%. In the event of minor fluctuations in the setpoint, you have to raise the ramp-function generator tolerance using p1148.

Function description

ECO mode activation:

When the speed setpoint is reached and remains unchanged for 5 s , the converter automatically reduces its output voltage to optimize the motor's operating point.

ECO mode deactivation:

ECO mode is deactivated when the setpoint changes or if the converter's DC-link voltage is too high or too low.

ECO, linear

ECO, quadratic

Parameters

Number	Name	Factory setting
p0096	Application class	Dependend on the power rating
p1148	Ramp-function gen. tolerance for ramp-up and ramp-down active	19.8 rpm
p1300	Open-loop/closed-loop control operating mode	Dependend on the power rating
p1335	Slip compensation scaling	0%

Further information about the parameter:
U] Parameters (Page 663)

Further information

Information about energy saving in vector control mode:
Efficiency optimization (Page 632)

8.11.3 Bypass

Overview

The "Bypass" function switches the motor between converter and line operation.

Figure 8-212 Bypass control via converter

Requirements

- The "Bypass" function is supported only for induction motors.
- The K1 converter contactor and K2 line contactor are designed for switching under load.
- The K2 line contactor is designed for switching under inductive load.
- The K1 converter contactor and K2 line contactor are interlocked against closing at the same time.
- The "flying restart" function must be activated (p1200 = 1 or 4).

4] Flying restart - switching on while the motor is running (Page 621)

Function description

Switching from converter operation to line operation

1. The converter switches the motor OFF.
2. The converter opens the K1 converter contactor via a digital output.
3. The converter waits for the unlocking time of the motor.
4. The converter waits for the feedback that the K1 converter contactor is open.
5. The converter closes the K2 line contactor via a digital output.

The motor is now operated directly on the line supply.

Note

Current surge when switching from converter operation to line operation

When switching from converter operation to line operation, a current $>10 \times$ rated motor current can flow temporarily. The current depends on the random phase shift between the converter voltage and the line voltage.

Switching from line operation to converter operation

1. The converter opens the K2 line contactor via a digital output.
2. The converter waits for the unlocking time of the motor.
3. The converter waits for the feedback that the K 2 line contactor is open.
4. The converter closes the K1 converter contactor via a digital output.
5. The converter switches the motor on.
6. The converter adjusts with the "Flying restart" function its output frequency to the speed of the motor.

The motor is now operated on the converter.

How is the changeover triggered?

The following options are provided to switch between converter operation and line operation:

- Changeover for activation via a control command

Figure 8-213 Changeover when activating via a control signal (p1267.0=1)
The converter switches the motor between converter operation and line operation depending on the bypass control command p1266.

- Changeover depending on the speed

Figure 8-214 Changeover depending on the speed $(p 1267.1=1)$

If the speed setpoint r1119 lies above the bypass speed threshold p1265, the converter switches the motor to line operation.
If the speed setpoint falls below the bypass speed threshold, the converter switches the motor to converter operation.

Parameter

Number	Name		Factory setting
p0347[M]	Motor de-excitation time		0 s
p1260	Bypass configuration (factory setting: 0) 0 : Bypass is deactivated 3: Bypass without synchronization		0
r1261.0... 11	Bypass control/status word		-
	. 00	1 signal: Close converter - motor contactor	
	. 01	1 signal: Close line - motor contactor	
p1262[D]	Bypass dead time		1 s
p1263	Debypass (revert to drive) delay time		0.1 s
p1264	Bypass delay time		1 s
p1265	Bypass speed threshold		1480 rpm
p1266	BI: Bypass control command		0
p1267	Bypass changeover source configuration		0000 bin
p1269[0...1]	BI: Bypass switch feedback signal		[0] 1261.0
	[0]	1 signal: Converter - motor contactor is closed	[1] 1261.1
	[1]	1 signal: Line - motor contactor is closed	
p1274[0...1]	Bypass switch monitoring time		1000 ms

More information

Interaction with other functions:

- Essential service mode

The activated "Essential service mode" function influences the "Bypass" function. \square Essential service mode (Page 627)

- Converter control

For operation of the motor on the line supply, the converter no longer responds to the OFF1 command, but rather only to OFF2 and OFF3.

- Temperature monitoring for the motor

The converter evaluates the temperature sensor in the motor, also for line operation of the motor.
Motor protection with temperature sensor (Page 592)

- Disconnecting the converter from the line supply

If for line operation of the motor, you disconnect the converter from the line supply, the converter opens the K2 contactor and the motor coasts down.
To operate the motor on the line supply also for deactivated converter, the higher-level control must supply the signal for the K2 line contactor.

8.11.4 Hibernation mode

Overview

AD When the hibernation mode is active, the converter switches off the motor once the system
conditions allow it.
The hibernation mode saves energy, reduces wear and noise.
Pressure and temperature controls involving pumps and fans are typical applications for the hibernation mode.

Requirement

As long as the cascade control operates a motor directly on the supply system, the converter does not activate the hibernation mode.
4 Cascade control (Page 494)

Function description

Activating hibernation mode

The converter activates the hibernation mode in the following cases:

- After switching the converter on, a wait time starts in the converter. The longest wait time is at the following times:
- p1120
- p2391
- 20 s

If the motor does not reach the hibernation mode start speed within the wait time, the converter activates the hibernation mode and switches off the motor.

- The motor speed drops below the hibernation mode starting speed.

Deactivating hibernation mode

The converter deactivates the hibernation mode in the following cases:

- With external setpoint value specification:

The converter deactivates the hibernation mode once the positive setpoint value is greater than the restart speed.
To monitor the setpoint, set p1110 $=0$.
Activate the motorized potentiometer as ramp-function generator to use the motorized potentiometer of the converter as setpoint for the hibernation mode:

- Motorized potentiometer: p1030.4 = 1
- Technology motorized potentiometer: p2230.4 = 1
- If the setpoint value specification is set via the technology controller:

The converter deactivates the hibernation mode once the positive control deviation of the technology controller is greater than the hibernation mode restart speed (p2392).
To monitor the value of the control deviation of the technology controller, set p2298=2292 and set the minimum threshold in p2292.

- Time-controlled

To avoid tank deposits, e.g. where liquids are involved, it is possible to deactivate the hibernation mode at the latest after the time p2396 has expired.

Boost speed

The boost speed prevents the motor from being switched on and off too frequently.

Parameter

Table 8-123 Setpoint value specification via the technology controller

Number	Name	Factory setting
p1080	Minimum speed	$0[\mathrm{rpm}]$
p2200	BI: Technology controller enable 1 signal: Technology controller is enabled	0
r2237	Technology controller motorized potentiometer maximum value	$-[\%]$
p2298	CI: Technology controller minimum limiting signal source	$2292[0]$
p2390[D]	Hibernation mode start speed	$0[\mathrm{rpm}]$
p2391[D]	Hibernation mode delay time	$120[s]$
p2392	Hibernation mode restart value with technology controller	$0[\%]$
p2394[D]	Hibernation mode boost period	$0[s]$
p2395[D]	Hibernation mode boost speed	$0[r p m]$
p2396[D]	Hibernation mode switch-off time maximum	$0[\mathrm{~s}]$
r2397	CO: Hibernation mode output speed current	$-[\mathrm{rpm}]$
p2398	Hibernation mode duty type	0

Number	Name		Factory setting
r2399	CO/BO: Hibernation mode status word 00 Hibernation mode enabled (p2398 <> 0) 01 Hibernation mode active 02 Hibernation mode delay time active 03 Hibernation mode boost active 04 Hibernation mode motor switched off 05 Hibernation mode motor switched off, cyclic restart active 06 Energy-saving mode motor restarts 07 Hibernation mode supplies total setpoint of ramp-function generator 08 Hibernation mode bypasses ramp-function generator in setpoint channel		
	. 00	Hibernation mode enabled (P2398 <> 0)	
	. 01	Hibernation mode active	
	. 02	Hibernation mode delay time active	
	. 03	Hibernation mode boost active	
	. 04	Hibernation mode motor switched off	
	. 05	Hibernation mode motor switched off, cyclic restart active	
	. 06	Hibernation mode motor is restarting	
	. 07	Hibernation mode supplies total setpoint of rampfunction generator	
	. 08	Hibernation mode bypasses the ramp-function generator in the setpoint channel	

Table 8-124 Setpoint value specification by means of external setpoint

Number	Name	Factory setting
p1080	Minimum speed	$0[\mathrm{rpm}]$
p1110	BI: Inhibit negative direction	1
p2390[D]	Hibernation mode start speed	$0[\mathrm{rpm}]$
p2391[D]	Hibernation mode delay time	$120[\mathrm{~s}]$
p2393[D]	Hibernation mode restart speed relative w/o technology con- troller	$0[\mathrm{rpm}]$
p2394[D]	Hibernation mode boost period	$0[\mathrm{~s}]$
p2395[D]	Hibernation mode boost speed	$0[\mathrm{rpm}]$
p2396[D]	Hibernation mode switch-off time maximum	$0[\mathrm{~s}]$
r2397	CO: Hibernation mode output speed current	$-[\mathrm{rpm}]$
p2398	Hibernation mode duty type	0

Number	Name		Factory setting
r2399	CO/BO: Hibernation mode status word 00 Hibernation mode enabled (p2398 <> 0) 01 Hibernation mode active 02 Hibernation mode delay time active 03 Hibernation mode boost active 04 Hibernation mode motor switched off 05 Hibernation mode motor switched off, cyclic restart active 06 Energy-saving mode motor restarts 07 Hibernation mode supplies total setpoint of ramp-function generator 08 Hibernation mode bypasses ramp-function generator in setpoint channel		
	. 00	Hibernation mode enabled (P2398 <> 0)	
	. 01	Hibernation mode active	
	. 02	Hibernation mode delay time active	
	. 03	Hibernation mode boost active	
	. 04	Hibernation mode motor switched off	
	. 05	Hibernation mode motor switched off, cyclic restart active	
	. 06	Hibernation mode motor is restarting	
	. 07	Hibernation mode supplies total setpoint of rampfunction generator	
	. 08	Hibernation mode bypasses the ramp-function generator in the setpoint channel	

8.11.5 Line contactor control

Overview

A line contactor disconnects the converter from the line supply, and therefore reduces the converter losses when the motor is not operational.

Requirement

The line contactor control requires a 24 V power supply from the converter. The 24 V power supply must be maintained, even when the line contactor is open.

Function description

The converter controls its own line contactor using a digital output.

Figure 8-215 Line contactor control via DO 0 with feedback signal via DI 3
Activating the line contactor control
Connect the digital output that controls the line contactor with signal r0863.1.
Example for DO 0: p0730 = 863.1.

Line contactor control with feedback signal

Interconnect p0860 with the signal of the corresponding digital input:

- p0860 = 722.x: Feedback signal of an NO contact via DIx
- p0860 = 723.x: Feedback signal of an NC contact via DIx

Figure 8-216 Line contactor control via DO 2 with feedback signal via DI 3
If the line contactor feedback signal is not available for longer than the time set in p0861, the converter flags fault F07300.

Parameter

Number	Name	Factory setting
r0046.0..n	CO/BO: Missing enable signals	-
p0860	BI: Line contactor feedback signal	863.1
p0861	Line contactor monitoring time	100 ms
r0863.0...1	CO/BO: Drive coupling status word / control word	-
p0867	Power unit main contactor hold time after OFF1	50 ms
p0869	Configuration sequence control	0000 bin
p0870	BI: close main contactor	0

8.11.6 Calculating the energy saving for fluid flow machines

Overview

Figure 8-217 Flow control with pump and throttle connected to a 50 Hz line supply
The lower the flow rate, the poorer the efficiency of the fluid flow machine (pump). The fluid flow machine (pump) has the poorest efficiency when the throttle or valve is completely closed. Further, undesirable effects can occur, for example the formation of vapor bubbles in liquids (cavitation) or the temperature of the medium being pumped can increase.
The converter controls the flow rate by appropriately varying the speed of the fluid flow machine. By controlling the flow rate, the fluid flow machine operates at the optimum efficiency for each flow rate. This situation means that in the partial load range less electric power is required than when controlling the flow rate using valves and throttles.

Figure 8-218 Flow control with pump and converter

Function description

The converter calculates the energy saving from the flow characteristic associated with a mechanical flow control and the measured electric power that is drawn. The calculation is suitable for centrifugal pumps, fans, radial and axial compressors, for instance.

Flow characteristic

Figure 8-219 Factory setting of the flow characteristic
To set the characteristic, you require the following data from the machine manufacturer for each speed interpolation point:

- The flow rate of the fluid-flow machine associated with the 5 selected converter speeds
- At constant speed, the power drawn which is associated with the 5 flow rates corresponds to the line frequency and mechanical throttling of the flow rate.

Parameters

Number	Name	Factory setting
r0039[0...n]	CO: Energy display	-
p0040	Reset energy consumption display	0
r0041	Energy saved	-
r0042[0..n. $]$	CO: Process energy display	-
p0043	BI: Energy consumption display enabled.	0
p3320[0..n]	Fluid flow machine power, point 1	25
p3321[0..n]	Fluid flow machine speed, point 1	0
p3322[0..n]	Fluid flow machine power, point 2	50
p3323[0...n]	Fluid flow machine speed, point 2	25
p3324[0...n]	Fluid flow machine power, point 3	77
p3325[0..n]	Fluid flow machine speed, point 3	50
p3326[0..n]	Fluid flow machine power, point 4	92
p3327[0..n]	Fluid flow machine speed, point 4	75
p3328[0..n]	Fluid flow machine power, point 5	100
p3329[0...n]	Fluid flow machine speed, point 5	100

8.11.7 Flow meter

Overview

Abstract

With the flow meter function configured with parameters p29631 and p29632, the converter estimates the real-time flow of the pumps and fans based on the defined characteristic, so as to realize effective flow control and reduces the system power loss.

Function description

The converter calculates the real-time flow according to the flow characteristic derived from the values entered in p29631[0...4] and p29632[0...4]. You can acquire these values from the machine manufacturer.

- p29631[0...4]: five power interpolation points in kW, which should spread across the converter power range;
Make sure that p29631[0] $\leq \mathrm{p} 29631[1] \leq \mathrm{p} 29631[2] \leq \mathrm{p} 29631[3] \leq \mathrm{p} 29631[4]$, or otherwise, the flow calculation result (r 29633) is zero.
- p29632[0...4]: five flow values corresponding to the power interpolation points.

The calculation result associated with the output power then displays in parameter r29633. It should be noted that if the power is higher than the value entered in p29631[4], r29633 always displays the flow value entered in p29632[4].

Parameters

Number	Name	Factory setting
$p 29631[0 \ldots 4]$	Flow meter pump power	0.00 kW
p29632[0..4]	Flow meter pump flow	$0.00 \mathrm{~m}^{3} / \mathrm{h}$
r29633	Flow meter calculated flow	$-\mathrm{m}^{3} / \mathrm{h}$

4 For more information about the parameters, see Chapter "Parameter list (Page 666)".

8.11.8 PROFIenergy

Overview

PROFIenergy is a standard based on PROFINET. PROFlenergy is certified and described in the PROFIenergy profile of the PNO.

The higher-level controller transfers the control commands and status queries in acyclic operation via data record 80A0 hex.
The converter supports the PROFlenergy profile V1.1 and the function unit class 3.
The converter supports PROFlenergy energy-saving mode 2.

Function description

Behavior of the converter with active energy-saving mode 2 :

- The converter outputs alarm A08800.
- The RDY LED flashes green: 500 ms on, 3000 ms off.

- The converter does not send any diagnostic interrupts.
- If the higher-level controller goes to stop or the bus connection to the higher-level controller is interrupted, the converter exits the energy-saving mode and resumes normal operation.

Example

You can find an application example for PROFlenergy on the Internet:
(3) PROFlenergy - saving energy with SIMATIC S7 (https:// support.industry.siemens.com/cs/ww/en/view/41986454)

Parameters

Number	Name	Factory setting
r5600	Pe energy-saving mode ID	-
r5613	CO/BO: Pe energy-saving active/inactive	-

8.11.8.1 Control commands

Function description

Command	Explanation
Start_Pause	Switches to the energy-saving mode depending on the pause dura- tion.
Start_Pause_with_time_re- sponse	Switches to the energy-saving mode depending on the pause dura- tion and also specifies the transition times in the command response
End_Pause	Switches from the energy-saving mode to the operating state. Cancels switching from the operating state to energy-saving mode.

Settings

- Minimum pause time: p5602
- When the pause time sent using the command "Start_Pause" is equal to or greater than the value in p5602[1], the converter goes to energy-saving mode.
- If the pause time is less than p5602[1], the converter rejects the command "Start_Pause" with 50 hex (no appropriate pause mode).

If the controller sends the command "End_Pause" or "Start_Pause" with a pause time of 0, the motor cannot be switched on. An OFF1/ON command is required to switch the motor on again.

- Maximum pause time: p5606
- Disable PROFIenergy

If you set p5611.0 = 1, you disable the response of the converter to PROFlenergy control commands. In this case, the converter rejects the "Start_Pause" command with 50 hex (no appropriate pause mode).

- Transition to energy-saving mode
- With p5611.2 = 0, you enable the transition to energy-saving mode from operating state S1 (switching on inhibited) or S2 (ready to switch on).
- With p5611.2 = 1, you enable the transition to energy-saving mode from operating states S3 (ready for operation) and S4 (operation).

To do this, you must also set the following:

- p5611.1 = 1: With the transition to energy-saving mode, the converter triggers an OFF1 command and enters the switching on inhibited state (S1).
- p5611.1 = 0: You use p5614 to interconnect a signal source that you use to switch off the converter and place it in switching on inhibited state (S1).

8.11.8.2 Status queries

Function description

Command	Explanation
List_Energy_Saving_Modes	Returns all supported energy-saving modes
Get_Mode	Returns information about the selected energy-saving mode
PEM_Status	Returns the current PROFlenergy status
PEM_Status_with_CTTO	Returns the current PROFlenergy status together with the regular transition time to the operating state
PE_Identify	Returns the supported PROFlenergy commands
Query_Version	Returns the implemented PROFlenergy profile
Get_Measurement_List	Returns the measured value IDs that can be accessed using the "Get_Measurement_Values" command
Get_Measure- ment_List_with_object_number	Returns the measured value IDs and the associated object number that can be accessed using the "Get_Measurement_Values_with_ob- ject_number" command.
Get_Measurement_Values	Returns the measured values requested via the measured value ID
Get_Measurement_Val- ues_with_object_number	Returns the measured values requested via the measured value ID and the object number. The object number corresponds to the drive ob- ject ID.

8.11.8.3 Error values and measured values

Function description

Table 8-125 Error values in the parameter response

Error val- ue 1	Meaning
001 hex	Invalid Service_Request_ID
03 hex	Invalid Modifier
04 hex	Invalid Data_Structure_Identifier_RQ
06 hex	No PE energy-saving mode supported
07 hex	Response too long
08 hex	Invalid block header
50 hex	No suitable energy-saving mode available
51 hex	Time is not supported
52 hex	Impermissible PE_Mode_ID
53 hex	No switch to energy saving mode because of state operate
54 hex	Service or function temporarily not available

Table 8-126 Measured values

PROFlenergy				$\begin{aligned} & \text { Uni } \\ & t \end{aligned}$	SINAMICS source parameters		Value range
Measured value		Accuracy					
ID	Name	Domain	Class		Number	Name	
34	Active power	1	12	W	r0032	Active power smoothed	r2004
166	Power factor	1	12	1	r0038	Power factor smoothed	0 ... 1
200	Active energy import	2	11	Wh	$\begin{aligned} & \hline \text { r0039[} \\ & 1] \end{aligned}$	Energy drawn	-

8.11.9 Function diagram 7035 - Technology functions, bypass

Figure 8-220
FP 7035
8.11.10 Function diagram 7038 - Technology functions, hibernation mode

Figure 8-221

8.12 Switchover between different settings

Overview

There are applications that require different converter settings.

Example:

Different motors are operated on one converter. The converter must operate with the motor data of the particular motor and the appropriate ramp-function generator.

Function description

Drive Data Sets (DDS)

Some converter functions can be set differently, and there can be a switch between the different settings.

Note

You can only switch over the motor data of the drive data sets in the "ready for operation" state with the motor switched off. The switchover time is approx. 50 ms .

If you do not switch over the motor data together with the drive data sets (i.e. same motor number in p0826), then the drive data sets can also be switched over in operation.

The associated parameters are indexed (index $0,1,2$, or 3). One of the four indexes is selected with control commands, and thereby one of the four saved settings.
The settings in the converter with the same index are called a drive data set.

Selecting the number of drive data sets

Parameter p0180 defines the number of drive data sets (1 ... 4).

Parameter	Description
p0010 $=0$	Drive commissioning: Ready
p0010 $=15$	Drive commissioning: Data sets
p0180	Drive data set (DDS) number

Copying the drive data sets

Parameter	Description
p0819[0]	Source drive data set
p0819[1]	Target drive data set
p0819[2] $=1$	Starts the copy operation

Parameters

Number	Name	Factory setting
p0010	Drive commissioning parameter filter	1
r0051	CO/BO: Drive data set DDS effective	-
p0180	Drive data set (DDS) number	1
p0819[0 .. 2]	Copy drive data set DDS	0
p0820[C]	BI: Drive data set DDS selection, bit 0	0
p0821[C]	BI: Drive data set DDS selection, bit 1	0
p0826[M]	Motor changeover, motor number	0

8.13 Explanations of the function diagrams

8.13.1 Symbols in the function diagrams

Function description

The symbols used in the function diagrams are explained below.

Figure 8-222 Parameter

On	NOT
Logical inversion	

Differentiator

$\mathrm{y}=\frac{\mathrm{dx}}{\mathrm{dt}}$

Threshold switch $1 / 0$
$y=1$, if $x<S$

Threshold switch 0/1
$y=1$, if $x>S$

Threshold value $1 / 0$ with hysteresis $y=1$, if $x<S$ If $x \geq \mathrm{S}+\mathrm{H}, \mathrm{y}$ changes from 1 to 0 .

Threshold value $0 / 1$ with hysteresis $y=1$, if $x>S$
If $\mathrm{x} \leq \mathrm{S}-\mathrm{H}, \mathrm{y}$ changes from 1 to 0 .

Figure 8-223 Binary and analog blocks

PT1 element
First order delay element pxxxx = time constant

PT2 lowpass filter
pxxxx = Natural frequency denominator
pyyyy $=$ Attenuation denominator
Filter 2nd order (band-stop/general filter)
pxxxx = Natural frequency denominator
pyyyy $=$ Attenuation denominator
pzzzz = Natural frequency counter
pwwww = Attenuation counter
Use as band filter:

- Center frequency fs: pzzzz = fs
pxxxx = fs
- Bandwidth f_B: pwwww = 0

$$
\text { pyyyy }=\frac{\mathrm{f}-\mathrm{B}}{2 \cdot \mathrm{fs}}
$$

Activatable adder
With $\mathrm{I}=1$ signal: $\mathrm{y}=\mathrm{x} 1+\mathrm{x} 2$
With $\mathrm{I}=0$ signal: $\mathrm{y}=\mathrm{x} 1$

Figure 8-224 Analog blocks

8.13.2 Interconnecting signals in the converter

The following functions are implemented in the converter:

- Open-loop and closed-loop control functions
- Communication functions
- Diagnosis and operating functions

Every function comprises one or several blocks that are interconnected with one another.

Figure 8-225 Example of a block: Motorized potentiometer (MOP)
Most of the blocks can be adapted to specific applications using parameters.

You cannot change the signal interconnection within the block. However, the interconnection between blocks can be changed by interconnecting the inputs of a block with the appropriate outputs of another block.

The signal interconnection of the blocks is realized, contrary to electric circuitry, not using cables, but in the software.

PROFIdrive
receive PZD1

Figure 8-226 Example: Signal interconnection of two blocks for digital input 0

Binectors and connectors

Connectors and binectors are used to exchange signals between the individual blocks:

- Connectors are used to interconnect "analog" signals (e.g. MOP output speed)
- Binectors are used to interconnect digital signals (e.g. "Enable MOP up" command)

Figure 8-227 Symbols for binector and connector inputs and outputs
Binector/connector outputs (CO/BO) are parameters that combine more than one binector output in a single word (e.g. r0052 CO/BO: status word 1). Each bit in the word represents a digital (binary) signal. This summary reduces the number of parameters and simplifies parameter assignment.

Binector or connector outputs (CO, BO or CO/BO) can be used more than once.

Interconnecting signals

When must you interconnect signals in the converter?

If you change the signal interconnection in the converter, you can adapt the converter to a wide range of requirements. This does not necessarily have to involve highly complex functions.

Example 1: Assign a different function to a digital input.
Example 2: Switch the speed setpoint from the fixed speed to the analog input.

Principle when connecting BICO blocks using BICO technology

When interconnecting the signal, the following principle applies: Where does the signal come from?

An interconnection between two BICO blocks consists of a connector or a binector and a BICO parameter. The input of a block must be assigned the output of a different block: In the BICO parameters, enter the parameter numbers of the connector/binector that should supply its output signal to the BICO parameter.

How much care is required when you change the signal interconnection?

Note which changes you make. A subsequent analysis of the set signal interconnections is possible only by evaluating the parameter list.

Where can you find additional information?

- All the binectors and connectors are located in the Parameter list.
- The function diagrams provide a complete overview of the factory setting for the signal interconnections and the setting options.

Parameters

9.1 Explanation of the detailed parameter list

Overview

Figure 9-1 Parameter description

Function description

Parameter number

The parameter number is made up of a "p" or "r", followed by a number and optionally the index or bit array.

- p1234 Adjustable parameters (read and write)
- r1234
- p1234[0...2]
- p1234.0 ... 15

Display parameters (read-only)
Adjustable parameters with index 0 to 2
Adjustable parameters with bit 0 to bit 15

- p1234[1] Adjustable parameter index 1
- p1234.1 Adjustable parameter bit 1
9.1 Explanation of the detailed parameter list

Parameter name

The following abbreviations can appear in front of the names:

BI	Binector input
BO	Binector output
CI	Connector input
CO	Connector output
CO/BO	Connector/binector output
	Interconnecting signals in the converter (Page 660)

Can be changed

"-" The parameter can be changed in any state, and the change becomes immediately effective.
$\mathrm{C}(\mathrm{x}) \quad$ The parameter can only be changed for the following settings:
C: p0010>0
$C(x): p 0010=x$
$U \quad$ The motor is switched on
T The motor is switched off and p0010=0

Unit group and unit selection

For parameters where the unit can be switched over.
"Unit group": to which group does the parameter belong?
"Unit selection": with which parameter do you switch over the unit?

Data type

- Integer8	18	8-bit integer
- Integer16	I 16	16-bit integer
- Integer32	132	32-bit integer
- Unsigned8	U 8	8-bit without sign
- Unsigned16	U 16	16-bit without sign
- Unsigned32	U32	32-bit without sign
- FloatingPoint32	Float	32-bit floating-point number

Scaling

Specification of the reference variable with which a signal value is automatically converted with a BICO interconnection.

The following reference variables are available:

- p2000 ... p2003: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- $4000 \mathrm{H}: 4000$ hex $=100 \%$ (word) or 40000000 hex $=100 \%$ (double word)
9.1 Explanation of the detailed parameter list

Additional information

This parameter list is based on the following firmware:

- Firmware version: V1.04
- Firmware version of the basic system V04715215_1040006

9.2 Parameter list

Version: 4715215
All objects: G120X_DP, G120X_PN, G120X_USS

r0002	Drive operating display / Drv op_display	
	Access level: $2 \quad$ Calculated: -	Data type: Integer16
	Can be changed: - Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0200	-
Description:	Operating display for the drive.	
Value:	0: Operation - everything enabled	
	10: Operation - set "enable setpoint" = "1" (p1142)	
	12: Operation - RFG frozen, set "RFG start" = "1" (p1141)	
	13: Operation - set "enable RFG" = "1" (p1140)	
	14: Operation - MotID, excitation running	
	16: Operation - withdraw braking with OFF1 using "ON/OFF1" = "1"	
	17: Operation - braking with OFF3 can only be interrupted with OFF2	
	18: Operation - brake on fault, remove fault, acknowledge	
	19: Operation - DC braking active (p1230, p1231)	
	21: Ready for operation - set "Enable operation" = "1" $\mathrm{p}^{\text {0852 }}$)	
	22: Ready for operation - de-magnetizing running (p0347)	
	31: Ready for switching on - set "ON/OFF1" $=$ "0/1" (p0840)	
	35: Switching on inhibited - carry out first commissioning (p0010)	
	41: Switching on inhibited - set "ON/OFF1" = "0" (p0840)	
	42: Switching on inhibited - set "OC/OFF2" = "1" (p0844, p0845)	
	43: Switching on inhibited - set "OC/OFF3" = "1" (p0848, p0849)	
	44: Switching on inhibited - supply STO terminal w/ 24 V (hardware)	
	45: Switching on inhibited - remove fault, acknowledge fault	
	46: Switching on inhibited - exit commissioning mode (p0010)	
	70: Initialization	
	200: Wait for booting/partial booting	
Dependency:	See also: r0046	
	NOTICE	
	For several missing enable signals, the corresponding value with the highest n	ber is displayed.

Note

OC: Operating condition
RFG: Ramp-function generator
COMM: Commissioning
MotID: Motor data identification

p0003 Access level / Acc_level

Access level: 1
Can be changed: C1, T, U
Unit group:

Min:

3

Calculated: -
Scaling:-
Unit selection: -
Max:
4

Data type: Integer16
Dynamic index: -
Function diagram: -
Factory setting:
3

Description:
Sets the access level to read and write parameters.

Description:	Runs the corresponding macro files(41/42/4 41: Analog control 42: PID with analog control 43: 2-pump with analog control 44: 3-pump with analog control 45: Fixed setpiont control 47: PID control with internal fixed setpiont 48: 2-pump and internal fixed setpiont 49: 3-pump and internal fixed setpiont 57: DP control	/47/48/49/57).	
Dependency:	See also: p1000, r8570		
	NOTICE		
	After the value has been modified, no furth Modifications can be made again when r39 When executing a specific macro, the corre	meter modification ng programmed s	and the status is shown de and become active.
p0015	Macro drive unit / Macro drv unit		
G120X_PN	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: C1, C2(1)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	999999	57
Description:	Runs the corresponding macro files(41/42/4 41: Analog control 42: PID with analog control 43: 2-pump with analog control 44: 3-pump with analog control 45: Fixed setpiont control 47: PID control with internal fixed setpiont 48: 2-pump and internal fixed setpiont 49: 3-pump and internal fixed setpiont 57: PN control	5/47/48/49/57).	
Dependency:	See also: p1000, r8570		
	NOTICE		
	After the value has been modified, no further Modifications can be made again when r39 When executing a specific macro, the corre	meter modification ng programmed s	and the status is shown de and become active.
p0015	Macro drive unit / Macro drv unit		
G120X_USS	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: C1, C2(1)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	999999	41

Description:	Runs the corresponding macro files(41/42/43/44/45/46/47/48/49/51/52/54/55). 41: Analog control 42: PID with analog control 43: 2-pump with analog control 44: 3-pump with analog control 45: Fixed setpiont control 46: Al control local / remote 47: PID control with internal fixed setpiont 48: 2-pump and internal fixed setpiont 49: 3-pump and internal fixed setpiont 51: MODBUS control 52: MODBUS control local / remote 54: USS control 55: USS control local / remote See also: p1000, r8570
	NOTICE After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. When executing a specific macro, the corresponding programmed settings are made and become active.
r0018	Control Unit firmware version / Firmware version
Description: Dependency:	Displays the firmware version of the Control Unit. See also: r0197, r0198 Note Example: The value 1010100 should be interpreted as V01.01.01.00.
r0020	Speed setpoint smoothed / Speed setpoint
Description: Dependency	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator). See also: r0060
	Note Smoothing time constant $=100 \mathrm{~ms}$ The signal is not suitable as a process quantity and may only be used as a display quantity. The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).

r0021	CO: Actual speed smoothed / Actual speed		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6799
			Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the calculated and smoothed rotor speed.		
	Frequency components from the slip compensation (for induction motors) are not included.		
Dependency:	See also: r0022, r0063		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
r0022	Actual speed rpm smoothed / Actual speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the calculated and smoothed rotor speed.		
	Frequency components from the slip compensation (for induction motors) are not included.		
	r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over.		
Dependency:	See also: r0021, r0063		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
r0024	Output frequency smoothed / Output frequency		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6300,6799
	Min:	Max:	Factory setting:
	- [Hz]		
Description:	Displays the smoothed output frequency.		
	Frequency components from the slip compensation (for induction motors) are included.		
Dependency:	See also: r0066		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		

r0025	CO: Output voltage smoothed / Output voltage		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 5730, 6300, 6799
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the smoothed output voltage of the power unit.		
Dependency:	See also: r0072		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0026	CO: DC link voltage smoothed / DC link voltage		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Displays the smooth	voltage.	
Dependency:	See also: r0070		
	NOTICE		
	When measuring a DC link voltage < 200 V, for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0027	CO: Absolute actual current smoothed / Motor current		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 5730, 6799, 8850, 8950
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	See also: r0068		
	NOTICE		
	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
	Note		
	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0028	Modulation depth smoothed / Mod_depth smth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 5730, 6799, 8950
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	See also: r0074		
	Note		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0029	Current actual value field-generating smoothed / Id_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed field-generating actual current.		
Dependency:	See also: r0076		
	Note		
	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0030	Current actual value torque-generating smoothed / Iq_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6799
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smooth	urrent.	
Dependency:	See also: r0078		
	Note		
	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque-generating current actual value is available smoothed (r0030) and unsmoothed (r0078).		
r0031	Actual torque smoothed / Actual torque		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 5730,6799
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the smoothed torque actual value.		
Dependency:	See also: r0080		

Index:	[0] = Inverter maximum value
	[1] = Depletion layer maximum value
	[2] = Rectifier maximum value
	[3] = Air intake
	[4] = Interior of power unit
	[5] = Inverter 1
	[6] = Inverter 2
	[7] = Inverter 3
	[8] = Reserved
	[9] = Reserved
	[10] = Reserved
	[11] = Rectifier 1
	[12] = Reserved
	[13] = Depletion layer 1
	[14] = Depletion layer 2
	[15] = Depletion layer 3
	[16] $=$ Depletion layer 4
	[17] = Depletion layer 5
	[18] = Depletion layer 6
	[19] = Reserved

NOTICE

Only for internal Siemens troubleshooting.

Note

The value of - 200 indicates that there is no measuring signal.
r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]).
r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).
The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier.
In the case of a fault, the particular shutdown threshold depends on the power unit, and cannot be read out.

r0038 Power factor smoothed / Cos phi smooth

Access level: 4
Can be changed: -
Unit group: -

Min:

Calculated: -
Scaling: -
Unit selection: -
Max:
-

Data type: FloatingPoint32
Dynamic index:-
Function diagram: 6799, 8850, 8950
Factory setting:

Displays the smoothed actual power factor. This refers to the electrical power of the basic fundamental signals at the converter output terminals.

NOTICE

For infeed units, the following applies:
For active powers $<25 \%$ of the rated power, this does not provide any useful information.

Note

Smoothing time constant $=300 \mathrm{~ms}$
The signal is not suitable as a process quantity and may only be used as a display quantity.

r0039[0...2]	CO: Energy display / Energy display		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [kWh]	- [kWh]	- [kWh]
Description:	Display and connector output for the energy values at the output terminals of the power unit.		
Recommendation:	r0042 should be used as process energy display.		
	Parameter r0039 supplies floating-point values in Ws as signal source.		
Index:	[0] = Energy balance (sum)		
	[1] = Energy drawn		
	[2] = Energy fed back		
Dependency:	See also: p0040		
	Note		
	For index [0]:		
	Difference between the energy drawn and energy that is fed back.		
p0040	Reset energy consumption display / Energy usage reset		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to reset the display in r0039 and r0041.		
	Procedure:		
	Set p0040 = 0 --> 1		
	The displays are reset and the parameter is automatically set to zero.		
Dependency:	See also: r0039		
	Note		
	When this display is reset (p0040), then the process energy display (r0042) is also reset.		
r0041	Energy consumption saved / Energy cons saved		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [kWh]	- [kWh]	- [kWh]
Description:	Displays the saved energy referred to 100 operating hours.		
Dependency:	See also: p0040		
	Note		
	This display is used for a fluid-flow machine.		
	The flow characteristic is entered into p3320 ... p3329.		
	For an operating time of below 100 hours, the display is interpolated up to 100 hours.		

02	OFF3 enable missing	Yes	No
03	Operation enable missing	Yes	No
04	DC braking enable missing	Yes	No
08	Safety enable missing	Yes	No
10	Ramp-function generator enable missing	Yes	No
11	Ramp-function generator start missing	Yes	No
12	Setpoint enable missing	Yes	No
16	OFF1 enable internal missing	Yes	No
17	OFF2 enable internal missing	Yes	No
18	OFF3 enable internal missing	Yes	No
19	Pulse enable internal missing	Yes	No
20	DC braking internal enable missing	Yes	No
21	Power unit enable missing	Yes	No
25	Function bypass active	Yes	No
26	Drive inactive or not operational	Yes	No
27	De-magnetizing not completed	Yes	No
30	Speed controller inhibited	Yes	No

Note

The value r0046 $=0$ indicates that all enable signals for this drive are present.
Bit $00=1$ (enable signal missing), if:

- the signal source in p0840 is a 0 signal.
- there is a "switching on inhibited".

Bit 01 = 1 (enable signal missing), if:

- the signal source in p0844 or p0845 is a 0 signal.

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (DC brake active) when:

- the signal source in p1230 has a 1 signal.

Bit $08=1$ (enable signal missing), if:

- the "STO via terminals at the Power Module" function is selected.

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit $11=1$ (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p 1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p 1055) and bit 1 (p 1056) have a 1 signal.
Bit $12=1$ (enable signal missing), if:
- the signal source in p 1142 is a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the
"switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0010>0).
- there is an OFF2 fault response.
- the drive is not operational.

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- sequence control does not have a finished message.

Bit $20=1$ (internal DC brake active), if:

- the drive is not in the state "Operation" or in "OFF1/OFF3".

Bit $21=1$ (enable signal missing), if:
- the power unit does not issue an enable signal (e.g. because DC link voltage is too low).
- the hibernation mode is active.

Bit $25=1$ (function bypass active) if:

- the bypass function is active.

Bit $26=1$ (enable signal missing), if:

- the drive is not operational.

Bit 27 = 1 (enable signal missing), if:

- de-magnetization not completed.

Bit $30=1$ (speed controller inhibited), if one of the following reasons is present:

- the pole position identification is active.
- motor data identification is active (only certain steps).

Bit $31=1$ (enable signal missing), if:
-the speed setpoint from jog 1 or 2 is entered.

r0047	Motor data identification and speed controller optimization / MotID and n_opt			
	Access level: 1		Calculated: -	Data type: Integer16
	Can be changed: -		Scaling: -	Dynamic index: -
	Unit group: -		Unit selection: -	Function diagram: -
	Min:		Max:	Factory setting:
	0		300	-
Description:	Displays the actual status for the motor data identification (stationary measurement) and the speed controller optimization (rotating measurement).			
Value:	0 :	No measurement		
	115: Measur		art 2)	
	120: Speed co		n test)	
	140: Calculat			
	150: Measur			
	170: Measur		saturation charac	
	195: Measur		art 1)	
	200: Rotating			
	220:	identific		
	230:	Identific		
	240:	Identific		
	250:	Identific		
	260:	Identific		
	270:	Identific		
	290:	Identific		
	300:	Stationary measurement selected		
r0047 G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Motor data identification and speed controller optimization / MotID and n_opt			
	Access level: 1		Calculated: -	Data type: Integer16
	Can be changed: -		Scaling: -	Dynamic index: -
	Unit group:-		Unit selection: -	Function diagram: -
	Min:		Max:	Factory setting:
	0		300	-
Description:	Displays the actual status for the motor data identification (stationary measurement) and the speed controller optimization (rotating measurement).			
Value:	0 :	No measurement		
	115:	Measurement q leakage inductance (part 2)		
	120:	Speed controller optimization (vibration test)		
	140:	Calculate speed controller setting		
	150:	Measurement moment of inertia		
	170:	Measurement magnetizing current and saturation characteristic		
	195:	Measurement q leakage inductance (part 1)		
	200:	Rotating measurement selected		
	220:	identification leakage inductance		
	230:	Identification rotor time constant		
	240:	Identification stator inductance		
	250:	Identification stator inductance LQLD		
	270:	Identification stator resistance		
	290:	Identification valve lockout time		
	295:	Calibration output voltage measurement		
	300.	Stationary measurement selected		

r0050.0... 1	CO/BO: Command Data Set CDS effective / CDS effective				
	Access level: 3		Calculated:-	Data type: Unsigned8	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 8560	
	Min		Max:	Factory setting:	
	-		-	-	
Description:	Displays the effective Command Data Set (CDS).				
Bit field:		Signal name	1 signal	0 signal	FP
		CDS effective bit 0	ON	OFF	-
		CDS effective bit 1	ON	OFF	-
Dependency:	See also: p0810, p0811, r0836				
	Note				
	The Command Data Set selected using a binector input (e.g. p0810) is displayed using r0836.				
r0051.0... 1	CO/BO: Drive Data Set DDS effective / DDS effective				
	Access level: 2		Calculated: -	Data type: Unsigned8	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 8565	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays the effective Drive Data Set (DDS).				
Bit field:		Signal name	1 signal	0 signal	FP
		DDS effective bit 0	ON	OFF	-
		DDS effective bit 1	ON	OFF	-
Dependency:	See also: p0820, p0821, r0837				
	When selecting the motor data identification routine and the rotating measurement, the drive data set changeove suppressed.				
r0052.0... 15	CO/BO: Status word 1 / ZSW 1				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index:-	
	Unit group: -		Unit selection: -	Function diagram:	
	Min:		Max:		
	-			Factory setting:	
Description:	Display and connector output for status word 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Ready for switching on	Yes	No	-
	01	Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Fault present	Yes	No	-
	04	Coast down active (OFF2)	No	Yes	-
	05	Quick Stop active (OFF3)	No	Yes	-
	06	Switching on inhibited active	Yes	No	-
	07	Alarm present	Yes	No	-
	08	Deviation setpoint/actual speed	No	Yes	-
	09	Control request	Yes	No	-
	10	Maximum speed exceeded	Yes	No	-

11	I, M, P limit reached	No	Yes
13	Alarm motor overtemperature	No	Yes
14	Motor rotates forwards	Yes	-
15	Alarm drive converter overload	No	-
NOTICE	Yes	-	
p2080 is used to define the signal sources of the PROFIdrive status word interconnection.			

Note

For bit 03:
This signal is inverted if it is interconnected to a digital output.
For r0052:
The status bits have the following sources:
Bit 00: r0899 Bit 0
Bit 01: r0899 Bit 1
Bit 02: r0899 Bit 2
Bit 03: r2139 Bit 3 (or r1214.10 for p1210>0)
Bit 04: r0899 Bit 4
Bit 05: r0899 Bit 5
Bit 06: r0899 Bit 6
Bit 07: r2139 Bit 7
Bit 08: r2197 Bit 7
Bit 09: r0899 Bit 7
Bit 10: r2197 bit 6 (delayed)
Bit 11: r0056 Bit 13 (negated)
Bit 13: r2135 Bit 14 (negated)
Bit 14: r2197 Bit 3
Bit 15: r2135 Bit 15 (negated)
r0053.0... 11 CO/BO: Status word 2 / ZSW 2

Access level: 2
Can be changed: -
Unit group: -
Min:

Calculated: -

Scaling: -

Unit selection: -
Max:

Data type: Unsigned16
Dynamic index: -
Function diagram:
Factory setting:

Display and BICO output for status word 2.

Bit	Signal name	1 signal	0 signal	FP
00	DC braking active	Yes	No	-
01	$\mid \mathrm{n}$ _act\| > p1226 (n_standstill)	Yes	No	-
02	$\mid \mathrm{n}$ _act\| > p1080 (n_min)	Yes	No	-
03	I_act > $=$ p2170	Yes	No	-
04	\mid n_act $\mid>\mathrm{p} 2155$	Yes	No	-
05	$\mid \mathrm{n}$ _act\| < $=$ p2155	Yes	No	-
06	$\mid \mathrm{n}$ _act $\mid>=r 1119$ (n_set)	Yes	No	-
07	$\mathrm{Vdc}<=\mathrm{p} 2172$	Yes	No	-
08	$\mathrm{Vdc}>\mathrm{p} 2172$	Yes	No	-
09	Ramp-up/ramp-down completed	Yes	No	-
10	Technology controller output at the lower limit	Yes	No	-
11	Technology controller output at the upper limit	Yes	No	-

NOTICE

p2081 is used to define the signal sources of the PROFIdrive status word interconnection.

```
Note
The following status bits are displayed in r0053:
Bit 01: r2197 Bit 5 (negated)
Bit 02: r2197 Bit 0 (negated)
Bit 03: r2197 Bit 8
Bit 04: r2197 Bit 2
Bit 05: r2197 Bit 1
Bit 06: r2197 Bit 4
Bit 07: r2197 Bit 9
Bit 08: r2197 Bit 10
Bit 09: r1199 Bit 2 (negated)
Bit 10: r2349 Bit 10
Bit 11: r2349 Bit 11
```

r0053.0... 11 CO/BO: Status word $2 /$ ZSW 2

G120X DP (DC braking), G120X_PN (DC braking), G120X USS (DC braking)

Description: Display and BICO output for status word 2.
Access level: 2
Can be changed: -
Unit group: -
Min:

Bit	Signal name	1 signal	0 signal	FP	
00	DC braking active	Yes	No	-	
01	\|n_act	> p1226 (n_standstill)	Yes	No	-
02	$\mid \mathrm{n}$ _act\| > p1080 (n_min)	Yes	No	-	
03	I_act >= p2170	Yes	No	-	
04	$\mid \mathrm{n}$ _act ${ }^{\text {P p } 2155}$	Yes	No	-	
05	$\mid \mathrm{n}$ _ act\| < $=$ p2155	Yes	No	-	
06	$\mid \mathrm{n}$ _act\| >= r1119 (n_set)	Yes	No	-	
07	Vdc < $=$ p2172	Yes	No	-	
08	Vdc > p2172	Yes	No	-	
09	Ramp-up/ramp-down completed	Yes	No	-	
10	Technology controller output at the lower limit	Yes	No	-	
11	Technology controller output at the upper limit	Yes	No	-	

NOTICE

p2081 is used to define the signal sources of the PROFIdrive status word interconnection.

Note

The following status bits are displayed in r0053:
Bit 00: r1239 Bit 8
Bit 01: r2197 Bit 5 (negated)
Bit 02: r2197 Bit 0 (negated)
Bit 03: r 2197 Bit 8
Bit 04: r2197 Bit 2
Bit 05: r2197 Bit 1
Bit 06: r2197 Bit 4
Bit 07: r2197 Bit 9
Bit 08: r2197 Bit 10
Bit 09: r1199 Bit 2 (negated)
Bit 10: r2349 Bit 10
Bit 11: r2349 Bit 11

Data type: Unsigned16
Dynamic index: -
Function diagram: -
Factory setting: Bit field:

r0054.0... 15	CO/BO: Control word 1 / STW 1				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group:-		Unit selection: -	Function diagram: -	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Displays control word 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC I OFF2	No	Yes	-
	02	OC I OFF3	No	Yes	-
	03	Enable operation	Yes	No	-
	04	Enable ramp-function generator	Yes	No	-
	05	Continue ramp-function generator	Yes	No	-
	06	Enable speed setpoint	Yes	No	-
	07	Acknowledge fault	Yes	No	-
		Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
	10	Master control by PLC	Yes	No	-
		Direction reversal (setpoint)	Yes	No	-
		Motorized potentiometer raise	Yes	No	-
		Motorized potentiometer lower	Yes	No	-
	15	CDS bit 0	Yes	No	-
	Note				
	The following control bits are displayed in r0054:				
	Bit 00: r0898 Bit 0				
	Bit 01: r0898 Bit 1				
	Bit 02: r0898 Bit 2				
	Bit 03: r0898 Bit 3				
	Bit 04: r0898 Bit 4				
	Bit 05: r0898 Bit 5				
	Bit 06: r0898 Bit 6				
	Bit 07: 21388 Bit 7				
	Bit 08: $\mathrm{r0898}$ Bit 8				
	Bit 09: r0898 Bit 9				
	Bit 10: r0898 Bit 10				
	Bit 11: r1198 Bit 11				
	Bit 13: r1198 Bit 13				
	Bit 14: r1198 Bit 14				
	Bit 15: r0836 Bit 0				
r0055.0... 15	CO/BO: Supplementary control word / Suppl STW				
	Access level: 3		Calculated:-	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group:-		Unit selection: -	Function diagram: 2513	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Display and BICO output for supplementary control word.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Fixed setpoint bit 0	Yes	No	-
		Fixed setpoint bit 1	Yes	No	-

02	Fixed setpoint bit 2	Yes	No
03	Fixed setpoint bit 3	Yes	No
04	DDS selection bit 0	Yes	No
05	DDS selection bit 1	Yes	No
08	Technology controller enable	Yes	No
09	DC braking enable	Yes	No
11	Reserved	-	-
12	Reserved	-	-
13	External fault 1 (F07860)	No	Yes
15	CDS bit 1	Yes	No

Note

CDS: Command Data Set
DDS: Drive Data Set
The following control bits are displayed in r0055:
Bit 00: r1198.0
Bit 01: r1198.1
Bit 02: r1198.2
Bit 03: r1198.3
Bit 04: r0837.0
Bit 05: r0837.1
Bit 08: r2349.0 (negated)
Bit 13: r2138.13 (negated)
Bit 15: r0836.1

	Note		
r0062	CO: Speed setpoint after the filter / n_set after filter		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6020, 6030, 6031, 6822
	Min: - [rpm]	Max: - [rpm]	Factory setting: - [rpm]
Description:	Display and connector output for the speed setpoint after the setpoint filters.		
r0063[0...2]	CO: Actual speed / Actual speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6020, 6730, 6799, 6841
	Min: - [rpm]	Max: - [rpm]	Factory setting: - [rpm]
Description:	Display and connector output for the speed actual value.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \\ & {[2]=\text { Calculated from f_set }- \text { f_slip (unsmoo }} \end{aligned}$		
Dependency:	See also: r0021, r0022		
	Note The speed actual value r0063[0] - smoothed as process variable for the appropriate smo The speed (r0063[2]) calculated from the o (r0063[0]) in the steady-state. For U/f control, the mechanical speed calcul compensation is deactivated.	p0045 - is additionally di time constant p0045. requency and slip can only m the output frequency	in r0063[1]. r0063[1] can be used mpared with the speed actual value slip is shown in r0063[2] even if slip
r0064	CO: Speed controller system deviation / n_ctrl sys dev		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6040, 6824
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual system deviation of the speed controller.		
r0065	Slip frequency / f_Slip		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 2_1	Unit selection: p0505	Function diagram: 6310, 6700, 6727, 6730, 6732
	Min:	Max:	Factory setting:
		- [Hz]	
Description:	Displays the slip frequency for induction motors (ASM).		

r0066	CO: Output frequency / f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 2_1	Unit selection: p0505	Function diagram: 6730, 6731, 6792, 6799, 6841, 6842, 6843
	Min:	Max:	Factory setting:
	- [Hz]	- [Hz]	- [Hz]
Description:	Display and connector output for the unsmoothed output frequency of the power unit. Frequency components from the slip compensation (induction motor) are included.		
Dependency:	See also: r0024		
	Note		
	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
r0067	CO: Output current maximum / Current max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6300, 6640, 6724, 6828, 6850
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	See also: p0290, p0640		
r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6300, 6714, 6799, 7017, 8017, 8021, 8022
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
Dependency:	See also: r0027		
	NOTICE		
	The value is updated with the current controller sampling time.		
	Note		
	Absolute current value $=\operatorname{sqrt}\left(\left\|q^{\wedge} 2+\right\| d \wedge 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		
r0069[0...8]	CO: Phase current actual value / I_phase act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_5	Unit selection: p0505	Function diagram: 6730
	Min:	Max:	Factory setting:
	- [A]	- [A]	- [A]

Parameters

9.2 Parameter list

Description:	Display and connector output for the measured actual phase currents as peak value.
Index:	$[0]=$ Phase U
	$[1]=$ Phase V
$[2]=$ Phase W	
$[3]=$ Phase U offset	
$[4]=$ Phase V offset	
$[5]=$ Phase W offset	
	$[6]=$ Total U, V, W
	$[7]=$ Alpha component
	$[8]=$ Beta component

Note

In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed. The sum of the 3 corrected phase currents is displayed in index 6 .

r0070	CO: Actual DC link voltage / Vdc act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_2	Unit selection: p0505	$\begin{aligned} & \text { Function diagram: 6723, 6724, } \\ & 6730,6731,6799 \end{aligned}$
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	See also: r0026		
	NOTICE		
	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		

Note

The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).

r0071	Maximum output voltage / Voltage max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	$\begin{aligned} & \text { Function diagram: 6301, 6640, } \\ & 6700,6722,6723,6724,6725, \\ & 6727 \end{aligned}$
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the actual DC link voltage (r0070) and the maximum modulation depth (p1803).		

Note

As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage.

r0072	CO: Output voltage / U_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	Function diagram: 5700, 6730, 6731, 6799
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the actual output voltage of the power unit.		
Dependency:	See also: r0025		
	Note		
	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0073	Maximum modulation depth / Modulat_depth max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6723, 6724
	Min:	Max:	Factory setting:
	- [\%]		
Description:	Displays the maximum modulation depth.		
Dependency:	See also: p1803		
r0074	CO: Modulat_depth / Mod_depth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 5730, 6730, 6731, 6799, 8940, 8950
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description: Dependency:	Display and connector output for the actual modulation depth.		
	See also: r0028		
	Note		
	For space vector modulation, 100\% corre Values above 100% indicate an overcont The phase voltage (phase-to-phase, rms) The modulation depth is available smooth	the maximum output v ion - values below 100% ted as follows:(r0074 x r 8) and unsmoothed (r00	ithout overcontrol. overcontrol. $\text { (sqrt(2) x } 100 \% \text {). }$
r0075	CO: Current setpoint field-generating / Id_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6700, 6714, 6725
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current setpoint (Id_set).		
	Note		

r0076	CO: Current actual value field-generating / Id_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 5700, 5714, 5730, 6700, 6714, 6799
			Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current actual value (Id_act).		
Dependency:	See also: r0029		
	Note		
	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / Iq_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6700, 6710
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current setpoint.		
	Note		
	This value is irrelevant for the U/f control mode.		
r0078	CO: Current actual value torque-generating / lq_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6310, 6700, 6714, 6799
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current actual value (Iq_act).		
Dependency:	See also: r0030		
	Note		
	This value is irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		
r0079	CO: Torque setpoint / M_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6060, 6710
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		

r0080[0...1]	CO: Torque actual value / Actual torque		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6714, 6799
	Min:		Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
Dependency:	See also: r0031, p0045		
	Note		
	The value is available smoothed (r0031 with 100 ms , r0080[1] with p0045) and unsmoothed (r0080[0]).		
r0082[0...2]	CO: Active power actual value / P_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dynamic index: -
	Unit group: 14_5	Unit selection: p0505	Function diagram: 6714, 6799
	Min:	Max:	Factory setting:
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
	[2] = Electric power		
Dependency:	See also: r0032		
	Note		
	The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		
r0083	CO: Flux setpoint / Flux setp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 5722
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	
Description:	Displays the flux setpoint.		
r0084[0...1]	CO: Flux actual value / Actual flux		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6730, 6731
	Min:	Max:	Factory setting:
	- [\%]		- [\%]
Description:	Displays the flux actual value.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		

r0087	CO: Actual power factor / Cos phi act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual active power factor.		
	This value refers to the electrical power of the basic fundamental signals at the output terminals of the converter.		
r0089[0...2]	Actual phase voltage / U_phase act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_3	Unit selection: p0505	Function diagram: 6730
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Displays the actual phase voltage.		
Index:	[0] = Phase U		
	[1] = Phase V		
	[2] = Phase W		
	Note		
	The values are determined from the transistor switch-on duration.		
p0096	Application class / Appl_class		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C2(1)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6019
	Min:	Max:	Factory setting:
	0	2	0
Description:	Setting the commissioning and control view for varid	rious application classes.	
Value:	0: Expert		
	1: \quad Standard Drive Control (SDC)		
	2: Dynamic Drive Control (DDC)		
Dependency:	The parameter is preset when commissioning the system for the first time and for the factory setting, depending on the power unit that is connected (Power unit is more than $18 \mathrm{KW}, \mathrm{p0096}=2$. Power unit is less than $18 \mathrm{KW}, \mathrm{p} 0096=1$).		
	Depending on the setting, the ability to see control parameters is restricted depending on the particular application. The following applies for p0096>0:		
	The motor data identification routine is preset (p1900 = 2).		
	The following applies for p0096 = 1:		
	The motor type (p0300) synchronous or reluctance motor is not possible.		

Note

When changing p0096 to 1 or 2 , when completing commissioning, fast parameterization should be executed (p3900 >0).
Depending on the setting, after quick commissioning and/or automatic parameterization, the procedure for motor data identification as well as the setting of the operating mode and parameterization of the closed-loop control must be appropriately adapted.

Note

For bit 00:
When changing the bits, the rated motor voltage p0304 and the rated motor current p0305 are automatically converted to the selected connection type (star/delta).
For bit 01:
87 Hz operation is only possible in the delta connection type. When selected, the maximum speed p1082 is automatically pre-assigned for a maximum output frequency of 87 Hz (for p0100 = IEC) or 104 Hz (for p0100 = NEMA).

p0170	Number of Command Data Sets (CDS) / CDS count		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: C2(15)	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
	2	4	2
Description:	Sets the number of Command Data Sets (CDS).		
Dependency:	See also: p0010, r3996		

NOTICE

The parameter value is not reset when the factory setting is restored (see p0010 $=30, \mathrm{p} 0970$).
When the power unit use is changed, short-term communication interruptions may occur.

Note

When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p 1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload.
p0205 can only be changed to the settings that are saved in the power unit EEPROM.

Note

When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p 1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload.
p0205 can only be changed to the settings that are saved in the power unit EEPROM.

r0206[0...4]	Rated power unit power / PU P		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: 14_6	Unit selection: p0100	Function diagram: -
	Min:	Max:	Factory setting:
	- [kW]	- [kW]	- [kW]
Description:	Displays the rated power unit power for various load duty cycles.		
Index:	[0] = Rated value		
	[1] = Load duty cycle with low overload		
	[2] = Load duty cycle with high overload		
	$[3]=$ S1 continous duty cycle		
	[4] = S6 load duty cycle		
Dependency:	IECdrives (p0100 = 0): Units kW		
	NEMA drives ($\mathrm{p} 0100=1$): Units hp		
	See also: p0100, p0205		

| Λ CAUTION |
| :--- | :--- |
| For bit $08=1$: |
| Damage to the device if p0210 is parameterized too low |
| An excessively low supply voltage set in p0210 means that the braking resistor is permanently controlled, although the |
| converter is not in the braking mode. As a consequence, the braking resistor can be thermally overloaded. |
| - Do not parameterize p0210 with values that fall below the actual line voltage by more than 10%. |
| Damage to the motor p0210 is parameterized too high |
| The motor insulation could be damaged when braking if excessively high values are entered. This is especially the case |
| for motors that are designed for a 500 V line voltage and for motors from third parties. |
| - Do not parameterize p0210 with values that exceed the actual line voltage by more than 10%. |

Note

For bit 07:
Only for internal Siemens use
For bit $08=1$:
The activation threshold of the braking chopper (referred to the DC link voltage) is reduced as a function of p0210.
The shutdown threshold is also reduced as a result of a DC link overvoltage (r0297).
p0230

Description:
Value:

Drive filter type motor side / Drv filt type mot
Access level: 1
Can be changed: $C 2(1,2)$
Unit group: -
Min:
0

Calculated:-
Scaling: -
Unit selection: -
Max:
4

Data type: Integer16
Dynamic index: -
Function diagram: -
Factory setting: 0

Sets the type of the filter at the motor side.
0: \quad No filter
1: Motor reactor
2: $\quad d v / d t$ filter
3: Sine-wave filter Siemens
4: \quad Sine-wave filter third-party
Dependency: The following parameters are influenced using p0230:
p0230 = 1:
--> p0233 (power unit, motor reactor) = filter inductance
p0230 = 3 :
--> p0233 (power unit, motor reactor) = filter inductance
--> p0234 (power unit sine-wave filter capacitance) = filter capacitance
--> p0290 (power unit overload response) = inhibit pulse frequency reduction
--> p1082 (maximum speed) = Fmax filter / pole pair number
--> p1800 (pulse frequency) >= nominal pulse frequency of the filter
--> p1802 (modulator modes) = space vector modulation without overcontrol
p0230 = 4:
--> p0290 (power unit overload response) = inhibit pulse frequency reduction
--> p1802 (modulator modes) = space vector modulation without overcontrol
The user must set the following parameters according to the data sheet of the sine-wave filter and also the user must check whether they are permitted.
--> p0233 (power unit, motor reactor) = filter inductance
--> p0234 (power unit sine-wave filter capacitance) = filter capacitance
--> p1082 (maximum speed) = Fmax filter / pole pair number
--> p1800 (pulse frequency) >= nominal pulse frequency of the filter
See also: p0233, p0234, p0290, p1082, p1800, p1802

	Note The parameter cannot be changed if the power unit (e.g. PM260) is equipped with an internal sine-wave filter. For sine-wave filters, the test pulse evaluation to detect short-circuits is always deactivated. Only motor reactor filter type can be selected for a synchronous reluctance motor (RESM). If a filter type cannot be selected, then this filter type is not permitted for the power unit. $\mathrm{p} 0230=1$ Power units with output reactor are limited to output frequencies of 150 Hz . $\mathrm{p} 0230=3:$ Power units with sine-wave filter are limited to output frequencies of 200 Hz .
p0230	Drive filter type motor side / Drv filt type mot
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 1 Calculated: - Data type: Integer16 Can be changed: C2(1, 2) Scaling: - Dynamic index:- Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: 0 2 0
Description: Value:	Sets the type of the filter at the motor side. 0 : No filter Motor reactor 2: dv/dt filter
Dependency:	The following parameters are influenced using p0230: $\mathrm{p} 0230=1 \text { : }$ --> p0233 (power unit, motor reactor) = filter inductance See also: p0233, p0234, p0290, p1082, p1800, p1802 Note If a filter type cannot be selected, then this filter type is not permitted for the power unit. $\mathrm{p} 0230=1$ Power units with output reactor are limited to output frequencies of 150 Hz .
r0231[0...1]	Power cable length maximum / Cable length max
Description: Index:	Displays the maximum permissible cable lengths between the drive unit and motor. $\begin{aligned} & {[0]=\text { Unshielded }} \\ & {[1]=\text { Shielded }} \end{aligned}$
	Note The display value is used to provide information for service and maintenance.
p0233	Power unit motor reactor / PU mot reactor
	Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: C2(1), T, U Scaling: - Dynamic index: - Unit group: - Unit selection: - Function diagram: - Min: Max: Factory setting: $0.000[\mathrm{mH}]$ $1000.000[\mathrm{mH}]$ $0.000[\mathrm{mH}]$
Description: Dependency:	Enter the inductance of a filter connected at the power unit output. This parameter is automatically pre-set when you select a filter via p0230 if a SIEMENS filter is defined for the power unit. See also: p0230

9.2 Parameter list

Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction ($\mathrm{p} 0290=0,1$). For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set. See also: r0036, r0037, p0230, r2135 See also: A05000, A05001, A07805 NOTICE If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter. Note The setting p0290 $=0,2$ is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans). Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through. For p0290 $=2,3,12,13$, the $I 2 t$ overload detection of the power unit does not influence the response "Reduce pulse frequency". When the motor data identification routine is selected, p0290 cannot be changed. For short-circuit/ground fault detection, when the test pulse evaluation is active via p1901 "Test pulse evaluation configuration", the pulse frequency at the instant of switch on is briefly reduced.
p0290 G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Power unit overload response / PU overld response
Description:	Sets the response to a thermal overload condition of the power unit. The following quantities can result in a response to thermal overload: - heat sink temperature (r0037[0]). - chip temperature (r0037[1]). - power unit overload I2t (r0036). Possible measures to avoid thermal overload: - reduce the output current limit r0289 and r0067 (for closed-loop speed control) or the output frequency (for U/f control indirectly via the output current limit and the intervention of the current limiting controller). - reduce the pulse frequency. A reduction, if parameterized, is always realized after an appropriate alarm is output.
Value:	$0:$ Reduce output current or output frequency 1: No reduction shutdown when overload threshold is reached 2: Reduce I_output or f_output and f_pulse (not using I 2 t) 3: Reduce the pulse frequency (not using I 2 t)
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction ($\mathrm{p} 0290=0,1$). For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set. See also: r0036, r0037, p0230, r2135 See also: A05000, A05001, A07805

NOTICE

If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter.

Note

The setting p0290 $=0,2$ is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans).
Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through. For $\mathbf{p} 0290=2,3$, the 12 t overload detection of the power unit does not influence the response "Reduce pulse frequency". When the motor data identification routine is selected, p0290 cannot be changed.
For short-circuit/ground fault detection, when the test pulse evaluation is active via p1901 "Test pulse evaluation configuration", the pulse frequency at the instant of switch on is briefly reduced.

p0292[0...1]	Power unit temperature alarm threshold / PU T_alrm thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	$0\left[{ }^{\circ} \mathrm{C}\right]$	$25\left[{ }^{\circ} \mathrm{C}\right]$	[0] $5\left[{ }^{\circ} \mathrm{C}\right]$
			[1] $15\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the alarm threshold for power unit overtemperatures. The value is set as a difference to the tripping (shutdown) temperature.		
	Drive:		
	If this threshold is exceeded, an overload alarm is generated and the system responds as parameterized in p0290. Infeed:		
	When the threshold value is exceeded, only an overload alarm is output.		
Index:	[0] = Overtemperature heat sink		
Dependency:	See also: r0037, p0290		
	See also: A05000, A05001		
p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
	Access level: 4	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	10.0 [\%]	100.0 [\%]	95.0 [\%]
Description:	Sets the alarm threshold for the I2t power unit overload.		
Dependency:	See also: r0036, p0290		
	See also: A07805		

Note

The I2t fault threshold is 100%. If this value is exceeded, fault F30005 is output.

p0295	Fan run-on time / Fan run-on time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0[\mathrm{~s}]$	$000[\mathrm{~s}]$	
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		

Note

- Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively high heat sink temperature).
- For values less than 1 s , a 1 s run on time for the fan is active.
- for a PM230 power unit, sizes D - F the parameter is ineffective.

Dependency:	6:	Reluctance motor
	10:	1LE1 induction motor (not a code number)
	13:	1LG6 induction motor (not a code number)
	17:	1LA7 induction motor (not a code number)
	19:	1LA9 induction motor (not a code number)
	100:	1LE1 induction motor
	101:	1PC1 induction motor
	105:	1LE5 induction motor
	108:	$1 \mathrm{PH8}$ induction motor
	161:	1LEO induction motor
	600:	1FP1 synchronous reluctance motor
	603:	1FP3 synchronous reluctance motor OEM
	608:	1PH8 synchronous reluctance motor
	When selecting p $0300=10 \ldots 19$, parameters p0335, p0626, p0627, and p0628 of the thermal motor model are preassigned as a function of p0307 and p0311.	
	¢ CAUTION	
	If a motor is selected, which is not contained in the motor lists ($\mathrm{p} 0300<100$), then the motor code number must be reset ($\mathrm{p} 0301=0$), if previously a motor was parameterized from the motor list.	
	NOTICE	
	If a catalog motor is selected ($\mathrm{p} 0300>=100$) and an associated motor code number (p 0301), then the parameters that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 = 1 for p0301 = 1xxxx). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters. The motor type of a catalog motor corresponds to the upper three digits of the code number or the following assignment (if the particular motor type is listed): Type/code number ranges $\begin{aligned} & 100 / 100 x x, 110 x x, 120 x x, 130 x x, 140 x x, 150 x x \\ & 108 / 108 x x, 118 x x, 128 x x, 138 x x, 148 x x, 158 x x \\ & \hline \end{aligned}$	

Note

Once the Control Unit has been switched on for the first time or if the factory settings have been defined accordingly, the motor type is preconfigured to induction motor (p0300 = 1) .
If a motor type has not been selected ($\mathrm{p} 0300=0$), then the drive commissioning routine cannot be exited. A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.

p0300[0...n]	Motor type selection / Mot type sel		
G120X_DP (PM330),	Access level: 2	Calculated: -	Data type: Integer16
G120X_PN (PM330),	Can be changed: C2(1, 3)	Scaling: -	Dynamic index: DDS, p0180
G120X_USS (PM330)	Unit group: -	Unit selection: -	Function diagram: 6310
	Min:	Max:	Factory setting:
	0	161	0

9.2 Parameter list

Description:	Selecting the motor type.
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:
	1 = induction motor
	2 = synchronous motor
	$\mathrm{xx}=$ motor without code number
	$x \mathrm{xx}=$ motor with code number
	The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p0308) is neither used nor displayed (in the BOP/ IOP).
	The following applies for values < 100:
	Motor data must be manually entered.
	The following applies for values >= 100:
	Motor data are automatically loaded from an internal list.
Value:	0: No motor
	1: Induction motor
	2: Synchronous motor
	10: 1LE1 induction motor (not a code number)
	13: 1LG6 induction motor (not a code number)
	14: $1 \times x 1$ SIMOTICS FD induction motor (not a code number)
	17: 1LA7 induction motor (not a code number)
	18: 1LA8 / 1PQ8 standard induction motor series
	19: 1LA9 induction motor (not a code number)
	100: 1LE1 induction motor
	105: 1LE5 induction motor
	161: 1LEO induction motor
Dependency:	When the motor type is changed, the code number in p0301 may be reset to 0 .
	When selecting p0300 $=10 \ldots 19$, parameters p 0335 , p0626, p0627, and p0628 of the thermal motor model are preassigned as a function of p0307 and p0311.

. CAUTION

If a motor is selected, which is not contained in the motor lists ($\mathrm{p} 0300<100$), then the motor code number must be reset (p0301 = 0), if previously a motor was parameterized from the motor list.

NOTICE

If a catalog motor is selected ($\mathrm{p} 0300>=100$) and an associated motor code number (p 0301), then the parameters that are associated with this list cannot be changed (write protection). The write protection is canceled if the motor type p0300 is set to a non-Siemens motor that matches p0301 (e.g. p0300 = 1 for p0301 $=1 \mathrm{xxxx}$). Write protection is automatically canceled when the results of motor data identification are copied to the motor parameters.
The motor type of a catalog motor corresponds to the upper three digits of the code number or the following assignment (if the particular motor type is listed):
Type/code number ranges
100 / 100xx, 110xx, 120xx, 130xx, 140xx, 150xx

Note

Once the Control Unit has been switched on for the first time or if the factory settings have been defined accordingly, the motor type is preconfigured to induction motor ($\mathrm{p} 0300=1$).
If a motor type has not been selected ($\mathrm{p} 0300=0$), then the drive commissioning routine cannot be exited. A motor type with a value above p0300 >= 100 describes motors for which a motor parameter list exists.

p0301[0...n]	Motor code number selection / Mot code No. sel		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	65535	0
Description:	The parameter is used to select a motor from a motor parameter list.		
	When changing the code number (with the exception to the value 0), all of the motor parameters are pre-assigned from the internally available parameter lists.		
Dependency:	Code numbers can only be selected for motor types that correspond to the motor type selected in p0300. See also: p0300		
	Note The motor code number can only be changed if the matching catalog motor was first selected in p0300. When selecting a catalog motor (p0300 >= 100), drive commissioning can only be exited if a code number is selected. If a change is made to a non-catalog motor, then the motor code number should be reset (p0301 = 0).		
p0304[0...n]	Rated motor voltage / Mot U_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2 $(1,3)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6301, 6724
	Min:	Max:	Factory setting:
	0 [Vrms]	20000 [Vrms]	0 [Vrms]
Description:	Sets the rated motor voltage (rating plate).		
	NOTICE		
	When selecting a catalog m Information in p0300 should	meter is automatic when removing	ned and is write protected. n.

Note

When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.
Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0305[0...n] Rated motor current / Mot I_rated

Access level: 1
Can be changed: $\mathrm{C} 2(1,3)$
Unit group: -
Min:
0.00 [Arms]

Description:

Calculated: -	Data type: FloatingPoint32
Scaling: -	Dynamic index: DDS, p0180
Unit selection: -	Function diagram: 6301
Max:	Factory setting:
10000.00 [Arms]	0.00 [Arms]

Dynamic index: DDS, p0180
Function diagram: 6301
Factory setting:
0.00 [Arms]

Sets the rated motor current (rating plate).

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly.

Note

When the parameter value is entered the connection type of the motor (star-delta) must be taken into account. Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0306[0...n]	Number of motors connected in parallel / Motor qty		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	50	1
Description:	Sets the number (count) of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be observed in motors connected in parallel:		
	Rating plate data should only be entered for one motor: p0305, p0307		
	The following parameters are also only valid for one motor: p0320, p0341, p0344, p0350 ... p0361		
	All other motor parameters take into account the replacement/equivalent motor (e.g. r0331, r0333).		
Recommendation:	For motors connected in parallel, external thermal protection should be provided for each individual motor.		
Dependency:	Not visible with application class:"Standard Drive Control"(SDC, p0096=1), "Dynamic Drive Control" (DDC, p0096=2)		
	See also: r0331, r0370, r0373, r0374, r0376, r0377, r0382		

\triangle CAUTION

The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)).
The mounting regulations when connecting motors in parallel must be carefully maintained!
The number of motors set must correspond to the number of motors that are actually connected in parallel.
After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 = 1, p3900 > 0).
For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:

- an individual motor must not be loaded beyond its stall point.

NOTICE

If p0306 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned.

Note

Only operation with U/f characteristic makes sense if more than 10 identical motors are connected in parallel.
p0307[0...n] Rated motor power / Mot P_rated

Access level: 1
Can be changed: C2(1, 3)
Unit group: 14_6
Min:
0.00 [kW]

Description: Sets the rated motor power (rating plate).
Dependency:
IECdrives $(p 0100=0)$: Units kW

Calculated: -
Scaling: -
Unit selection: p0100
Max:
100000.00 [kW]

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: -
Factory setting:
0.00 [kW]

NEMA drives $(p 0100=1)$: Units hp
NEMA drives $(p 0100=2)$: Unit kW
See also: p0100

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0308[0...n]	Rated motor power factor / Mot cos phi rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2 $(1,3)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000	1.000	0.000
Description:	Sets the rated motor power factor (cos phi, rating plate).		
	For a parameter value of 0.000, the power factor is internally calculated and displayed in r 0332 .		
Dependency:	This parameter is only available for $00100=0,2$.		
	See also: p0100, p0309, r0332		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

The parameter is not used for synchronous motors (p0300 = 2xx).
Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0309[0...n]	Rated motor efficiency / Mot eta_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2 1,3$)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.0[\%]$	$99.9[\%]$	$0.0[\%]$
Description:	Sets the rated motor efficiency (rating plate).		
	For a parameter value of 0.0, the power factor is internally calculated and displayed in ro332.		
Dependency:	This parameter is only visible for NEMA motors (p0100 =1, 2).		
	See also: p0100, p0308, r0332		

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.

9.2 Parameter list

	Note The parameters are preassigned according to the specific power unit once the Control Unit has been powered up for the first time or when the factory settings have been restored.
p0310[0...n]	Rated motor frequency / Mot f_rated
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 1 Calculated: - Data type: FloatingPoint32 Can be changed: $\mathrm{C} 2(1,3)$ Scaling: - Dynamic index: DDS, p0180 Unit group: - Unit selection: - Function diagram: 6301 Min: Max: Factory setting: $0.00[\mathrm{~Hz}]$ $150.00[\mathrm{~Hz}]$ $0.00[\mathrm{~Hz}]$
Description: Dependency:	Sets the rated motor frequency (rating plate). The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if $\mathrm{p} 0314=0$. The rated frequency is restricted to values between 1.00 Hz and 100.00 Hz . See also: p0311, r0313, p0314
	NOTICE When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.
	Note The parameters are preassigned according to the specific power unit once the Control Unit has been powered up for the first time or when the factory settings have been restored.
p0311[0...n]	Rated motor speed / Mot n_rated
Description:	Sets the rated motor speed (rating plate). For p0311 = 0, the rated motor slip of induction motors is internally calculated and displayed in r0330. It is especially important to correctly enter the rated motor speed for vector control and slip compensation for U/f control.
Dependency:	If p0311 is changed and for p0314 $=0$, the pole pair (r0313) is re-calculated automatically. See also: p0310, r0313, p0314
	NOTICE
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0311 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. The pre-assignment has been completed if the status display r3996 returns to zero.
	Note The parameters are preassigned according to the specific power unit once the Control Unit has been powered up for the first time or when the factory settings have been restored.

Note

This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).

9.2 Parameter list

p0318[0...n]	Motor stall current / Mot I_standstill		
G120X DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(3)	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8017
	Min:	Max:	Factory setting:
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the stall current for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$), as well as for synchronous reluctance motors ($\mathrm{p} 0300=$ $6 x x$).		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	Note		
	The parameter is used for the 12t monitoring of the motor (refer to p0611).		
	This parameter is not used for induction motors ($\mathrm{p} 0300=1 \mathrm{xx}$).		
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [Arms]	5000.000 [Arms]	0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		
	Synchronous motors:		
	Sets the rated motor short-circuit current.		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

The magnetizing current p0320 for induction motors is reset when quick commissioning is exited with p3900 >0. If, for induction motors, the magnetizing current p0320 is changed outside the commissioning phase (p0010>0), then the magnetizing inductance p0360 is changed so that the EMF r0337 remains constant.

p0322[0...n] Maximum motor speed / Mot n_max

Access level: 1
Can be changed: C2(1, 3)
Unit group: -
Min:
0.0 [rpm]

Description
Dependency:
Sets the maximum motor speed.
See also: p1082

Calculated: -

Scaling: -
Unit selection:-
Max:
210000.0 [rpm]

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: -
Factory setting:
0.0 [rpm]

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
If p0322 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly.

Note

The parameter has no significance for a value of $\mathrm{p} 0322=0$.

p0323[0...n]	Maximum motor current / Mot I_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly.		
	Note		
	The parameter has no effect for induction motors.		
	The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640.		
p0325[0...n]	Motor pole position identification current 1st phase / Mot PolID I 1st Ph		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [Arms]	10000.000 [Arms]	0.000 [Arms]
Description:	Sets the current for the 1st phase of the two-stage technique for pole position identification routine. The current of the $2 n d$ phase is set in p0329. The two-stage technique is selected with p1980 $=4$.		
Dependency:	See also: p0329, p1980, r1992		
	NOTICE		
	When the motor code (p0301) is changed, it is possible that p0325 is not pre-assigned. p0325 can be pre-assigned using p0340 $=3$.		
	- For p0325 $=0$ and automatic calculation of the closed-loop control parameters ($\mathrm{p} 0340=1,2,3$). - for quick commissioning (p3900 = 1, 2, 3).		
p0327[0...n]	Optimum motor load angle / Mot phi_load opt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6721, 6838
	Min:	Max:	Factory setting:
	$0.0{ }^{\circ}{ }^{\text {] }}$	135.0 [${ }^{\text {] }}$	$90.0\left[^{\circ}\right]$
Description:	Sets the optimum load angle for synchronous motors with reluctance torque. The load angle is measured at the rated motor current.		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For p0320 $=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not entered, then the parameter is calculated from the rating plate parameters.		
r0332[0...n]	Rated motor power factor / Mot cos phi rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the rated power factor for induction motors.		
	For IEC motors, the following applies ($\mathrm{p} 0100=0$):		
	For p0308 $=0$, the internally calculated power factor is displayed.		
	For $00308>0$, this value is displayed.		
	For NEMA motors, the following applies ($\mathrm{p} 0100=1,2$):		
	For p0309 = 0, the internally calculated power factor is displayed.		
	For p0309 > 0, this value is converted into the power factor and displayed.		
Dependency:	If p0308 is not entered, the parameter is calculated from the rating plate parameters.		
	Note		
	The parameter is not used for synchronous motors (p0300 $=2 \mathrm{xx}$).		
r0333[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_4	Unit selection: p0100	Function diagram: -
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit Nm		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf ft		
	Note		
	For induction motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328.		
p0335[0...n]	Motor cooling type / Mot cool type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	128	0

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996=0.
The following parameters are influenced using p0340:
p0340 = 1:
--> All of the parameters influenced for $\mathrm{p} 0340=2,3,4,5$
$-->$ p0341, p0342, p0344, p0612, p0640, p1082, p1231, p1232, p1333, p1349, p1611, p1654, p1726, p1825, p1828 ... p1832, p1909, p1959, p2000, p2001, p2002, p2003, p3927, p3928
p0340 = 2:
--> p0350, p0354 ... p0360
--> p0625 (matching p0350), p0626 ... p0628
p0340 = 3 :
$-->$ All of the parameters influenced for $\mathrm{p} 0340=4,5$
--> p0346, p0347, p0622, p1320 ... p1327, p1582, p1584, p1616, p1755, p1756, p2178
p0340 = 4:
--> p1290, p1292, p1293, p1338, p1339, p1340, p1341, p1345, p1346, p1461, p1463, p1464, p1465, p1470, p1472, p1703, p1715, p1717, p1740, p1756, p1764, p1767, p1780, p1781, p1783, p1785, p1786, p1795 p0340 = 5:
$-->p 1037$, p1038, p1520, p1521, p1530, p1531, p1570, p1580, p1574, p1750, p1759, p1802, p1803, p2140, p2142,
p2148, p2150, p2161, p2162, p2163, p2164, p2170, p2175, p2177, p2194, p2390, p2392, p2393

Note

$\mathrm{p} 0340=1$ contains the calculations of $\mathrm{p} 0340=2,3,4,5$.
p0340 $=2$ calculates the motor parameters (p0350 \ldots p0360).
p0340 $=3$ contains the calculations of p0340 $=4,5$.
p0340 $=4$ only calculates the controller parameters.
p0340 = 5 only calculates the controller limits.
When quick commissioning is exited using p3900 > 0, p0340 is automatically set to 1.
At the end of the calculations, p0340 is automatically set to 0 .
p0341[0...n] Motor moment of inertia / Mot M_mom of inert

Access level: 3
Can be changed: T, U
Unit group: 25_1

Min:
0.000000 [kgm^{2}]

Description:
Dependency:
IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$

Calculated: CALC_MOD_ALL
Scaling: -
Unit selection: p0100

Max:
$100000.000000\left[\mathrm{kgm}^{2}\right]$

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: 6020, 6030, 6031, 6822

Factory setting:
0.000000 [kgm^{2}]

Sets the motor moment of inertia (without load).

NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2
The parameter value is included, together with p0342, in the rated starting time of the motor.
See also: p0342, r0345

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The product of p0341 * p0342 is used when the speed controller (p0340 $=4$) is calculated automatically.

Note

The parameter influences the thermal 3 mass model of the induction motor.
The parameter is not used for synchronous motors (p0300 = 2xx).

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$-[\mathrm{s}]$	$-[\mathrm{s}]$	
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor		
	rated torque (r0333).		
Dependency:	See also: r0313, r0333, p0341, p0342		

p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation build-up time of the motor.		
	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
	\triangle CAUTION		
	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note).		
	Note		
	The parameter is calculated using p0340 $=1,3$.		
	For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 (internal limit: 0.1 * r0384).		
	For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.		
p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time.		
	Note		
	The parameter is calculated using p0340 $=1,3$.		
	For induction motors, the result depends on the rotor time constant (r0384). if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).		
p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00000 [ohm]	2000.00000 [ohm]	
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		
Dependency:	See also: p0625, r1912		
	NOTICE		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

The motor identification routine determines the stator resistance from the total stator resistance minus the cable resistance (p0352).

p0352[0...n]	Cable resistance / R_cable		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the power unit and motor.		
	1 CAUTION		
	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.		

Note

The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p 0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0352[0...n]	Cable resistance / R_cable		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the power unit and motor.		
	\triangle CAUTION		
	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated. The difference with which p0352 was manually changed, must also be subtracted from reference parameter p0629 of the Rs measurement.		

Note

The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900>0.

p0354[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6727
	Min:	Max:	Factory setting:
	0.00000 [ohm]	300.00000 [ohm]	0.00000 [ohm]
Description:	Sets the rotor/secondary section resistance of the motor at the ambient temperature p0625.		
	This parameter value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor data identification routine (p1910).		
Dependency:	See also: p0625		

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

The parameter is not used for synchronous motors ($\mathrm{p} 0300=2$).

p0356[0...n]	Motor stator leakage inductance / Mot L_stator leak.		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00000 [mH]	1000.00000 [mH]	0.00000 [mH]
Description:	Induction machine: sets the stator leakage inductance of the motor.		
	Synchronous motor: Sets the stator quadrature axis inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p1910).		
	NOTICE		
	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note

If the stator leakage inductance (p0356) for induction motors is changed outside the commissioning phase (p0010>0), the magnetizing inductance (p0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).
For permanent-magnet synchronous motors $(\mathrm{p} 0300=2)$, this is the non-saturated value and is, therefore, ideal for a low current.
For a controlled reluctance motor $(\mathrm{pO300}=6)$, this is the direct axis stator inductance at the rated operating point.

p0357[0...n]	Motor stator ind	stator d	
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the stator direct-axis inductance of the synchronous motor.		
	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p1910).		

Note
For permanent-magnet synchronous motors $(\mathrm{p} 0300=2)$, this is the non-saturated value and is ideal for a low current. For a controlled reluctance motor $(\mathrm{p} 0300=6)$, this is the direct axis stator inductance at the rated operating point.

p0358[0...n]	Motor rotor leakage inductance / Mot L_rot leak		
	Access level: 3	Calculated: CALC_MOD_EQU	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6727
	Min:	Max:	Factory setting:
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the rotor/secondary section leakage inductance of the motor.		
	The value is automatically calculated using the motor model $(\mathrm{pO340}=1,2)$ or using the motor identification routine		
	(p1910).		

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

Note

If the rotor leakage inductance (p 0358) for induction motors is changed outside the commissioning phase ($\mathrm{p} 0010>0$), then the magnetizing inductance (p0360) is automatically adapted to the new EMF (r0337). You are then advised to repeat the measurement for the saturation characteristic (p1960).

Note

For induction motors, p0362 = 100% corresponds to the rated motor flux.
When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0363[0...n]	Motor saturation characteristic flux 2 / Mot saturat.flux 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723, 6838
	Min:	Max:	Factory setting:
	10.0 [\%]	800.0 [\%]	85.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 2 nd value pair of the characteristic. Sets the second flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		

Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 po
	This parameter specifies the x coordinate (magnetizing current) for the 1 st value pair of the characteristic.
	Sets the first magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).
Dependency:	The following applies for the magnetizing currents:
	p0366 < p0367 < p0368 < p0369
	See also: p0362
	Note
	When quick commissioning is exited with p3900 > 0 , then the parameter is reset if a catalog motor has not been selected (p0300).
p0367[0...n]	Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
	Access level: 4 Calculated: - Data type: FloatingPoint32
	Can be changed: T, U Scaling: - Dynamic index: DDS, p0180
	Unit group: - Unit selection:- Function diagram: 6723, 6838
	Min: Max: Factory setting:
	5.0 [\%] 800.0 [\%] 75.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.
	This parameter specifies the x coordinate (magnetizing current) for the 2 nd value pair of the characteristic.
	Sets the second magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).
Dependency:	The following applies for the magnetizing currents:
	p0366 < p0367 < p0368 < p0369
	See also: p0363
	Note
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).
p0368[0...n]	Motor saturation characteristic l_mag 3 / Mot sat. I_mag 3
	Access level: 4 Calculated: - Data type: FloatingPoint32
	Can be changed: T, U Scaling: - Dynamic index: DDS, p0180
	Unit group: - Unit selection:- Function diagram: 6723, 6838
	Min: Max: Factory setting:
	5.0 [\%] 800.0 [\%] 150.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.
	This parameter specifies the x coordinate (magnetizing current) for the 3rd value pair of the characteristic.
	Sets the third magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).
Dependency:	The following applies for the magnetizing currents:
	p0366 < p0367 < p0368 < p0369
	See also: p0364

Note

When quick commissioning is exited with p3900>0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0369[0...n]	Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723, 6838
	Min:	Max:	Factory setting:
	5.0 [\%]	800.0 [\%]	210.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 4th value pair of the characteristic.		
	Sets the fourth magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < p0369		
	See also: p0365		
	Note		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		
r0370[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the motor stator resistance at an ambient temperature (p0625).		
	The value does not include the cable resistance.		
Dependency:	See also: p0625		
r0372[0...n]	Cable resistance / Mot R_cable		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the total cable resistance between power unit and motor, as well as the internal converter resistance.		
Dependency:	See also: r0238, p0352		
r0373[0...n]	Motor rated stator resistance / Mot R_stator rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627).		
Dependency:	See also: p0627		
	Note		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

r0374[0...n]	Motor rotor res	old	
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the motor rotor resistance at an ambient temperature p0625.		
Dependency:	See also: p0625		

	Note The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0376[0...n]	Rated motor rotor resistance / Mot rated R_rotor		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the nominal rotor resistance of the motor at the rated temperature. The rated temperature is the sum of p0625 and p0628.		
Dependency:	See also: p0628		
	Note		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0377[0...n]	Motor leakage inductance total / Mot L_leak total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6640, 6714, 6721, 6828, 6834, 6836
	Min:	Max:	Factory setting:
	- [mH]	- [mH]	- [mH]
Description:	Displays the stator leakage inductance of the motor including the motor reactor (p0233).		

r0382[0...n]	Motor magnetizing inductance transformed / Mot L_magn transf		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [mH]	- [mH]	- [mH]
Description:	Displays the magnetizing inductance of the motor.		
	Note		
	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$) .		
r0384[0...n]	Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722,6837
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]

Description:	Displays the actual rotor resistance (phase value).
	The parameter is affected by the motor temperature model.
Dependency:	See also: p0354, p0620
	Note
	In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the thermal motor model.
	This parameter is not used for synchronous motors (p0300 = 2xx).
p0500	Technology application / Tec application
	Access level: 2 Calculated: - Data type: Integer16
	Can be changed: C2(1), T Scaling: - Dynamic index: -
	Unit group: - Unit selection: - Function diagram: -
	Min: Max: Factory setting:
Description:	Sets the technology application.
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.
Value:	0: Standard drive
	1: Pumps and fans
	2: \quad Sensorless closed-loop control down to $f=0$ (passive loads)
	3: Pumps and fans, efficiency optimization
	5: Starting with a high break loose torque
Dependency:	For p0096 = 1, 2 (Standard, Dynamic Drive Control) p0500 cannot be changed.
	NOTICE
	If the technological application is set to $\mathrm{p} 0500=0 \ldots 3$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.

Note

The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900>0
- when writing p0340 $=1,3,5$

For p0500 $=0$ and when the calculation is initiated, the following parameters are set:

- p1574 = 10 V
- p1750.2 = 0
- p1802 $=4$ (SVM/FLB without overcontrol) (PM240: p1802 = 0, PM260: p1802 = 2)
- p1803 = 106 \% (PM260: p1803 = $103 \%)$

For p0500 = 1 and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
$-p 1750.2=0$
- p1802 $=4($ SVM/FLB without overcontrol) $($ PM240: p1802 $=0)$
- p1803 = 106 \% (PM260: p1803 = $103 \%)$

For $\mathrm{p} 0500=2$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V (separately excited synchronous motor: 4 V)
- p1750.2 = 1
- p1802 $=4$ (SVM/FLB without overcontrol) $($ PM240: p1802 $=0)$
- p1803 = 106 \% (PM260: p1803 = $103 \%)$

For p0500 $=3$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
- p1750.2 = 1
- p1802 = $4($ SVM/FLB without overcontrol) $($ PM240: p1802 = 0)
$-\mathrm{p} 1803=106 \%($ PM260: p1803 = $103 \%)$
For p0500 = 5:
- p1574, p1750.2, p1802, p1803 same as for p0500 $=0$
- p1610 = 80%, p1611 = 80% (average up to higher starting torque)
- p1310 = 80%, p1311 = 30%

In all cases, the DC component compensation is activated (p3855=7).
For p1750:
The setting of p1750 is only relevant for induction motors.
p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
For p1802 / p1803:
p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.

p0500

G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)

Technology application / Tec application

Access level: 2
Can be changed: C2(1), T
Unit group: -
Min:
1

Calculated: -
Scaling: Unit selection: Max: 3

Data type: Integer16
Dynamic index: -
Function diagram: -
Factory setting:
3

Description: Sets the technology application.
The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using $\mathrm{p} 0340=5$.
Value:

Dependency:

1: Pumps and fans
3: Pumps and fans, efficiency optimization
For p0096 = 2 (Dynamic Drive Control) p0500 cannot be changed.

NOTICE

If the technological application is set to $\mathrm{p} 0500=0 \ldots 3$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.

```
Note
The calculation of parameters dependent on the technology application can be called up as follows:
- when exiting quick commissioning using p3900 > 0
- when writing p0340=1,3,5
For p0500 = 1 and when the calculation is initiated, the following parameters are set:
- p1570 = 100 %
- p1580 = 0 % (no efficiency optimization)
-p1574 = 2 V
- p1750.2 = 0
- p1802 = 9 or 19 (optimized pulse pattern for p0300=14)
- p1803 = 106 %
For p0500 = 3 and when the calculation is initiated, the following parameters are set:
- p1570 = 103 % (flux boost for full load)
-p1580=100% (efficiency optimization)
-p1574 = 2 V
-p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
- p1802 = 9 or 19 (optimized pulse pattern for p0300=14)
-p1803 = 106 %
```

p0501	Technological application (Standard Drive Control) / Techn appl SDC		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.		
Value:	0: Constant load (linear characteristic)		
	1: Speed-dependent load (parabolic characteristic)		
Dependency:	See also: p1300		
	NOTICE		
	If the technological application is set to $00501=0,1$ during commissioning ($\mathrm{p} 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.		

Note

The calculation of parameters dependent on the technology application can be called up as follows:

- when exiting quick commissioning using p3900 > 0
- when writing p0340 $=1,3,5$

For p0501 = 0, 1 and when the calculation is initiated, the following parameters are set:

- p1802 = 0
- p1803 = 106%
- p3855.0 = 1 (DC quantity control on)

For p1802 / p1803:
These parameters are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.
Technological application (Dynamic Drive Control) / Techn appl DDC

Access level: 2
Can be changed: C2(1), T
Unit group: -
Min:
0

Calculated: -

Scaling: -

Unit selection: -
Max:
5

Data type: Integer16
Dynamic index:-
Function diagram: -
Factory setting: 0

Description:	Sets the technology application for dynamic applications (p0096 = 2).
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using
Value:	p0340 or p3900.
	$0: \quad$ Standard drive (e.g. pumps, fans)
	$1: \quad$ Dynamic starting or reversing
	5: \quad Heavy-duty starting (e.g. extruders, compressors)
Dependency:	The calculation of parameters dependent on the technology application can be called up as follows:
	- when exiting quick commissioning using p3900 > 0

p0505	Selecting the system of units / Unit sys select	
	Access level: 1	Calculated: -
Can be changed: C2(5)	Scaling: -	Data type: Integer16

Note

Reference parameter for the unit system \% are, for example, p2000 ... p2004. Depending on what has been selected, these are displayed using either SI or US units.
p0514[0...9] Scaling-specific reference values / Scal spec ref val

Access level: 3
Can be changed: T
Unit group: -
Min:
0.000001

Calculated: CALC_MOD_ALL
Scaling: -
Unit selection: - Function diagram: -
Max:
10000000.000000

Data type: FloatingPoint32
Dynamic index: -

Factory setting: 1.000000

Description: Sets the reference values for the specific scaling of BICO parameters.
The specific scaling is active when interconnecting with other BICO parameters, and can be used in the following cases:

1. Parameter with the marking "Scaling: p0514".
2. Changing the standard scaling for parameters with the marking "Scaling: p2000" ... "Scaling: p2007".

Relative values refer to the corresponding reference value. The reference value corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
To specifically scale BICO parameters, proceed as follows:

- set the reference value (p0514[0...9]).
- set the numbers of the parameters, which should be active for the scaling, corresponding to the index of p0514 (p0515[0...19] ... p0524[0...19]).
For parameters with the marking "Scaling: p0514", which are not entered in p0515[0...19] to p0524[0...19], the reference value 1.0 (factory setting) applies.

Index:
[0] = Parameters in p0515[0...19]
[1] = Parameters in p0516[0...19]
[2] = Parameters in p0517[0...19]
[3] = Parameters in p0518[0...19]
[4] = Parameters in p0519[0...19]
[5] = Parameters in p0520[0...19]
[6] = Parameters in p0521[0...19]
[7] = Parameters in p0522[0...19]
[8] = Parameters in p0523[0...19]
[9] = Parameters in p0524[0...19]
Dependency: See also: p0515, p0516, p0517, p0518, p0519, p0520, p0521, p0522, p0523, p0524

p0515[0...19]	Scaling specific parameters referred to p0514[0] / Scal spec p514[0]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[0] for the specific scaling. p0515[0]: parameter number p0515[1]: parameter number p0515[2]: parameter number		
	p0515[19]: parameter number		
Dependency:	See also: p0514		
p0516[0...19]	Scaling specific parameters referred to p0514[1] / Scal spec p514[1]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[1] for the specific scaling. p0516[0]: parameter number p0516[1]: parameter number p0516[2]: parameter number		
	p0516[19]: parameter number		
Dependency:	See also: p0514		
p0517[0...19]	Scaling specific parameters referred to p0514[2] / Scal spec p514[2]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[2] for the specific scaling. p0517[0]: parameter number p0517[1]: parameter number p0517[2]: parameter number ... p0517[19]: parameter number		
Dependency:	See also: p0514		
p0518[0...19]	Scaling specific parameters referred to p0514[3] / Scal spec p514[3]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0

p0522[0...19]	Scaling specific parameters referred to p0514[7] / Scal spec p514[7]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[7] for the specific scaling.		
	p0522[0]: parameter number		
	p0522[1]: parameter number		
	p0522[2]: parameter number		
	...		
	p0522[19]: parameter number		
Dependency:	See also: p0514		
p0523[0...19]	Scaling specific parameters referred to p0514[8] / Scal spec p514[8]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[8] for the specific scaling.		
	p0523[0]: parameter number		
	p0523[1]: parameter number		
	p0523[2]: parameter number		
	...		
	p0523[19]: parameter number		
Dependency:	See also: p0514		
p0524[0...19]	Scaling specific parameters referred to p0514[9] / Scal spec p514[9]		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	4294967295	0
Description:	Sets the parameters with reference value in p0514[9] for the specific scaling. p0524[0]: parameter number		
	p0524[1]: parameter number		
	p0524[2]: parameter number		
	p0524[19]: parameter number		
Dependency:	See also: p0514		
p0530[0...n]	Bearing version selection / Bearing vers sel		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C} 2(1,3)$	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	104	

NOTICE
This parameter is pre-assigned in the case of motors from the motor list (p0301) if a bearing version (p 0530) is selected.
When selecting a catalog motor, this parameter cannot be changed (write protection). The information in p 0530 should
be observed when removing write protection.
If 0532 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum speed p 1082 , which is also associated
with quick commissioning, is pre-assigned appropriately. This is not the case when commissioning the motor (p0010
$=3$).

p0573	Inhibit automatic reference value calculation / Inhibit calc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters (p0340, p3900).		
Value:	0: No		
	1: Yes		
	NOTICE		
	The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and only one drive data set exists ($\mathrm{p} 0180=1$). This is the case during initial commissioning. Once the motor and control parameters have been calculated ($\mathrm{p} 0340, \mathrm{p} 3900$), the inhibit for the reference value calculation is automatically re-activated.		

Note

If value $=0$:
The automatic calculation (p0340, p3900) overwrites the reference parameters.
For value = 1:
The automatic calculation (p0340, p3900) does not overwrite the reference parameters.
p0595 Technological unit selection / Tech unit select

Access level: 1	Calculated: -	Data type: Integer16
Can be changed: C2(5)	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
1	48	1

Description: Selects the units for the parameters of the technology controller.
For p0595 = 1, 2, the reference quantity set in p0596 is not active.
Value:

1:	$\%$
$2:$	1 referred no dimensions
$3:$	bar
$4:$	${ }^{\circ} \mathrm{C}$
$5:$	Pa
$6:$	$\mathrm{ltr} / \mathrm{s}$
$7:$	$\mathrm{m}^{3} / \mathrm{s}$
$8:$	$\mathrm{Itr} / \mathrm{min}$
$9:$	$\mathrm{m}^{3} / \mathrm{min}$
$10:$	$\mathrm{Itr} / \mathrm{h}$
$11:$	$\mathrm{m} 3 / \mathrm{h}$
$12:$	kg / s
$13:$	$\mathrm{kg} / \mathrm{min}$

14.	kg/h
15:	t/min
16:	t/h
17:	N
18:	kN
19:	Nm
20:	psi
21:	${ }^{\circ} \mathrm{F}$
22:	gallon/s
23:	inch ${ }^{3} / \mathrm{s}$
24:	gallon/min
25:	inch ${ }^{3} / \mathrm{min}$
26:	gallon/h
27:	inch ${ }^{3} \mathrm{~h}$
28:	lb / s
29:	$\mathrm{lb} /$ min
30:	lb / h
31:	lbf
32:	lbf ft
33:	K
34:	rpm
35:	parts/min
36:	m / s
37:	$\mathrm{ft}^{3} / \mathrm{s}$
38:	$\mathrm{ft}^{3} / \mathrm{min}$
39:	BTU/min
40:	BTU/h
41:	mbar
42:	inch wg
43:	ft wg
44:	m wg
45:	\% r.h.
46:	g / kg
47:	ppm
48:	$\mathrm{kg} / \mathrm{cm}^{2}$

Dependency: \quad Only the unit of the technology controller parameters are switched over (unit group 9_1).

Note

When switching over from \% into another unit, the following sequence applies:

- set p0596
- set p0595 to the required unit
p0596
Technological unit reference quantity / Tech unit ref qty

Access level: 1
Can be changed: T
Unit group: -
Min:
0.01

Calculated: -
Scaling: -
Unit selection: -
Max:
340.28235E36

Data type: FloatingPoint32
Dynamic index: -
Function diagram: -
Factory setting:
1.00

Description:	Sets the reference quantity for the technological units.
	When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the reference quantity.
Dependency:	See also: p0595
	NOTICE
	When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type
	Access level: $2 \quad$ Calculated: - Data type: Integer16
	Can be changed: T, U Scaling: - Dynamic index: DDS, p0180
	Unit group: - Unit selection: - Function diagram: 8016
	Min: Max: Factory setting:
	0 6 0
Description:	Sets the sensor type for the motor temperature monitoring.
Value:	0: No sensor
	1: PTC alarm \& timer
	2: KTY84
	4: Bimetallic NC contact alarm \& timer
	6: PT1000
Dependency:	A thermal motor model is calculated corresponding to p0612.
	\triangle CAUTION
	For p0601 $=2$, 6: If the motor temperature sensor is not connected but another encoder, then the temperature adaptation of the motor resistances must be switched out ($\mathrm{p} 0620=0$). Otherwise, in controlled-loop operation, torque errors will occur that will mean that the motor will not be able to be stopped.
	Note
	For p0601 = 1:
	Tripping resistance $=1650$ Ohm. Wire breakage and short-circuit monitoring.
	For PT100:
	When PT100 measurement is enabled (p29700 >0), the set value of p0601 is no impact.
p0604[0...n]	Mot_temp_mod 2/sensor alarm threshold / Mod 2/sens A_thr
	Access level: 2 Calculated: - Data type: FloatingPoint32
	Can be changed: T, U Scaling:- Dynamic index: DDS, p0180
	Unit group: 21_1 Unit selection: p0505 Function diagram: 8016
	Min: Max: Factory setting:
	$\left.0.0\left[{ }^{\circ} \mathrm{C}\right] \quad 240.0{ }^{\circ} \mathrm{C}\right]$ 130.0 $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the alarm threshold for monitoring the motor temperature for motor temperature model 2 or KTY/PT1000/PT100. Alarm A07910 is output after the alarm threshold is exceeded.
Dependency:	See also: p0612
	See also: F07011, A07910
	NOTICE
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
	Note
	The hysteresis is 2 K .
	When quick commissioning is exited with p3900>0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0605[0...n]	Mot_temp_mod 1/2/sensor threshold and temperature value / Mod1/2/sens T_thr		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8016, 8017
	Min:	Max:	Factory setting:
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	$240.0\left[{ }^{\circ} \mathrm{C}\right]$	145.0 [${ }^{\text {C }}$]
Description:	Sets the threshold and temperature value to monitor the motor temperature.		
	Temperature model 1 (12 t , p0612.0 = 1):		
	The following applies for firmware version < 4.7 SP6 or p0612.8 = 0:		
	- sets the alarm threshold. If the model temperature (r0034) exceeds the alarm threshold, then alarm A07012 is output.		
	- this value is simultaneously used as rated winding temperature.		
	The following applies from firmware version 4.7 SP6 and p0612.8 = 1:		
	- p5390: when commissioning a catalog motor for the first time, p0605 is copied to p5390.		
	- p5390: p5390 is of significance when evaluating the alarm threshold.		
	- p5390: the stator winding temperature (r0632) is used to initiate the signal.		
	- p0627: when a catalog motor is commissioned for the first time, p0605-40 ${ }^{\circ} \mathrm{C}$ is copied to p0627.		
	- p0627: p0627 is of significance for the rated temperature.		
	Motor temperature model 2 (p0612.1 = 1) or measurement:		
	- sets the fault threshold. If the temperature (r0035) exceeds the fault threshold, then fault F07011 is output.		
Dependency:	See also: r0034, p0611, p0612		
	See also: F07011, A07012		

NOTICE

When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Motor temperature model 1 (I2t):
The following applies for firmware version <4.7 SP6 or p0612.8 $=0$:
p0605 also defines the final temperature of the model for $\mathrm{r} 0034=100 \%$. Therefore, p0605 has no influence on the time up to alarm A07012 being issued. The time is only determined by time constant p0611, the actual current and the reference value p 0318 . For $\mathrm{p} 0318=0$, the rated motor current is used as reference value.

Note

The hysteresis is 2 K .
When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).

p0610[0...n]	Motor overtemperature response / Mot temp response		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8016, 8017, 8018
	Min:	Max:	Factory setting:
	0	12	12
Description:	Sets the system response when the motor temperature reaches the alarm threshold.		
Value:	0: No respo	f I_max	
	1: Messag		
	2: Messag		
	12:	perature storage	
Dependency:	See also: p0601, p0604, p0605, p0614, p0615		
	See also: F07011, A07012, A07910		

Note

The I_max reduction is not executed for PTC (p0601 = 1) or bimetallic NC contact (p0601 = 4).
The I_max reduction results in a lower output frequency.
If value $=0$:
An alarm is output and I_max is not reduced.
If value = 1:
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.

- for KTY/PT1000/PT100, the following applies: I_max. is reduced
- for PTC, the following is valid: I_max. is not reduced

If value $=2$:
An alarm is output and a timer is started. A fault is output if the alarm is still active after this timer has expired.
If value $=12$:
Behavior is always the same as for value 2.
For motor temperature monitoring without temperature sensor, when switching off, the model temperature is saved in a non-volatile fashion. When switching on, the same value (reduced by p0614) is taken into account in the model calculation. As a consequence, the UL508C specification is fulfilled.

p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8017
	Min:	Max:	Factory setting:
	0 [s]	20000 [s]	0 [s]
Description:	Sets the winding time constant.		
	The time constant specifies the warm-up time of the cold stator winding when loaded with the motor standstill current (rated motor current, if the motor standstill current is not parameterized) up until a temperature rise of 63% of the continuously permissible winding temperature has been reached.		
Dependency:	The parameter is only used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}, 4$) and synchronous reluctance motors ($\mathrm{p} 0300=6 \mathrm{xx}$). See also: r0034, p0612, p0615 See also: F07011, A07012, A07910		
	NOTICE		
	This parameter is automatically pre-set from the motor database for motors from the motor list (p0301). When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection. When exiting commissioning, p0612 is checked, and where relevant, is pre-assigned to a value that matches the motor power, if a temperature sensor was not parameterized (see p0601).		

Note

When parameter p0611 is reset to 0 , then this switches out the thermal $12 t$ motor model (refer to p0612).
If no temperature sensor is parameterized, then the ambient temperature for the thermal motor model is referred to p0625.
p0612[0...n] Mot_temp_mod activation / Mot_temp_mod act
Access level: 2 Calculated: CALC_MOD_ALL

Data type: Unsigned16

Can be changed: T, U
Unit group: -
Min:
-
Description: Setting to activate the motor temperature model.
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Activate mot_temp_mod 1 (12t)	Yes	No	-
01	Activate mot_temp_mod 2	Yes	No	-
08	Activate mot_temp_mod $1(12 t)$ extensions	Yes	No	-

Note

Mot_temp_mod: motor temperature model
For bit 00:
This bit is used to activate/deactivate the motor temperature model for permanent-magnet synchronous motors and synchronous reluctance motors.
For bit 01 (see also bit 9):
This bit is used to activate/deactivate the motor temperature model for induction motors.
For bit 08:
This bit is used to extend the motor temperature model 1 (I2t).
The following applies for firmware version <4.7 SP6 (only bit 0):

- this bit has no function. Temperature model 1 operates in the standard mode.

Overtemperature at rated load: p0605-40 ${ }^{\circ} \mathrm{C}$
Alarm threshold: p0605
Fault threshold: p0615
The following applies from firmware version 4.7 SP6 (bits 0 and 8):

- temperature model 1 operates in the extended mode.

Overtemperature at rated load: p0627
Alarm threshold: p5390
Fault threshold: p5391
For bit 09:
This bit is used to extend the motor temperature model 2.
For firmware version <4.7 following applies (only bit 1):

- this bit has no function. Temperature model 2 operates in the standard mode.

From firmware version 4.7 the following applies (bits 1 and 9):

- this bit should be set. Temperature model 2 then operates in the extended mode and the result of the model is more precise.
For bit 12 (only effective if a temperature sensor has not been parameterized):
This bit is used to set the ambient temperature for the motor temperature model 1 (I2t).
The following applies for firmware version < 4.7 SP6 (only bit 0):
- this bit has no function. Temperature model 1 operates with an ambient temperature of $20^{\circ} \mathrm{C}$.

The following applies from firmware version 4.7 SP6 (bits 0 and 12):

- the ambient temperature can be adapted to the conditions using p0613.
p0613[0...n] Mot_temp_mod 1/3 ambient temperature / Mod 1/3 amb_temp

Access level: 2	Calculated: -	Data type: FloatingPoint32
Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
Unit group: $21 _1$	Unit selection: p0505	Function diagram: 8017
Min:	Max:	Factory setting:
$-40\left[{ }^{\circ} \mathrm{C}\right]$	$100\left[{ }^{\circ} \mathrm{C}\right]$	$20\left[{ }^{\circ} \mathrm{C}\right]$

Description: Dependency:	Sets the ambient temperature for motor temperature model 1 or 3. - temperature model 1 (12 t , p0612.0 = 1): For firmware version <4.7 SP6 or p0612.12 $=0$, the following applies: The parameter is not relevant. From firmware version 4.7 SP6 and p0612.12 = 1, the following applies: The parameter defines the current ambient temperature. - temperature model 3 (p0612.2 = 1): The parameter defines the current ambient temperature. See also: p0612 See also: F07011, A07012
p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red
Description:	Sets the reduction factor for the overtemperature of the thermal adaptation of the stator/rotor resistance. The value is a starting value when switching on. Internally, after switch-on, the reduction factor has no effect corresponding to the thermal time constant.
Dependency:	See also: p0610 Note The reduction factor is only effective for $\mathrm{p} 0610=12$, and refers to the overtemperature.
p0615[0...n]	Mot_temp_mod $1(12 t)$ fault threshold / I2t F thresh Access level: 2 Calculated: - Data type: FloatingPoint32 Can be changed: T, U Scaling: - Dynamic index: DDS, p0180 Unit group: 21 _1 Unit selection: p0505 Function diagram: 8017 Min: Max: Factory setting: $0.0\left[{ }^{\circ} \mathrm{C}\right]$ $220.0\left[{ }^{\circ} \mathrm{C}\right]$ $180.0\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model 1 (12 t). The following applies for firmware version < 4.7 SP6: - fault F07011 is output after the fault threshold is exceeded. - fault threshold for r0034 $=100 \%$ * (p0615-40) I (p0605-40). The following applies from firmware version 4.7 SP6 and p0612.8 = 1: - the fault threshold in p0615 is preset when commissioning. - when a catalog motor with motor temperature model 1 (12t) is being commissioned for the first time, the threshold value is copied from p0615 to p5391. - p5391 is of significance for evaluating the fault threshold.
Dependency:	The parameter is only used for motor temperature model 1 (I2t). See also: r0034, p0611, p0612 See also: F07011, A07012
	NOTICE
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
	Note The hysteresis is 2 K .

p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	2	1
Description:	Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.		
Value:	$0: \quad$ No thermal	tor resistances	
	1:	es of the thermal model	
	2: Resistances	stator winding temperature	
	Note		
	For p0620 = 1, the following applies:		
	The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.		
	For p0620 $=2$, the following applies:		
	The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r0035) as follows:		
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	2	0
Description:	Selects the identification of the stator resistance of induction motors after the Control Unit runs-up (only for vector control).		
	The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p0350) to the matching ambient temperature (p0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model.		
	p0621 $=1$:		
	Identification of the stator resistance only when the drive is switched on for the first time (pulse enable) after booting the Control Unit.		
	p0621 $=2$:		
	Identification of the stator resistance every time the drive is switched on (pulse enable).		
Value:	0: \quad No Rs identification		
	1: Rs identific		
		ch time	
Dependency:	- perform motor data identification (see p1910) with cold motor. - enter ambient temperature at time of motor data identification in p0625.		
	See also: p0622, r0623		
	NOTICE		
	The determined stator temperature of the induction motor can only be compared with the measured value of a temperature sensor (KTY/PT1000) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding. Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor.		

Note

The measurement is carried out:

- For induction motors
- When vector control is active (see p1300)
- if a temperature sensor (KTY/PT1000) has not been connected
- When the motor is at a standstill when switched on

When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure). If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing (p1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.

p0621[0...n]
G120X_DP (PM330),
G120X_PN (PM330),
G120X_USS (PM330)

Identification stator resistance after restart / Rst_ident Restart

Access level: 2

Can be changed: T
Unit group:-
Min:

0

Calculated:-	Data type: Integer16
Scaling:	Dynamic index: DDS, p0180
Unit selection: -	Function diagram: -
Max:	Factory setting:
2	0

Selects the identification of the stator resistance of induction motors after the Control Unit runs-up (only for vector control).
The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p0350) to the matching ambient temperature (p0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model.
p0621 = 1:
Identification of the stator resistance only when the drive is switched on for the first time (pulse enable) after booting the Control Unit.
p0621 $=2$:
Identification of the stator resistance every time the drive is switched on (pulse enable).
If a reference value for the stator resistance at an ambient temperature is entered into p0629, then the setting value for the stator temperature is generated from this value and not from p0350.
When activating the measurement (p0621 = 1, 2), p0629 is determined when first starting the drive. p0629 should be saved for subsequent use. In order that p0629 matches the ambient temperature (p0625), the function should be activated with the motor in the cold condition.

Value:

Dependency:

0: No Rs identification
1: Rs identification after switching-on again
2: Rs identification after switching-on each time

- perform motor data identification (see p1910) with cold motor.
- enter ambient temperature at time of motor data identification in p0625.
- Reference stator resistance p0629 saved after it has been determined.

See also: p0622, r0623, p0629

NOTICE

The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY/ PT1000) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding. The accuracy depends very heavily on how precisely the motor feeder cable resistance is known (see p0352).
The accuracy of the measurement can be improved by entering the feeder cable resistance p0352 and by determining the reference stator resistance p0629 for the ambient temperature. p0629 is the measured value r0623, which was determined immediately after the first commissioning with the motor in a cold state. For p0621 = 1, p0629 is also measured when switching on for the first time and not after the Control Unit has switched on.

Description:	Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature in the motor temperature model 2 (p0612.1 = 1).
Dependency:	For 1LA7 motors (p 0300), the parameter is pre-set as a function of p0307 and p0311. See also: p0625
	NOTICE
	When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100, \mathrm{p} 0301>10000$), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
	Note
	When quick commissioning is exited with p3900>0, then the parameter is reset if a catalog motor has not been selected (p0300).
p0629[0...n]	Stator resistance reference / R_stator ref
G120X_DP (PM330),	Access level: 3 Calculated: CALC_MOD_EQU Data type: FloatingPoint32
G120X_PN (PM330),	Can be changed: T, U Scaling: - Dynamic index: DDS, p0180
	Unit group: - Unit selection: - Function diagram: -
	Min: Max: Factory setting:
	0.00000 [ohm] 2000.00000 [ohm] 0.00000 [ohm]
Description:	Reference value for the identification of the stator resistance every time the drive is switched on.
Dependency:	The measurement of the reference value is activated by the automatic calculation ($00340=1,2$), if the following conditions apply:
	- the motor temperature is at this instant in time less than $30^{\circ} \mathrm{C}(\mathrm{rOO35})$.
	- a temperature sensor is not being used (p0601).
	See also: p0621, r0623

Note

The reference value to identify the stator resistance is determined at the first identification. This must be realized when the motor is in a cold state, as the value refers to the ambient temperature p0625. The feeder cable resistance should be entered into p0352 before the measurement.
The result must be saved after the first measurement so that the reference is available after the CU has powered up. When changing p0350 or p0352, the reference value p0629 should be re-determined.

r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dynamic index: DDS, p0180
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8018
	Min:	Max:	Factory setting:
	- $\left[^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the ambient temperature of the motor temperature model (models 2 and 3).		
r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dynamic index: DDS, p0180
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8018
	Min:	Max:	Factory setting:
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator iron temperature of the motor temperature model (models 2 and 3).		
	Note		
	For motor temperature model 1 (p0612.0 $=1$), this parameter is not valid:		

r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dynamic index: DDS, p0180
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8017, 8018
	Min:	Max:	Factory setting:
	- $\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$	- [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature of the motor temperature model.		
Dependency:	See also: F07011, A07012, A07910		
r0633[0...n]	Mot_temp_mod rotor temperature / Mod rotor temp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dynamic index: DDS, p0180
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8018
	Min:	Max:	Factory setting:
	- $\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the rotor temperature of the motor temperature model (models 2 and 3).		
	Note		
	For motor temperature model 1 (p0612.0 $=1$), this parameter is not valid:		
p0640[0...n]	Current limit / Current limit		
	Access level: 2	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6640, 6828
	Min:	Max:	Factory setting:
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit.		
Dependency:	See also: r0209, p0323		
	Note		
	The parameter is part of the quick commissioning (p changing p0305. The current limit p0640 is limited The resulting current limit is displayed in $\mathrm{rO067}$ and if The torque and power limits (p1520, p1521, p1530, when exiting the quick commissioning using p3900 p0640 is limited to $4.0 \times \mathrm{p} 0305$. p0640 is pre-assigned for the automatic self commis p0640 must be entered when commissioning the sy automatic parameterization when exiting the quick	p0010 = 1); this means that it to $\mathrm{rO209}$. f required, r0067 is reduced by , p1531) matching the curren $0>0$ or using the automatic pa issioning routine (e.g. to $1.5 \times$ ystem. This is the reason that p commissioning (p3900>0).	appropriately pre-assigned when he thermal model of the power unit limit are automatically calculated ameterization with p0340 $=3,5$. 0305 , with p0305 = r0207[1]). 0640 is not calculated by the
p0641[0...n]	CI: Current limit, variable / Curr lim var		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 6640
	Min:	Max:	Factory setting:
	-		
Description:	Sets the signal source for the variable current limit. The value is referred to p0640.		

p0644[0...n]	Current limit excitation induction motor / Imax excitat ASM		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	50.0 [\%]	300.0 [\%]	300.0 [\%]
Description:	Maximum excitation current of the induction motor referred to the permissible rated current of the power unit (r0207[0]).		
Dependency:	Only effective for vector control.		
	Note		
	The parameter is pre-assigned in the automatic calculation for chassis power units.		
p0650[0...n]	Actual motor operating hours / Oper hours motor		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	See also: p0651		
	See also: A01590		

Note

For p0651 = 0, the operating hours counter is disabled.
The operating hours counter in p0650 can only be reset to 0 .
The operating hours counter only runs with drive data set 0 and 1 (DDS).

p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection:	Function diagram: -
	Min:	Max:	Factory setting:
Description:	$0[\mathrm{~h}]$	Sets the service/maintenance intervals in hours for the appropriate motor.	$0[\mathrm{~h}]$
	An appropriate message is output when the operating hours set here are reached.		
Dependency:	See also: p0650		
	See also: A01590		

Note

For p0651 = 0, the operating hours counter is disabled.
When setting p0651 to 0 , then p0650 is automatically set to 0 .
The operating hours counter only runs with drive data set 0 and 1 (DDS).

r0719

IO Extension Module status / IO module status

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
-	-	-

r0722.0... 12	CO/BO: CU digital inputs status / CU DI status					
	Access level: 2		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2201, 2221, 2256	
	Min		Max:		Factory settin	
	-		-		-	
Description:	Displays the status of the digital inputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	DI 0 (X133.5)		High	Low	-
	01	DI 1 (X133.6)		High	Low	-
	02	DI 2 (X133.7)		High	Low	-
	03	DI 3 (X133.8)		High	Low	-
	04	DI 4 (X133.16)		High	Low	-
	05	DI 5 (X133.17)		High	Low	-
	06	DI 6 (X203. 88)		High	Low	-
	07	DI 7 (X203. 87)		High	Low	-
	11	DI 11 (X132.3, 4) Al 0		High	Low	-
	12	DI 12 (X132. 10, 11) Al 1		High	Low	-
Dependency:	See also: r0723					
	Note					
	AI: Analog Input					
	DI: Digital Input					
	X203: IO module terminal					
r0723.0... 12	CO/BO: CU digital inputs status inverted / CU DI status inv					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling:-		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2119, 2120, 2121, 2130, 2131, 2132, 2133	
	Min:		Max:		Factory setting:	
Description:	Displays the inverted status of the digital inputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	DI 0 (X133.5)		High	Low	-
	01	DI 1 (X133.6)		High	Low	-
	02	DI 2 (X133.7)		High	Low	-
	03	DI 3 (X133.8)		High	Low	-
	04	DI 4 (X133.16)		High	Low	-
	05	DI 5 (X133.17)		High	Low	-
	06	DI 6 (X203. 88)		High	Low	-
	07	DI 7 (X203. 87)		High	Low	-
	11	DI 11 (X132.3, 4) AI 0		High	Low	-
	12	DI 12 (X132. 10, 11) Al 1		High	Low	-
Dependency:	See also: r0722					
	Note					
	Al: Analog Input					
	DI: Digital Input					
	X203: IO module terminal					


```
Note
When changing p0756, the parameters of the scaling characteristic (p0757, p0758, p0759,p0760) are overwritten with
the following default values:
For p0756 = 0,4,p0757 is set to 0.0 V, p0758 = 0.0 %, p0759 = 10.0 V and p0760 = 100.0 %.
For p0756 = 1, p0757 is set to 2.0 V, p0758 = 0.0 %, p0759 = 10.0 V and p0760 = 100.0%.
For p0756 = 2, p0757 is set to 0.0 mA, p0758 = 0.0 %, p0759 = 20.0 mA and p0760 = 100.0 %.
For p0756 = 3, p0757 is set to 4.0 mA, p0758 = 0.0 %, p0759 = 20.0 mA and p0760 = 100.0%.
For p0756 = 6,7,p0757 is set to 0 }\mp@subsup{}{}{\circ}\textrm{C},\textrm{p}0758=0.0%,p0759 = 100 ' C and p0760 = 100.0%
```

X202: IO module terminal

§ WARNING

The maximum voltage difference between analog input terminals $\mathrm{Al}+, \mathrm{AI}-$, and the ground must not exceed 35 V . If the system is operated when the load resistor is switched on (DIP switch set to "I"), the voltage between differential inputs $\mathrm{Al}+$ and AI - must not exceed 10 V or the injected 80 mA current otherwise the input will be damaged.

```
Note
When changing p0756, the parameters of the scaling characteristic (p0757, p0758, p0759,p0760) are overwritten with
the following default values:
For p0756 = 0,4, p0757 is set to 0.0 V, p0758 = 0.0 %, p0759 = 10.0 V and p0760 = 100.0 %.
For p0756 = 1, p0757 is set to 2.0 V, p0758 = 0.0 %, p0759 = 10.0 V and p0760 = 100.0 %.
For p0756 = 2, p0757 is set to 0.0 mA, p0758 = 0.0 %, p0759 = 20.0 mA and p0760 = 100.0%.
For p0756 = 3, p0757 is set to 4.0 mA, p0758 = 0.0 %, p0759 = 20.0 mA and p0760 = 100.0%.
For p0756 =6,7,p0757 is set to 0 ' C, p0758 = 0.0%, p0759 = 100 ' C and p0760 = 100.0 %.
```


X202: IO module terminal

p0757[0...3]	CU analog inputs characteristic value x1/CU Al char x1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	-50.000	160.000	0.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate $\left(\mathrm{V}, \mathrm{mA},{ }^{\circ} \mathrm{C}\right)$ of the 1 st value pair of the characteristic.		
Index:	[0] = AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		

Note

The parameters for the characteristic do not have a limiting effect.
X202: IO module terminal

p0758[0...3]	CU analog inputs characteristic value y1 / CU Al char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	[0] = AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		

Note

The parameters for the characteristic do not have a limiting effect. X202: IO module terminal

p0759[0...3]	CU analog inputs characteristic value x2 / CU AI char x2		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	-50.000	160.000	[0] 10.000
			[1] 10.000
			[2] 20.000
			[3] 100.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate ($\left.\mathrm{V}, \mathrm{mA},{ }^{\circ} \mathrm{C}\right)$ of the 2 nd value pair of the characteristic.		
Index:	[0] = AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		

Note

The parameters for the characteristic do not have a limiting effect.
X202: IO module terminal

p0760[0...3]	CU analog inputs characteristic value y2 / CU Al char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566, 9568, 9576
	Min:	Max:	Factory setting:
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	$\text { [2] = NI } 10000 \text { (X202 80/82) }$		
	[3] = NI 10001 (X202 81/82)		

Note

The parameters for the characteristic do not have a limiting effect.
X202: IO module terminal

p0761[0...3]	CU analog inputs wire breakage monitoring response threshold / CU WireBrkThresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9566,9568
	Min:	Max:	Factory setting:
	0.00	20.00	
Description:	Sets the response threshold for the wire breakage monitoring of the analog inputs.		

p0771[0...2]	CI: CU analog outputs signal source / CU AO s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2261
	Min:	Max:	Factory setting:
	-	-	[0] 21 [0]
			[1] 27[0]
			[2] 0
Description: Index:			
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
r0772[0...2]	CU analog outputs output value currently referred/ CU AO outp act ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description: Index:	Displays the actual referred output value of the analog outputs.		
	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
p0773[0...2]	CU analog outputs smoothing time constant/ CU AO T_smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st order lowpass filter for the analog outputs.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		

r0774[0...2]	CU analog outputs output voltage/current actual / CU AO U/I_outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual output voltage or output current at the analog outputs.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	See also: p0776		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
p0775[0...2]	CU analog outputs activate absolute value generation / CU AO absVal act		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	0	1	0
Description:	Activates the absolute value generation for the analog outputs.		
Value:	0: \quad No absolute value generation		
	1: Absolute value generation switched in		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
	Note		
	AO: Analog Output		
	X202: IO module terminal		
p0776[0...2]	CU analog outputs type / CU AO type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	0	2	0
Description:	Sets the analog output type.		
	$\mathrm{p} 0776[\mathrm{x}]=1$ corresponds to a voltage output (p0774, p0778, p0780 are displayed in V).		
	$\mathrm{p} 0776[\mathrm{x}]=0,2$ corresponds to a current output (p0774, p0778, p0780 are displayed in mA).		
Value:	0: \quad Current output ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
	1: \quad Voltage output ($0 \mathrm{~V} \ldots+10 \mathrm{~V}$)		
	2: Current output ($+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		

```
Note
When changing p0776, the parameters of the scaling characteristic (p0777, p0778, p0779, p0780) are overwritten with the following default values:
For \(\mathrm{p} 0776=0, \mathrm{p} 0777\) is set to \(0.0 \%, \mathrm{p} 0778=0.0 \mathrm{~mA}, \mathrm{p} 0779=100.0 \%\) and p 0780 to 20.0 mA .
For \(\mathrm{p} 0776=1, \mathrm{p} 0777\) is set to \(0.0 \%, \mathrm{p} 0778=0.0 \mathrm{~V}, \mathrm{p} 0779=100.0 \%\) and p 0780 to 10.0 V .
For \(\mathrm{p} 0776=2, \mathrm{p} 0777\) is set to \(0.0 \%, \mathrm{p} 0778=4.0 \mathrm{~mA}, \mathrm{p} 0779=100.0 \%\) and p 0780 to 20.0 mA .
```

X202: IO module terminal

p0777[0...2]	CU analog outputs characteristic value x1/CU AO char x1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	See also: p0776		
	NOTICE		
	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		

Note

The parameters for the characteristic do not have a limiting effect.
X202: IO module terminal

p0778[0...2]	CU analog outputs characteristic value y1 / CU AO char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	-20.000 [V]	20.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA) of the 1 st value pair of the characteristic.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
	See also: p0776		
	NOTICE		
	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		

Note

The parameters for the characteristic do not have a limiting effect.
X202: IO module terminal

p0779[0...2]	CU analog outputs characteristic value x2 / CU AO char x2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AO0 (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	See also: p0776		
	NOTICE		
	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
	Note		
	The parameters for the characteristic do not have a limiting effect.		
	$\underline{\text { X202: IO module terminal }}$		
p0780[0...2]	CU analog outputs characteristic value y2 / CU AO char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	-20.000 [V]	20.000 [V]	20.000 [V]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA) of the 2 nd value pair of the characteristic.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
	See also: p0776		
	NOTICE		
	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
	Note		
	The parameters for the characteristic do not have a limiting effect.		
p0782[0...2]	$\mathrm{BI}: \mathrm{CU}$ analog outputs invert signal source / CU AO inv s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9572
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to invert the analog output signals.		

Index: \quad| $[0]=A O O(X 13312 / 13)$ | |
| :--- | :--- |
| | $[1]=A O 1(X 20285 / 86)$ |
| $[2]=A O 2(X 202 ~ 83 / 84)$ | |

	Note AO: Analog Output X202: IO module terminal					
r0785.0... 2	BO: CU analog outputs status word / CU AO ZSW					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 9572	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the status of analog outputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	AO 0 negative		Yes	No	-
	01	AO 1 negative		Yes	No	-
	02	AO 2 negative		Yes	No	-

Note

AO: Analog Output

p0791[0...2]	CO: Fieldbus analog outputs / Fieldbus AO		
G120X_USS	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-200.000 [\%]	200.000 [\%]	0.000 [\%]
Description:	Setting and connector output to control the analog outputs via fieldbus.		
Index:	[0] = AOO (X133 12/13)		
	[1] = AO1 (X202 85/86)		
	[2] = AO2 (X202 83/84)		
Dependency:	See also: p0771		
	Note		
	AO: Analog Output		
	The following interconnections must be established to control the analog outputs via fieldbus:- AO 0: p0771[0] with p0791[0]		
	- AO 1: p0771[1] with p0791[1]		
	- AO 2: p0771[2] with p0791[2]		
	X202: IO module terminal		
p0795	CU digital inputs simulation mode / CU DI simulation		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2201, 2221, 2256
	Min:	Max:	Factory setting:
	-	-	0000000000000000 bin
Description:	Sets the simulation mode for digital inputs.		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP

p0797[0...3]	CU analog inputs simulation mode / CU AI sim_mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the simulation mode for the analog inputs.		
Value:	0: Terminal evaluation for analog input x		
	1: Simulation for analog input x		
Index:	$[0]=$ AIO (X132 3/4)		
	[1] = Al1 (X132 10/11)		
	[2] = NI 10000 (X202 80/82)		
	[3] = NI 10001 (X202 81/82)		
Dependency:	The setpoint for the input voltage is specified via p0798. See also: p0798		

Note

This parameter is not saved when data is backed up (p0971).
AI: Analog Input
X202: IO module terminal

p0798[0...3]	CU analog inputs simulation mode setpoint / CU AI sim setp	
	Access level: 3 Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	-50.000 2000.000	0.000
Description:	Sets the setpoint for the input value in the simulation mode of the analog inputs.	
Index:	[0] = AIO (X132 3/4)	
	[1] = Al1 (X132 10/11)	
	[2] = NI 10000 (X202 80/82)	
	[3] = NI 10001 (X202 81/82)	
Dependency:	The simulation of an analog input is selected using p0797. If Al x is parameterized as a voltage input (p 0756), the setpoint is a voltage in V . If Al x is parameterized as a current input (p 0756), the setpoint is a current in mA . See also: p0756, p0797	

Note

This parameter is not saved when data is backed up (p0971).
AI: Analog Input
X202: IO module terminal
p0802 Data transfer: memory card as source/target / mem_card src/targ

Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	100	0

Description:	Sets the number for data transfer of a parameter backup from/to memory card.		
	Transfer from memory card to device memory (p0804 = 1):		
	- sets the source of parameter backup (e.g. p0802 = 48 --> PS048xxx.ACX is the source).		
	Transfer from non-volatile device memory to memory card ($\mathrm{p} 0804=2$): - sets the target of parameter backup (e.g. p0802 = 23 --> PS023xxx.ACX is the target).		
Dependency:	See also: p0803, p0804		
	Note		
	The volatile device memory is not influenced by data transfer.		
p0803	Data transfer: device memory as source/target / Dev_mem src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	30	0
Description:	Sets the number for data transfer of a parameter backup from/to the non-volatile device memory.		
	Transfer from memory card to device memory (p0804 = 1):		
	- sets the target of the parameter backup (e.g. p0803 = $10-$-> PS010xxx.ACX is the target).		
	Transfer from non-volatile device memory to memory card (p0804 = 2):		
	- sets the source of the parameter backup (e.g. p0803 = 11 --> PS011xxx.ACX is the source).		
Value:	0: Source/		
	10: Source/t		
	11: Source/t		
	12: Source/t		
	30: Source/t		
Dependency:	See also: p0802, p0804		
	Note		
	The volatile device memory is not influenced by data transfer.		
p0804	Data transfer start / Data transf start		
G120X_DP, G120x_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1100	0


```
Note
If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on
(PS000xxx.ACX), this is transferred automatically to the device memory.
When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").
Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes:
p0804 = 1001:
The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.
p0804 = 1002:
The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
p0804 = 1003:
No memory card has been inserted.
p0804 = 1100:
It is not possible to transfer at least one file.
```


Parameters

9.2 Parameter list

NOTICE

The memory card must not be removed while data is being transferred.

Note

If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory.
When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").
Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value >1000. Possible fault causes:
p0804 = 1001:
The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.
p0804 = 1002:
The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
p0804 = 1003:
No memory card has been inserted.
p0804 = 1100:
It is not possible to transfer at least one file.

p0806	BI: Inhibit master control / PcCtrl inhibit			
	Access level: 3	Calculated: -	Data type: Un	/ Binary
	Can be changed: T	Scaling: -	Dynamic inde	
	Unit group: -	Unit selection: -	Function diag	
	Min:	Max:	Factory settin	
	-	-	0	
Description:	Sets the signal source to block the master control.			
Dependency:	See also: r0807			
	Note			
	The commissioning software (drive control panel) uses the master control, for example.			
r0807.0	BO: Master control active / PcCtrl active			
	Access level: 3	Calculated: -	Data type: Un	
	Can be changed: -	Scaling: -	Dynamic inde	
	Unit group: -	Unit selection: -	Function diag	
	Min:	Max:	Factory settin	
	-	-	-	
Description:	Displays what has the master control.			
	The drive can be controlled via the BICO interconnection or from external (e.g. the commissioning software).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Master control active	Yes	No	3030
Dependency:	See also: p0806			
	NOTICE			
	The master control only influences control word 1 and speed setpoint 1 . Other control word/setpoints can be transferred from another automation device.			

Note

Bit $0=0$: BICO interconnection active
Bit $0=1$: Master control for PC/AOP
The commissioning software (drive control panel) uses the master control, for example.

p0809[0...2]	Copy Command		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
	0	3	0
Description:	Copies one Command Data Set (CDS) into another.		
Index:	[0] = Source Command Data Set		
	[1] = Target Command Data Set		
	[2] = Start copying procedure		
Dependency:	See also: r3996		
	NOTICE		
	When the command data sets are copied, short-term communication interruptions may occur.		
	Note		
	When copying a command data set (CDS), the values in p0700, p1000 and p1500 are not accepted. As a consequence, the associated macros are not executed and inconsistencies are avoided.		
	Procedure:		
	1. In Index 0, enter which command data set should be copied.		
	2. In index 1, enter the command data set that is to be copied into.		
	3. Start copying: set index 2 from 0 to 1 .		
	p0809[2] is automatically set to 0 when copying is completed.		
p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
G120X_DP, G120x_PN	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
	-	-	722.4
Description: Dependency:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
	See also: r0050, p0811, r0836		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Note		
	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		
p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
G120X_USS	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 8560
	Min:	Max:	Factory setting:
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	See also: r0050, p0811, r0836		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 8565, 8570
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	See also: r0051, r0837		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	0
Description:	Sets the freely assignable motor number for the drive data set changeover. If the same motor is driven by different drive data sets, the same motor number must also be entered in these data sets. If the motor is also switched with the drive data set, different motor numbers must be used. In this case, the data set can only be switched when the pulse inhibit is set.		
	Note		
	If the motor numbers are identical, the same thermal motor model is used for calculation after data set changeover. If different motor numbers are used, different models are also used for calculating (the inactive motor cools down in each case).		
	For the same motor number, the correction values of the Rs, Lh or kT adaptation are applied for the data set changeover (refer to r1782, r1787, r1797).		
r0835.2... 8	CO/BO: Data set changeover status word / DDS_ZSW		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8575
	Min:		Factory setting:
Description:	Displays the status word for the drive data set changeover.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	02 Internal parameter calculation active	Yes	No
	04 Armature short circuit active	Yes	No
	05 Identification running	Yes	No
	07 Rotating measurement running	Yes	No
	08 Motor data identification running	Yes	No

p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 2501, 2512
	Min:	Max:	Factory setting:
	-	-	[0] 29659.0
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	See also: p1055, p1056		
	\} CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056. The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056. For binector input p0840 $=0$ signal, the switching on inhibited is acknowledged. Only the signal source that originally switched on can also switch off again. The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Note		
	For drives with closed-loop speed control (p1300 = 20), the following applies:		
	- BI: p0840 = 0 signal: OFF1 (braking with the ramp-function generator, then pulse cancellation and switching on inhibited)		
	For drives with closed-loop torque control (p1300 = 22), the following applies:		
	For drives with closed-loop torque control (activated using p1501), the following applies:		pplies: andstill is detected (p1226, p1227)
	For drives with clos - BI: p0840 = 0/1 sig	- BI: p0840 $=0 / 1$ signal: ON (pulses can be enabled)	
p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 2512
	Min:	Max:	Factory setting:
			[0] 29659.0
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Recommendation:	When the setting fo signal change of the	d, the motor can on	on by means of an appropriate
Dependency:	See also: p1055, p1056		
	1 CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		

NOTICE

For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056.
The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.
For binector input p0840 $=0$ signal, the switching on inhibited is acknowledged.
Only the signal source that originally switched on can also switch off again.
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_s 1		
G120x_DP, G120x_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 8720, 8820, 8920
	Min:	Max:	Factory setting:
	-	-	[0] 2090.1
			[1] 1
			[2] 2090.1
			[3] 2090.1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse cancellation and switching on inhibited)		
	BI: p0844 $=1$ signal and BI: p0845 = 1 signal		
	- no OFF2 (enable is possible)		
	\triangle CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_s 1		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 8720, 8820, 8920
	Min:	Max:	Factory setting:
			[0] 29659.1
			[1] 1
			[2] 29659.1
			[3] 29659.1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse cancellation and switching on inhibited)		
	BI: $\mathrm{p} 0844=1$ signal and BI: p0845 = 1 signal		
	- no OFF2 (enable is possible)		

CAUTION

When "master control from PC" is activated, this binector input is ineffective.

NOTICE

The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0845[0...n]	Bl: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_s 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501, 8720, 8820, 8920
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI: p0845 $=0$ signal		
	- OFF2 (immediate pulse cancellation and switching on inhibited)		
	BI: p0844 $=1$ signal and BI: $08845=1$ signal		
	- no OFF2 (enable is possible)		

| \triangle CAUTION |
| :--- | :--- |
| When "master control from PC" is activated, this binector input is effective. |

p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_s 2
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 3 Calculated: - Data type: Unsigned32 / Binary
	Can be changed: T Scaling: - Dynamic index: CDS, p0170
	Unit group: - Unit selection: - Function diagram: 2501, 8720, 8820,8920
	Min: Max: Factory setting:
	4022.3
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".
	The following signals are AND'ed:
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).
	$\mathrm{BI}: \mathrm{p} 0844=0$ signal or BI: p0845 $=0$ signal
	- OFF2 (immediate pulse cancellation and switching on inhibited)
	$\mathrm{BI}: \mathrm{p} 0844=1$ signal and $\mathrm{BI}: \mathrm{p} 0845=1$ signal
	- no OFF2 (enable is possible)

\triangle CAUTION

When "master control from PC" is activated, this binector input is effective.

p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_s 1		
G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	[0] 2090.2
			[1] 1
			[2] 2090.2
			[3] 2090.2
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: p0848 $=0$ signal or BI: p0849 $=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse cancellation and switching on inhibited)		
	BI: $\mathrm{p} 0848=1$ signal and BI: p0849 $=1$ signal		
	- no OFF3 (enable is possible)		
	\triangle CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Note		
	For drives with closed-loop torque control (activated using p1501), the following applies:		
	BI: p0848 = 0 signal:		
	- no dedicated braking response, but pulse cancellation when standstill is detected (p1226, p1227).		
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_s 1		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: p0848 $=0$ signal or BI: p0849 $=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse cancellation and switching on inhibited)		
	BI: p0848 = 1 signal and BI: p0849 = 1 signal		
	- no OFF3 (enable is possible)		
	\triangle CAUTION		
	When "master control from PC" is activated, this binector input is ineffective.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_s 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: $00848=0$ signal or BI: $00849=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse cancellation and switching on inhibited)		
	$\mathrm{BI}: \mathrm{p} 0848=1$ signal and BI: p0849 = 1 signal		
	- no OFF3 (enable is possible)		
	¢ CAUTION		
	When "master control from PC" is activated, this binector input is effective.		
p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_s 2		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	\%	4022.2
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: p0848 $=0$ signal or BI: p0849 $=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse cancellation and switching on inhibited)		
	BI: $\mathrm{p} 0848=1$ signal and BI: p0849 = 1 signal		
	- no OFF3 (enable is possible)		
	¢ CAUTION		
	When "master control from PC" is activated, this binector input is effective.		
G120X_DP, G120X_PN	BI: Enable operation/inhibit operation / Enable operation		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 2501
	Min:	Max:	Factory setting:
	-	-	[0] 2090.3
			[1] 1
			[2] 2090.3
			[3] 2090.3

Parameters

9.2 Parameter list

Description:	Sets the signal source for the command "enable operation/inhibit operation".
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).
	BI: p0852 $=0$ signal
	Inhibit operation (suppress pulses).
	BI: p0852 = 1 signal
	Enable operation (pulses can be enabled).
	¢ CAUTION
	When "master control from PC" is activated, this binector input is ineffective.
	NOTICE
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
p0852[0...n]	BI: Enable operation/inhibit operation / Enable operation
G120X_USS	Access level: 3 Calculated: - Data type: Unsigned32 / Binary
	Can be changed: T Scaling: - Dynamic index: CDS, p0170
	Unit group: - Unit selection:- Function diagram: 2501
	Min: Max: Factory setting:
	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).
	BI: p0852 $=0$ signal
	Inhibit operation (suppress pulses).
	BI: p0852 = 1 signal
	Enable operation (pulses can be enabled).
	¢ CAUTION
	When "master control from PC" is activated, this binector input is ineffective.
	NOTICE
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC
G120X_DP, G120X_PN	Access level: 3 Calculated: - Data type: Unsigned32 / Binary
	Can be changed: T Scaling: - Dynamic index: CDS, p0170
	Unit group: - Unit selection:- Function diagram: 2501
	Min: Max: Factory setting:
	[0] 2090.10
	[1] 1
	[2] 2090.10
	[3] 2090.10
Description:	Sets the signal source for the command "control by PLC/no control by PLC".
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).
	BI: p0854 = 0 signal
	No control by PLC
	BI: p0854 = 1 signal
	Master control by PLC.
	¢ CAUTION
	When "master control from PC" is activated, this binector input is ineffective.
	NOTICE
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0867	Power unit main contactor holding time after OFF1 / PU t_MC after OFF1			
	Access level: 3	Calculated: -	Data type: Fl	
	Can be changed: T	Scaling: -	Dynamic in	
	Unit group:-	Unit selection: -	Function d	
	Min:		Factory sett	
	0.0 [ms]	500.0 [ms]	50.0 [ms]	
Description:	Sets the main contactor holding time after OFF1			
Dependency:	See also: p0869			
	Note			
	After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.			
	For p0869 = 1 (keep main contactor closed for STO), after withdrawing STO, the switching on inhibited must be acknowledged via the source of p0840 $=0$ (OFF1) - and before the main contactor holding time expires, should go back to 1 , otherwise the main contactor will open.			
	When operating a drive connected to SINUMERIK, which only closes the main contactor with the OFF1 command (blocksize, chassis), p0867 should be set as a minimum to 50 ms .			
p0868	Power unit thyristor rectifier wait time / PU thy_rect t			
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T	Scaling: -	Dynamic index: -	
	Unit group:-	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	0 [ms]	65000 [ms]	0 [ms]	
Description: Dependency:	Sets the debounce time for the DC circuit breaker for power units in the "chassis" format.			
	The parameter is only active for PM330 power units.			
	Note			
	The following applies if p0868 $=65000 \mathrm{~ms}$:			
	The debounce time defined internally in the power unit's EEPROM is implemented.			
p0869	Sequence control configuration / Seq_ctrl config			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: T	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
		-	0000 bin	
Description:	Sets the configuration for the sequence control.			
Bit field:	Bit Signal name	1 signalYes	0 signal	FP
	00 Keep main contactor closed for STO		No	
Dependency:	See also: p0867			
	Note			
	For bit 00:			
	After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding time has elapsed.			
	For p0869.0 = 1, after withdrawing STO, the switching on inhibited must be acknowledged via the source of p $0840=$ 0 (OFF1) - and before the main contactor holding time expires (p0867), should go back to 1 , otherwise the main contactor will open.			

9.2 Parameter list

Note

If a value is not equal to 999 , a telegram is set and the automatically set interconnections in the telegram are inhibited. The inhibited interconnections can only be changed again after setting value 999.

r0947[0...63]	Fault number / Fault number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	This parameter is identical to r0945.		
r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]
Description: Dependency:	Displays the system runtime in milliseconds when the fault occurred.		
	See also: r0945, r0947, r0949, r2109, r2130, r2133, r2136, p8400		
	NOTICE		
	The time comprises r2130 (days) and r0948 (milliseconds).		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		
r0949[0...63]	Fault value / Fault value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays additional information about	t occurred (as integ	
Dependency:	See also: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3120, r3122		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
p0952	Fault cases counter / Fault cases qty		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6700, 8060
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0 .		
	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		

r0963	PROFIBUS baud rate / PB baud rate		
G120X_DP	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	-
Description:	Displays the corresponding value for the PROFIBUS baud rate.		
Value:	0: $\quad 9.6 \mathrm{kbit} / \mathrm{s}$		
	1: $\quad 19.2$ kbit/s		
	2: $\quad 93.75$ kbit/s		
	3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$		
	4: $\quad 500 \mathrm{kbit} / \mathrm{s}$		
	1.5 Mbit/s		
	$3 \mathrm{Mbit} / \mathrm{s}$		
	$6 \mathrm{Mbit} / \mathrm{s}$		
	$12 \mathrm{Mbit} / \mathrm{s}$		
	$31.25 \mathrm{kbit} / \mathrm{s}$		
	45.45 kbit/s		
	Unknown		
r0964[0...6]	Device identification / Device ident		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the device identification.		
Index:	[0] = Company (Siemens $=42$)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		
	Note		
	Example:		
	r0964[0] = 42 --> SIEMENS		
	r0964[1] = device type, see below		
	r0964[2] = 403 --> first part of the firmware version V04.03 (for second part, refer to index 6)		
	r0964[3] = 2010 --> year 2010		
	r0964[4] = $1705-->17$ th of May		
	r0964[5] = 2 --> 2 drive objects		
	r0964[6] = 200 --> second part, firmware version (complete version: V04.03.02.00)		
	Device type:		
	r0964[1] = 5713 --> SINAMICS G120XA USS		
	r0964[1] = 5720 --> SINAMICS G120X DP		
	r0964[1] = 5721 --> SINAMICS G120X PN		
	$\underline{\text { r0964[1] }=5723-->\text { SINAMICS G120X USS }}$		

r0965	PROFIdrive profile number / PD profile number		
G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the PROFIdrive profile number and profile version.		
	Constant value $=0329$ hex.		
	Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile		
	Byte 2: Profile version = 29 hex = Version 4.1		
	Note		
	When the parameter is read via PROFIdrive, the Octet String 2 data type applies.		
p0969	System runtime relative / t_System relative		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
	Note		
	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		
p0970	Reset drive parameters / Drive par reset		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C} 2(1,30)$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	300	0
Description:	The parameter is used to initiate the reset of the drive parameters.		
	Parameters p0100, p0205 are not reset.		
	The following motor parameters are defined in accordance with the power unit: p0300 ... p0311.		
Value:	0: Inactive		
	1: Start a parameter reset		
	3: Start download of volatile parameters from RAM		
	10: Start loading the parameters saved with p0971=10		
	11: Start loading the parameters saved with p0971=11		
	12: Start loading the parameters saved with p0971=12		
	30: Start loading the delivery state saved with p0971=30		
	100: Start a BICO interconnection reset		
	300: Only Siemens internal		
	NOTICE		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		

Note

A factory setting run can only be started if p0010 was first set to 30 (parameter reset).
At the end of the calculations, p0970 is automatically set to 0 .
Parameter reset is completed with $\mathrm{p} 0970=0$ and $\mathrm{r} 3996[0]=0$.
The following generally applies:
One index of parameters p2100, p2101, p2118, p2119, p2126, p2127 is not reset, if a parameterized message is precisely active in this index.
p0971

Save parameters / Save par

Access level: 1	Calculated: -	Data type: Unsigned16
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	30	0

Description: \quad Setting to save parameters in the non-volatile memory. \quad When saving, only the adjustable parameters intended to be saved are taken into account.

Value:	$0:$	Inactive
	$1:$	Save drive object
	$10:$	Save in non-volatile memory as setting 10
	$11:$	Save in non-volatile memory as setting 11
	$12:$	Save in non-volatile memory as setting 12
	$30:$	State when delivered, save in non-volatile memory as setting 30
Dependency:	See also: p0970, p1960, r3996	

I CAUTION
If a memory card (optional) is inserted - and the USB interface is not used, the following applies:
The parameters are also saved on the card and therefore overwrite any existing data!
NOTICE The Control Unit power supply may only be switched off after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0). Writing to parameters is inhibited while saving. The progress while saving is displayed in r3996. For p0971 = 30: The original state when delivered is overwritten when executing this memory function.

Note

Parameters saved with p0971 = 10, 11, 12 can be loaded again with $p 0970=10,11$ or 12 . Identification and maintenance data (I\&M data, p8806 and following) are only saved for p0971=1.
p0972 Drive unit reset / Drv_unit reset

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	3	0
Sets the required procedure to execute a hardware reset for the drive unit.		
$0:$	Inactive	
$1:$	Hardware-Reset immediate	
$2:$	Hardware reset preparation	
$3:$	Hardware reset after cyclic communication has failed	

```
DANGER
It must be absolutely ensured that the system is in a safe condition.
The memory card/device memory of the Control Unit must not be accessed.
```


Note

For value =1:
Reset is immediately executed and communications interrupted.
After communications have been established, check the reset operation (refer below).
If value $=2$:
Help to check the reset operation.
Firstly, set p0972 $=2$ and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.
After communications have been established, check the reset operation (refer below).
If value = 3:
The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
If cyclic communication is not active, then the reset is immediately executed.
After communications have been established, check the reset operation (refer below).
To check the reset operation:
After the drive unit has been restarted and communications have been established, read p0972 and check the following:
p0972 = 0? --> the reset was successfully executed.
p0972 = 0 ? --> the reset was not executed.

r0980[0...299]	List of existing parameters 1 / List avail par 1		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	See also: r0981, r0989		
	Note		
	Modified parameters are displayed in indices 0 to list, index 299 contains the parameter number a This list consists solely of the following paramete r0980[0...299], r0981[0...299] ... r0989[0... 299 The parameters in this list are not displayed in the from a higher-level control system (e.g. PROFIBUS	8. If an index cont which position the xpert list of the com master).	0 , then the list ends here. In a long ftware. However, they can be read
r0981[0...299]	List of existing parameters 2 / List avail par 2		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	See also: r0980, r0989		

Note

Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.
This list consists solely of the following parameters:
r0990[0...99], r0991[0...99] ... r0999[0...99]
The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).

r0999[0...99]	List of modified parameters $10 /$ List chang par 10		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	-	-	-
Dependency:	Displays those parameters with a value other than the factory setting for this drive.		
	See also: r0990, r0991		

Note

Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. This list consists solely of the following parameters: r0990[0...99], r0991[0...99] ... r0999[0...99]
The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).

	20:	Analog setpoint + no main setpoint		
	21:	Analog setpoint + motor potentiometer		
	22:	Analog setpoint + analog setpoint		
	23:	Analog setpoint + fixed speed setpoint		
	26:	Analog setpoint + fieldbus		
	27:	Analog setpoint + analog setpoint 2		
	30:	Fixed speed setpoint + no main setpoint		
	31:	Fixed speed setpoint + motor potentiometer		
	32:	Fixed speed setpoint + analog setpoint		
	33:	Fixed speed setpoint + fixed speed setpoint		
	36:	Fixed speed setpoint + fieldbus		
	37:	Fixed speed setpoint + analog setpoint 2		
	60:	Fieldbus + no main setpoint		
	61:	Fieldbus + motor potentiometer		
	62:	Fieldbus + analog setpoint		
	63:	Fieldbus + fixed speed setpoint		
	66:	Fieldbus+fieldbus		
	67:	Fieldbus + analog setpoint 2		
	70:	Analog setpoint $2+$ no main setpoint		
	71:	Analog setpoint $2+$ motor potentiometer		
	72:	Analog setpoint $2+$ analog setpoint		
	73:	Analog setpoint $2+$ fixed speed setpoint		
	76:	Analog setpoint $2+$ fieldbus		
	77:	Analog setpoint $2+$ analog setpoint 2		
	200:	Analog output connection		
Dependency:	When changing this parameter, the following settings are influenced:			
	See also: p1070, p1071, p1075, p1076			
	¢ CAUTION			
	If p1000 is selected as the main setpoint of the fieldbus, the following BICO interconnection is set automatically:p2051[1] = r0063			
	NOTICE			
	The parameter is possibly protected as a result of p0922. For PROFIBUS/PROFINET Control Units, the following applies: The parameter can be freely set by setting p0922 =999. When executing a specific macro, the corresponding programmed settings are made and become active.			
p1000[0...n]	Speed setpoint selection / n_set sel			
G120X_USS	Access level: 1		Calculated: -	Data type: Integer16
	Can be changed: T		Scaling: -	Dynamic index: CDS, p0170
	Unit group: -		Unit selection: -	Function diagram: -
	Min:		Max:	Factory setting:
	0		200	2

Description:	Sets the source for the speed setpoint.
	For single-digit values, the following applies:
	The value specifies the main setpoint.
	For double-digit values, the following applies:
	The left-hand digit specifies the supplementary setpoint, the right-hand digit the main setpoint.
	Example:
	Value $=26$
	--> The analog setpoint (2) supplies the supplementary setpoint.
	--> The fieldbus (6) supplies the main setpoint.
Value:	0: No main setpoint
	1: Motorized potentiometer
	2: Analog setpoint
	3: Fixed speed setpoint
	6: Fieldbus
	7: Analog setpoint 2
	10: Motor potentiometer + no main setpoint
	11: Motor potentiometer + motor potentiometer
	12: \quad Motor potentiometer + analog setpoint
	13: \quad Motor potentiometer + fixed speed setpoint
	16: Motor potentiometer + fieldbus
	17: Motor potentiometer + analog setpoint 2
	20: Analog setpoint + no main setpoint
	21: Analog setpoint + motor potentiometer
	22: Analog setpoint + analog setpoint
	23: Analog setpoint + fixed speed setpoint
	26: Analog setpoint + fieldbus
	27: Analog setpoint + analog setpoint 2
	30: \quad Fixed speed setpoint + no main setpoint
	31: Fixed speed setpoint + motor potentiometer
	32: Fixed speed setpoint + analog setpoint
	33: Fixed speed setpoint + fixed speed setpoint
	36: Fixed speed setpoint + fieldbus
	37: Fixed speed setpoint + analog setpoint 2
	60: Fieldbus + no main setpoint
	61: Fieldbus + motor potentiometer
	62: Fieldbus + analog setpoint
	63: Fieldbus + fixed speed setpoint
	66: Fieldbus+fieldbus
	67: Fieldbus + analog setpoint 2
	70: Analog setpoint $2+$ no main setpoint
	71: Analog setpoint $2+$ motor potentiometer
	72: Analog setpoint $2+$ analog setpoint
	73: Analog setpoint $2+$ fixed speed setpoint
	76: Analog setpoint $2+$ fieldbus
	77: Analog setpoint $2+$ analog setpoint 2
	200: Analog output connection
Dependency:	When changing this parameter, the following settings are influenced:
	See also: p1070, p1071, p1075, p1076

1 CAUTION
If p1000 is selected as the main setpoint of the fieldbus, the following BICO interconnection is set automatically:
p2051[1] = r0063

p1001[0...n]	CO: Fixed speed setpoint $1 / \mathrm{n}$ _set_fixed 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 1.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 2.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1003[0...n]	CO: Fixed speed setpoint 3 / n_set_fixed 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 3 .		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 4.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 5.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 6.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 7.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint $8 / \mathrm{n}$ _set_fixed 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 8.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 9 .		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 10.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector our	int 11.	
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 12.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 13.		
Dependency:	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 14.		
	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint $15 / n$ set_fixed 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3010
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description: Dependency:	Setting and connector output for fixed speed setpoint 15.		
	See also: p1020, p1021, p1022, p1023, r1024, r1197		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1016	Fixed speed setpoint select mode / n_set_fix select		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 3010, 3011
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the mode to select the fixed speed setpoint.		
Value:	1: Direct		
	2: Binary		
	Note For p1016 = 1 : In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1004. Up to 16 different setpoints are obtained by adding the individual fixed speed setpoints. For p1016 = 2: In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1015.		

p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection:-	Function diagram: 2505, 3010, 3011
	Min:	Max:	Factory setting:
	-	-	
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	See also: p1021, p1022, p1023, r1197		
	Note		
	If a fixed speed setpoint has not been selected (p1020 \ldots, p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0$ (setpoint $=0$).		
p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3010, 3011
	Min:	Max:	Factory setting:
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.		
	See also: p1020, p1022, p1023, r1197		

	Note If a fixed speed setpoint has not been selected (p1020 ... p1023 $=0$, r1197	en r1024 $=0$ (setpoint $=0$).
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2	
	Access level: 3 Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T Scaling: -	Dynamic index: CDS, p0170
	Unit group: - Unit selection: -	Function diagram: 2505, 3010, 3011
	Min: Max:	Factory setting:
	- -	0
Description:	Sets the signal source for selecting the fixed speed setpoint.	
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.	
	Displays the number of the actual fixed speed setpoint in r 1197.	
	Sets the values for the fixed speed setpoints $1 . . .15$ using p1001 ... p1015.	
	See also: p1020, p1021, p1023, r1197	

Note

If a fixed speed setpoint has not been selected (p1020 \ldots p1023 = 0, r1197 = 0), then r1024 = 0 (setpoint = 0).

p1030[0...n]	Motorized potentiometer configuration / Mop configuration					
		s level: 3	Calculated: -		Data type: Unsigned16	
		e changed: $T, ~ U$	Scaling: -		Dynamic index: DDS, p0180	
		group: -	Unit selection: -		Function diagram: 3020	
	Mi		Max:		Factory setting:	
	-		-		00000110 bin	
Description:	Sets the configuration for the motorized potentiometer.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Data save active		Yes	No	-
	01	Automatic mode	ctive	Yes	No	-
	02	Initial rounding-o		Yes	No	-
	03	Save in NVRAM a		Yes	No	-
	04	Ramp-function g		Yes	No	-
	Note					
	For bit 00:					
	1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1 .					
	For bit 01:					
	0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$) .					
	1: With ramp-function generator in the automatic mode.					
	For manual operation (0 signal via BI: p 1041), the ramp-function generator is always active.					
	For bit 02:					
	0 : Without initial rounding-off					
	1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is sensitive way of specifying small changes (progressive reaction when keys are pressed).					
	The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p1082). It is calculated as follows:					
	The jerk acts up until the maximum acceleration is reached (a_max = p1082 [1/s] / p1047 [s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower that p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time.					
	For bit 03:					
	0: Non-volatile data save deactivated.					
	1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).					
	For bit 04:					
	When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output valu of the motorized potentiometer is always in r1050.					

p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise

G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3020
	Min:	Max:	Factory setting:
	-	-	[0] 2090.13
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	See also: p1036		

	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3020
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-up time (p 1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	See also: p1036		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
G120X_DP, G120X_PN	Access level: 3	Calculated:	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3020
	Min:	Max:	Factory setting:
	-	-	[0] 2090.14
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	See also: p1035		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3020
	Min:	Max:	Factory setting:
			0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer. The setpoint change (CO: r1050) depends on the set ramp-down time (p1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	See also: p1035		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
	Note		
	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		
	Note		
	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
p1039[0...n]	BI: Motorized potentiometer inversion / MotP inv		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
Description:	Sets the signal source potentiometer.	d/velocity or the maximum	$d / v e l o c i t y ~ f o r ~ t h e ~ m o t o r i z e d ~$
Dependency:	See also: p1037, p1038		
	Note		
	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		
p1040[0...n]	Motorized potentiometer starting value / Mop start value		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been switched on.		
Dependency:	Only effective if p1030.0 $=0$. See also: p1030		

p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer.		
	In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input.		
Dependency:	See also: p1030, p1035, p1036, p1042		
	Note		
	The effectiveness of the internal ramp-function generator can be set in automatic mode.		
p1042[0...n]	Cl: Motorized potentiometer automatic setpoint / Mop auto setpoint		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode.		
Dependency:	See also: p1041		
p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer.		
Dependency:	See also: p1044		
	Note		
	The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p1043).		
p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	See also: p1043		
	Note		
	$\underline{\text { The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p1043). }}$		

r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from zero up to the speed/velocity limit (p1082) within this time (if no initial rounding-off has been activated).		
Dependency:	See also: p1030, p1048, p1082		
	Note		
	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3020
	Min:	Max:	Factory setting:
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	See also: p1030, p1047, p1082		
	Note		
	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		
r1050	CO: Motorized potentiometer setpoint after ramp-function generator / Mot poti setpoint		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3001, 3020
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective setpoint after the internal motorized potentiometer ramp-function generator.		
	This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommendation:	Interconnect the signal with main setpoint (p1070).		
Dependency:	See also: p1070		

Note

For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0).

p1051[0...n]	CI: Speed limit RFG positive direction of rotation / n_limit RFG pos		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction on the ramp-function generator input.		
	Note		
	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.		
p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg		
	Access level: 3	Calculated:-	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-		1086[0]
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input.		
	Note		
	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.		
p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
G120X_DP, G120x_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 2501, 3030
	Min:	Max:	Factory setting:
	-		[0] 0
			[1] 722.0
			[2] 0
			[3] 0
Description:	Sets the signal source for jog 1.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	See also: p0840, p1058		
	NOTICE		
	The drive is enabled for jogging using BI: p1055 or BI: p1056. The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056. Only the signal source that was used to switch on can also be used to switch off again.		
p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling:	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 2501, 3030
	Min:	Max:	Factory setting:
	-		
Description:	Sets the signal source for jog 1.		
Recommendation:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		

p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3001, 3030
	Min:	Max:	Factory setting:
	$-210000.000[\mathrm{rpm}]$	$150.000[\mathrm{rpm}]$	
Description:	Sets the speed for jog 1.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	See also: p1055, p1056		

Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	See also: p1071, r1073, r1078		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3001, 3030
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the main setpoint.		
r1073	CO: Main setpoint effective / Main setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3030
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective main setpoint. The value shown is the main setpoint after scaling.		
p1075[0...n]	CI: Supplementary setp / Suppl setp		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3001, 3030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the supplementary setpoint.		
Dependency:			
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3001, 3030
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for scaling the supplementary setpoint.		

Parameters

9.2 Parameter list

Description:	Sets the lowest possible motor speed.
This value is not undershot in operation.	
Dependency:	See also: p1106
	The minimum speed is preassigned to 20% of the rated motor speed. The mall of the enable signal have been switched on, with the appropriate direction specified, the motor accelerates to After minimum speed.

NOTICE

The effective minimum speed is formed from p1080 and p1106.

Note

The parameter value applies for both motor directions.
In exceptional cases, the motor can operate below this value (e.g. when reversing).

p1081	Maximum speed scaling / n_max scal		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 3050, 3095
	Min:	Max:	Factory setting:
	100.00 [\%]	105.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the maximum speed (p1082).		
	For a higher-level speed control, this scaling allows the maximum speed to be briefly exceeded.		
Dependency:	See also: p1082		
	NOTICE		
	Continuous operation above a scaling of 100% is not permitted.		
p1082[0...n]	Maximum speed / n_max		
	Access level: 1	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020, 3050, 3070
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
	Example:		
	Induction motor p0310 $=50 / 60 \mathrm{~Hz}$ without output filter and Blocksize power unit		
	p1082 <= 60 $\times 240 \mathrm{~Hz} / \mathrm{r0313}$ (vector control)		
	p1082 < $=60 \times 550 \mathrm{~Hz} / \mathrm{r0313}$ (U/f control)		
Dependency:	For vector control, the maximum speed is restricted to $60.0 /(8.333 \times 500 \mu \mathrm{~s} \times \mathrm{r} 0313)$. This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	If a sine-wave filter ($\mathrm{p} 0230=3$) is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters (p0230 $=3,4$), the maximum speed r1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.		
	For reactors and dU/dt filters, it is limited to 120 Hz / r0313.		

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

Note

The parameter applies for both motor directions.
The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).
The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311, p0322.
The following limits are always effective for p 1082 :
$\mathrm{p} 1082<=60 \times$ minimum ($15 \times \mathrm{p} 0310,550 \mathrm{~Hz}$) / r0313
$\mathrm{p} 1082<=60 \times$ maximum power unit pulse frequency $/(\mathrm{kx} \mathrm{r0313}$), with $k=12$ (vector control), $k=6.5$ (U/f control)
During automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$), the parameter value is assigned the maximum motor speed
(p 0322). For $\mathrm{p} 0322=0$ the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors, the synchronous no-load speed is used as the default value (p0310 x $60 / \mathrm{rO313}$).
For synchronous motors, the following additionally applies:
During automatic calculation (p0340, p3900), p1082 is limited to speeds where the EMF does not exceed the DC link voltage.
p1082 is also available in the quick commissioning ($p 0010=1$); this means that when exiting via p3900 >0, the value is not changed.

p1082[0...n]	Maximum speed / n_max		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 1	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3020, 3050, 3070
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed setpoint.		
Dependency:	The maximum speed is limited to: $\mathrm{p} 1082<=60 \times 150 \mathrm{~Hz} / \mathrm{r} 0313$		
	See also: p0230, p0310, r0313, p0322		

NOTICE

After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.

Note

The parameter applies for both motor directions.
The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).
The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311 and p0322 (p0310 x $60 / \mathrm{r0313}$, for p0322 = 0).
p1083[0...n] CO: Speed limit in positive direction of rotation / n_limit pos

Access level: 3
Can be changed: T, U
Unit group: 3_1
Min:
0.000 [rpm]

Calculated: -
Scaling: p2000
Unit selection: p0505
Max:
210000.000 [rpm]

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: 3050
Factory setting:
210000.000 [rpm]

Description:
Sets the maximum speed for the positive direction.

NOTICE

A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

r1084	CO: Speed limit positive effective / n_limit pos eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050, 7958
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector	e speed limit.	
Dependency:	See also: p1082, p1083, p1085		
	Note		
	Vector control: r1084 <= 60 $\times 240 \mathrm{~Hz}$ / r0313		
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-	-	1083[0]
Description:	Sets the signal source for	sitive direction.	
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	0.000 [rpm]	-210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
	NOtice		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
r1087	CO: Speed limit negative effective / n_limit neg eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050, 7958
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active negative speed limit.		
Dependency:	See also: p1082, p1086, p1088		
	Note		
	Vector control: r1087 >= -60 x $240 \mathrm{~Hz} / \mathrm{rO313}$		
p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-	-	1086[0]

Description: Sets the signal source for the speed/velocity limit of the negative direction.

p1091[0...n]	Skip speed 1 / n_skip 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 1.		
Dependency:	See also: p1092, p1093, p1094, p1101		
	NOTICE		
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
	Note		
	The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.		
p1092[0...n]	Skip speed 2 / n_skip 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 2.		
Dependency:	See also: p1091, p1093, p1094, p1101		
	NOTICE		
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1093[0...n]	Skip speed 3 / n_skip 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 3.		
Dependency:	See also: p1091, p1092, p1094, p1101		
	NOTICE		
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1094[0...n]	Skip speed 4 / n_skip 4		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 4.		
Dependency:	See also: p1091, p1092, p1093, p1101		
	NOTICE		
	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

p1098[0...n]	Cl: Skip speed scaling / n_skip scal			
	Access level: 3	Calculated: -	Data type: U FloatingPoint	
	Can be changed: T	Scaling: PERCENT	Dynamic ind	0170
	Unit group: -	Unit selection: -	Function dia	
	Min:	Max:	Factory setti	
	-	-	1	
Description:	Sets the signal source for scaling the skip speeds.			
Dependency:	See also: p1091, p1092, p1093, p1094			
r1099.0	CO/BO: Skip band status word / Skip band ZSW			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Display and BICO output for the skip bands.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 r 1170 within the skip band	Yes	No	3050
Dependency:	See also: r1170			
	Note			
	For bit 00:			
	With the bit set, the setpoint speed is within the skip band after the ramp-function generator (r1170).			
	The signal can be used to switch over the drive data set (DDS).			
p1101[0...n]	Skip speed bandwidth / n_skip bandwidth			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050	
	Min:	Max:	Factory setting:	
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]	
Description:	Sets the bandwidth for the skip speeds/velocities 1 to 4.			
Dependency:	See also: p1091, p1092, p1093, p1094			
	Note			
	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.			
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppressi			
	Example:$\text { p1091 = } 600 \text { and p1101 = } 20$			
	--> setpoint speeds between 580 and 620 [rpm] are skipped.			
	For the skip bandwidths, the following hysteresis behavior applies:			
	For a setpoint speed coming from below, the following applies:			
	$\mathrm{r} 1170<580$ [rpm] and 580 [rpm] <= r1114 <= 620 [rpm] --> r1119 = 580 [rpm]			
	For a setpoint speed coming from above, the following applies:			

p1106[0...n]	CI: Minimum speed signal source / n_min s_s		
	Access level: 3	Calculated:-	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group:-	Unit selection: -	Function diagram: 3050
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source for lowest possible motor speed.		
Dependency:	See also: p1080		
	NOTICE		
	The effective minimum speed is formed from p1080 and p1106.		
p1108[0...n]	BI: Total setpoint selection / Total setp sel		
	Access level: 4	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3030
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source to select the total setpoint.		
Dependency:	The selection of the to (r2349.4) if the techn If the "hibernation m See also: p1109	cally interconnecte (p2200 > 0) and op $398=1$), an interc	word of the technology controller mode p2251 $=0$. made to r2399.7.
	\triangle CAUTION		
	If the technology controller is to supply the total setpoint using p1109, then it is not permissible to disable theinterconnection to its status word (r2349.4).If the "hibernation mode" function is activated, then it is not permissible to disable the interconnection to status wordr2399.		
p1109[0...n]	CI: Total setpoint / Total setp		
	Access level: 4	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: ${ }^{\text {T }}$	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3030
	Min:	Max:	Factory setting:
Description:	Sets the signal source for the total setpoint.		
Dependency:	The signal source of the total setpoint is automatically interconnected to the output of the technology controller (r 2294) if the technology controller is selected ($\mathrm{p} 2200>0$) and operated in the mode p2251 $=0$. If the "hibernation mode" function is activated ($\mathrm{p} 2398=1$), an interconnection is made to r2397[0]. See also: p1108		
	\} CAUTION		
	If the technology controller is to supply the total setpoint using p1109, then it is not permissible to disable theinterconnection to its output (r2294).If the "hibernation mode" function is activated, then it is not permissible to withdraw the interconnection to setpointr2397[0].		

p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3040
	Min:	Max:	Factory setting:
		-	1
Description:	Sets the signal source to disable the negative direction.		
Dependency:	See also: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling:-	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2505, 3040
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source to disable the positive direction.		
Dependency:	See also: p1110		
r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:	See also: p1091, p1092, p1093, p1094, p1101		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
G120X_DP, G120x_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2441, 2442, 2505, 3040
	Min:	Max:	Factory setting:
			[0] 2090.11
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	See also: r1198		
	\triangle CAUTION		
	If the technology controller is being used as the speed main setpoint (p2251 = 0), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1113[0...n]	BI: Setpoint inversion / Setp inv		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2441, 2442, $2505,3040$
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	See also: r1198		
	\triangle CAUTION		
	If the technology controller is being used as the speed main setpoint (p2251 = 0), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r1114	CO: Setpoint after the direction limiting / Setp after limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3001, 3040, 3050
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		
r1119	CO: Ramp-function generator setpoint at the input/ RFG setp at inp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 3050, 3070, 6300, 8022
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the setpoint at the input of the ramp-function generator.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
	Note		
	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p1082) in this time.		
Dependency:	See also: p1082, p1123		

	The ramp-up time can be scaled via connector input p1138. The parameter is adapted during the rotating measurement ($\mathrm{p} 1960>0$). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized. For U/f control and sensorless vector control (see p1300), a ramp-up time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.		
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
G120X DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 1 Can be changed: C2(1), T, U Unit group: - Min: 0.000 [s]	Calculated:- Scaling: - Unit selection: Max: 999999.000 [s]	Data type: FloatingPoint32 Dynamic index: DDS, p0180 Function diagram: 3070 Factory setting: $20.000 \text { [s] }$
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p1082) in this time.		
Dependency:	See also: p1082, p1123		
	Note The ramp-up time can be scal The parameter is adapted dur measurement, the motor can For U/f control and sensorless be based on the startup time	p1138. urement (p1960 > was originally pa 300), a ramp-up ti .	reason that during the rotating not make sense. The setting should
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
Dependency:	See also: p1082, p1127		
	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s does not make sense. The setting should be based on the startup times (r0345) of the motor.		
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: C2(1), T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	0.000 [s]	999999.000 [s]	30.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
Dependency:	The parameter is pre-assigned depending on the size of the power unit. See also: p1082, p1127		

Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).
	BI: p1142 $=0$ signal
	Inhibits the setpoint (the ramp-function generator input is set to zero).
	BI: p1142 = 1 signal
	Setpoint enable.
Dependency:	See also: p1140, p1141
	\ CAUTION
	When "master control from PC" is activated, this binector input is ineffective.
	NOTICE
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
	Note
	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:
	BI: $\mathrm{P} 1142=0$ signal
p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable
G120X_USS	Access level: 3 Calculated: - Data type: Unsigned32 / Binary
	Can be changed: T Scaling: - Dynamic index: CDS, p0170
	Unit group: - Unit selection: - Function diagram: 2501
	Min: Max: Factory setting:
	- 1
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).
	BI: $\mathrm{p} 1142=0$ signal
	Inhibits the setpoint (the ramp-function generator input is set to zero).
	BI: p1142 = 1 signal
	Setpoint enable.
Dependency:	See also: p1140, p1141
	1 CAUTION
	When "master control from PC" is activated, this binector input is ineffective.
	NOTICE
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
	Note
	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:
	BI: $\mathrm{p} 1142=0$ signal
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v
	Access level: 3 Calculated: - Data type: Unsigned32 / Binary
	Can be changed: T Scaling: - Dynamic index: CDS, p0170
	Unit group: - Unit selection: - Function diagram: 3070
	Min: Max: Factory setting:
	- 29640.0
Description:	Sets the signal source for accepting the setting value of the ramp-function generator.
Dependency:	The signal source for the ramp-function generator setting value is set using parameters.
	See also: p1144

Note

0/1 signal:
The ramp-function generator output is immediately (without delay) set to the setting value of the ramp-function generator.
1 signal:
The setting value of the ramp-function generator is effective.
1/0 signal:
The input value of the ramp-function generator is effective. The ramp-function generator output is adapted to the input value using the ramp-up time or the ramp-down time.
0 signal:
The input value of the ramp-function generator is effective.

p1144[0...n]	Cl: Ramp-function generator setting value / RFG setting value		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 3070
	Min:	Max:	Factory setting:
	-	-	29641[0]
Description:	Sets the signal source for the ramp-function generator setting value.		
Dependency:	The signal source for accepting the setting value is set using parameters.		
	See also: p1143		

p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 3080
	Min:	Max:	Factory setting:
	0.0	50.0	0.0
Description:	Sets the ramp-function generator tracking.		
	The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration.		
	The reference value is the deviation at the speed controller/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.		
Recommendation:	If at least one speed setpoint filter/velocity setpoint filter is activated (p1414), then the ramp-function generator tracking should be deactivated ($\mathrm{p} 1145=0.0$). When the speed setpoint filter is activated, the output value of the rampfunction generator can no longer be tracked (corrected) corresponding to the maximum possible drive acceleration.		
	For p1145 = 0.0:		
	This value deactivates the ramp-function generator tracking.		
	For p1145 = 0.0 ... 1.0:		
	Generally, these values are not practical. They cause the motor to accelerate below its torque limit. The lower the selected value, the greater the margin between the controller and torque limit when accelerating.		
	For p1145 > 1.0:		
	The greater the value,	eviation between	oint and speed actual value.

NOTICE

If ramp-function generator tracking is activated and the ramp time is set too short, this can cause unsteady acceleration. Remedy:

- deactivate ramp-function generator tracking (p1145 = 0).
- increase the ramp-up/ramp-down time (p1120, p1121).

r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 2505	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Display and BICO output for the control word of the setpoint channel.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Fixed setpoint bit 0		Yes	No	3010
	01	Fixed setpoint bit 1		Yes	No	3010
	02	Fixed setpoint bit 2		Yes	No	3010
	03	Fixed setpoint bit 3		Yes	No	3010
	05	Inhibit negative direction		Yes	No	3040
	06	Inhibit positive direction		Yes	No	3040
	11	Setpoint inversion		Yes	No	3040
	13	Motorized potentiometer raise		Yes	No	3020
	14	Motorized potentiometer lower		Yes	No	3020
	15	Bypass ramp-function generator		Yes	No	3070
r1199.0... 8	CO/BO: Ramp-function generator status word / RFG ZSW					
	Access level: 4		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: 3001, 3080	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Displays the status word for the ramp-function generator (RFG).					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Ramp-up active		Yes	No	-
	01	Ramp-down active		Yes	No	-
	02	RFG active		Yes	No	-
	03	Ramp-function generator set		Yes	No	-
	04	Ramp-function generator held		Yes	No	-
	05	Ramp-function generator tracking		Yes	No	-
	06	Maximum limit active		Yes	No	-
	07	Ramp-function generator acceleratio		Yes	No	-
	08	Ramp-function generator acceleratio		Yes	No	-

Note

For bit 02:
The bit is the result of the OR logic operation - bit 00 and bit 01.

p1200[0...n]	Flying restart operating mode / FlyRest op_mode		
	Access level: 2	Calculated:-	Data type: Integer16
	Can be changed: T, U	Scaling:-	Dynamic index: DDS, p0180
	Unit group: -	Unit selection:-	Function diagram: 6300,6850
	Min:	Max:	Factory setting:
	0	4	0

\triangle CAUTION

An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.

NOTICE

The following applies for a synchronous reluctance motor:
The minimum search current is limited (p1202 >= 50%).

Note

In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the actual search current is set as a function of the frequency based on the voltage setpoints.
Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example).
The following applies for a synchronous reluctance motor:
Adjusting the search current only has an effect if a motor data identification run is then performed (see p1909 bit 22). It is possible that a value exceeding 100% cannot be reached if the motor rated power is significantly less than that of the power unit.
If the motor rated power is significantly higher than that of the power unit, then the search current should be increased for the higher speed range.

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	10 [\%]	4000 [\%]	100 [\%]
Description:	Sets the factor for the search speed for flying restart.		
	The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.		
Recommendation:	For sensorless vector control and motor cables longer than 200 m , set the factor p1203 >= 300%.		
	\triangle CAUTION		
	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion. For vector control, a value that is too low or too high can cause flying restart to become unstable.		

Note

The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).
With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/ f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).
For the flying restart of a reluctance motor, the minimum search velocity is limited (p1203 >=50 \%).

r1204.0... 15

CO/BO: Flying restart U/f control status / FlyRest Uf st

Access level: 4
Can be changed: -
Unit group: - Unit selection: -
Min:

Calculated: -
Scaling: -
Unit selection: - Function diagram: -
Max:

Data type: Unsigned16
Dynamic index: -

Factory setting:

Description: Displays the status for checking and monitoring flying restart states in the U/f control mode.
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Current impressed	Yes	No	-
01	No current flow	Yes	No	-
02	Voltage input	Yes	No	-
03	Voltage reduced	Yes	No	-

Automatic restart mode / AR mode

Access level: 2	Calculated: -	Data type: Integer16
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	26	0

Value:
Sets the automatic restart mode (AR).
The parameters must be saved in the non-volatile memory p0971 $=1$ in order that the setting becomes effective.

Recommendation:

Dependency:

0: Inhibit automatic restart
1: \quad Acknowledge all faults without restarting
4: \quad Restart after line supply failure w/o additional start attempts
6: Restart after fault with additional start attempts
14: \quad Restart after line supply failure following man. acknowledgment
16: Restart after fault following manual acknowledgment
26: Acknowledging all faults and reclosing for an ON command
For brief line supply failures, the motor shaft may still be rotating when restarting. The "flying restart" function (p1200) might need to be activated to restart while the motor shaft is still rotating.
The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210>1, there is no active ON command, then the automatic restart is interrupted.
When using an Operator Panel in the LOCAL mode, then there is no automatic start.
For p1210 $=14,16$, a manual acknowledgment is required for an automatic restart.
See also: p0840, p0857, p1267
See also: F30003
\} DANGER
If the automatic restart is activated (p1210>1) if there is an ON command (refer to p0840), the drive is switched on as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is present again. This automatic switching-on operation can only be interrupted by withdrawing the ON command.

NOTICE

A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). When faults are present, therefore, the parameter cannot be changed.
For $\mathrm{p} 1210>1$, the motor is automatically started.

Note

For p1210 = 1:

Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.
For p1210 = 4:
An automatic restart is only performed if fault F30003 has occurred on the power unit. If additional faults are present, then these faults are also acknowledged and when successful, starting continues.
For p1210 = 6:
An automatic restart is carried out if any fault has occurred.
For p1210=14:
as for $\mathrm{p} 1210=4$. However, active faults must be manually acknowledged.
For p1210 = 16:
as for $\mathrm{p} 1210=6$. However, active faults must be manually acknowledged.
For p1210=26:
as for $\mathrm{p} 1210=6$. For this mode, the switch-on command can be entered with a delay. The restart is interrupted with either OFF2 or OFF3. Alarm A07321 is only displayed if the cause of the fault has been removed and the drive is restarted by setting the switch-on command.

9.2 Parameter list

p1211	Automatic restart start attempts / AR start attempts		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	10	3
Description:	Sets the start attempts of the automatic restart function for p1210 $=4,6,14,16,26$.		
Dependency:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).		
	See also: p1210, r1214		
	See also: F07320		
	NOTICE		
	After fault F07320 occurs, the switch-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.		
	After a complete power failure (blackout) the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 I		

Note

A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized ($\mathrm{r} 0056.4=1$) and an additional delay time of 1 s has expired.
As long as a fault is present, an acknowledge command is generated in the time intervals of p1212/2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgment starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
At least one start attempt is always carried out.
After a line supply failure, acknowledgment is immediate and when the line supply returns, the system is switched on. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgment also causes the start counter to be decremented.
For p1210 = 26:
The start counter is decremented if after a successful fault acknowledgment, the on command is present.

p1212	Automatic restart delay time start attempts / AR t_wait start		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	$1000.0[\mathrm{~s}]$	Factory setting:
	$0.1[\mathrm{~s}]$	$1.0[\mathrm{~s}]$	
Description:	Sets the delay time up to restart.		
Dependency:	This parameter setting is active for p1210 $=4,6,26$.		
	For p1210 $=1$, the following applies:		
	Faults are only automatically acknowledged in half of the waiting time, no restart.		
	See also: p1210,r1214		

NOTICE

A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).

Note

The faults are automatically acknowledged after half of the delay time has expired and the full delay time.
If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the delay time.

9.2 Parameter list

12	Start counter bit 0	ON	OFF	-
13	Start counter bit 1	ON	OFF	-
14	Start counter bit 2	ON	OFF	-
15	Start counter bit 3	ON	OFF	-

Note

For bit 00:
State to display the single initialization after POWER ON.
For bit 01:
State in which the automatic restart function waits for faults (initial state).
For bit 02:
General display that a fault has been identified and that the restart or acknowledgment has been initiated.
For bit 03:
Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.
For bit 04:
State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgment. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgment command (bit $3=1$).
For bit 05:
State in which the drive is automatically switched on (only for p1210=4,6).
For bit 06:
State in which the system waits after having been switched on, to the end of the start attempt (to the end of the magnetizing process).
For $\mathrm{p} 1210=1$, this signal is directly set after the faults have been successfully acknowledged.
For bit 07:
State which is assumed after a fault occurs within the automatic restart function. This is only reset after acknowledging the fault and withdrawing the switch-on command.
For bit 10:
When the automatic restart function is active, r 1214.7 is displayed, otherwise the active fault r 2139.3 .
The bit is set if the automatic restart can no longer acknowledge a fault, and cancels with fault F07320.
For bits 12 ... 15 :
Actual state of the start counter (binary coded).
For bit 04 in addition:
For p1210 = 26, the system waits in this state until the switch-on command is available.
p1226[0...n] Threshold for zero speed detection / n_standst n_thresh

Access level: 2
Can be changed: T, U
Unit group: 3_1
Min:
0.00 [rpm]

Calculated: -
Scaling: -
Unit selection: p0505
Max:
210000.00 [rpm]

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: 8022
Factory setting:
20.00 [rpm]

Description: Sets the speed threshold for the standstill identification.
Acts on the actual value and setpoint monitoring.
When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.

Dependency:

\triangle CAUTION
The following applies for encoderless speed control:
If p1226 is set to values under approx. 1% of the rated motor speed, then the model switchover limits of the vector
control must be increased in order to guarantee reliable shutdown (see p1755, p1750.7).

control must be increased in order to guarantee reliable shutdown (see p1755, p1750.7).

NOTICE

For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the Control Unit boots.

Note

Standstill is identified in the following cases:

- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.
- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low.

p1227	Zero speed detection monitoring time / n_standst t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	300.000 [s]	300.000 [s]
Description:	Sets the monitoring time for the standstill identification.		
	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
	See also: p1226		
	NOTICE		
	For p1145 >0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not cancelled.		

Note

Standstill is identified in the following cases:

- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.
- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.

For p1227 = 300.000 s the following applies:
Monitoring is deactivated.
For p1227 $=0.000 \mathrm{~s}$, the following applies:
With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down.
The parameters are preassigned according to the specific power unit once the Control Unit has been powered up for the first time or when the factory settings have been restored.

p1228	Pulse cancellation delay time / Pulse suppr t_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8022
	Min:	Max:	Factory setting:
	0.000 [s]	299.000 [s]	0.010 [s]
Description:	Sets the delay time for pulse cancellation.		
	After OFF1 or OFF3, the pulses are canceled, if at least one of the following conditions is fulfilled:		
	- the speed actual value falls below the threshold in p1226 and the time started after this in p1228 has expired. - the speed setpoint falls below the threshold in p1226 and the time started after this in p1227 has expired.		
Dependency:	See also: p1226, p1227		
p1230[0...n]	BI: DC braking activation / DC brake act		
G120X_DP (DC braking), G120X_PN (DC braking), G120X_USS (DC braking)	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7017
	Min:	Max:	Factory setting:
	-	-	0

Description: Dependency:	Sets the braking current for DC braking. See also: p1230, p1231, p1233, p1234, r1239,	$345, \text { p1346 }$		
	Note A change to the braking current becomes effecti The value for p 1232 is specified as an rms value in as that of an identical output current at frequency limited to r0067. For the current controller, the settings of parame	the next time that DC brak e 3-phase system. The mag zero (see r0067, r0068, p0 rs p1345 and p1346 (I_m	switched on. e of the brakin The braking ting controller)	the same ternally
p1233[0...n]	DC braking time / DCBRK time			
G120X_DP (DC braking), G120X_PN (DC braking), G120X_USS (DC braking)	Access level: 2 Can be changed: T, U Unit group: - Min: $0.0 \text { [s] }$	Calculated: - Scaling: - Unit selection: Max: 3600.0 [s]	Data type: Fl Dynamic ind Function dia Factory setti $1.0 \text { [s] }$	$\begin{aligned} & \text { t32 } \\ & 0180 \\ & 7 \end{aligned}$
Description: Dependency:	Sets the DC braking time (as fault response). See also: p1230, p1231, p1232, p1234, r1239			
p1234[0...n]	Speed at the start of DC braking / DC	R n_start		
G120X_DP (DC braking), G120X_PN (DC braking), G120X_USS (DC braking)	Access level: 2 Can be changed: T, U Unit group: - Min: 0.00 [rpm]	Calculated: - Scaling: - Unit selection: - Max: 210000.00 [rpm]	Data type: Fl Dynamic ind Function dia Factory setti 210000.00	$\begin{aligned} & \text { t32 } \\ & 0180 \\ & 7 \end{aligned}$
Description:	Sets the starting speed for DC braking. If the actual speed falls below this threshold, the	C braking is activated.		
Dependency:	See also: p1230, p1231, p1232, p1233, r1239			
r1239.8... 13	CO/BO: DC braking status word / DCB	ZSW		
G120X_DP (DC braking), G120X_PN (DC braking), G120X_USS (DC braking)	Access level: 2 Can be changed: Unit group:- Min:	Calculated:- Scaling: - Unit selection: Max:	Data type: U Dynamic ind Function dia Factory setti	
Description:	Status word of the DC braking.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	08 DC braking active	Yes	No	7017
	10 DC braking ready	Yes	No	7017
	11 DC braking selected	Yes	No	-
	12 DC braking selection internally inhibited	Yes	No	-
	13 DC braking for OFF1/OFF3	Yes	No	-
Dependency:	See also: p1231, p1232, p1233, p1234			
	Note For bit 12, 13: Only effective for p1231 $=14$.			

p1240[0...n]	Vdc controller configuration (vector control) / Vdc ctr config vec		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220,6827
	Min:	Max:	Factory setting:
	0	3	1
Description:	Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. For U/f control: see p1280.		
Value:	0: Inhibit Vdc ctrl		
	1: Enable Vdc_max controller		
	2: Enable Vdc_min controller (kinetic buffering)		
	3: Enable Vdc_min controller and Vdc_max controller		
Dependency:	See also: p1245		
	See also: A07400, A07401, A07402, F07405, F07406		
	NOTICE		
	An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.		

Note

If a braking resistor is connected to the $\mathrm{DC} \operatorname{link}(\mathrm{p} 0219>0$), then the Vdc_max control is automatically deactivated. p1240 = 1, 3:
When the DC link voltage limit specified for the power unit is reached the following applies:

- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
- the ramp-down times are automatically increased.
p1240 $=2$, 3:
When the switch-in threshold of the Vdc min controller is reached (p1245), the following applies:
- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
- the motor is braked in order to use its kinetic energy to buffer the DC link.

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
G120X_DP (Vdc_max),	Access level: 3	Calculated: -	Data type: FloatingPoint32
G120X_PN (Vdc_max),	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1254 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:		
	$\mathrm{r} 1242=1.15$ * sqrt(2) * 00210 (supply voltage)		
	PM230: r1242 is limited to Vdc_max - 50.0 V.		
	If p1254 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:		
	$\mathrm{r} 1242=$ Vdc_max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1242 = Vdc_max-25.0 V (for 230 V power units)		

NOTICE

If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.

Note

The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1242 and the controller output is zero.

p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
G120X_DP (Vdc_max),	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
G120X_PN (Vdc_max),	Can be changed: T, U	Scaling: -	Unit selection: -
G120X_USS (Vdc_max)	Unit group: -	Max:	Function diagram: 6220
	Min:	$10000[\%]$	Factory setting:
	$1[\%]$	$100[\%]$	
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100\% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic		
	settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251,		
	p1252 are weighted with the dynamic factor p1243.		

WARNING

An excessively high value possibly negatively influences normal drive operation, and can mean that after the line supply returns, the Vdc minimum control can no longer be exited.

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	10.00 [rpm]
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.		

Note

For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p 1131). This is supported using a dynamic setting of the speed controller.

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
G120X_DP (Vdc_max),	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
G120X_PN (Vdc_max),	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
G120X_USS (Vdc_max)	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00[r p m]$	10.00 [rpm]	
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the		
	ramp-function generator.		

Note

For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p 1131). This is supported using a dynamic setting of the speed controller.

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	1.00
Description:	Sets the proportional gain for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor) and the DC link capacitance of the power unit.		
p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the integral time for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		

p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6220
	Min:	Max:	Factory setting:
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the rate time constant for the DC link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	1
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0: Automatic detection inhibited		
	1: Automatic detection enabled		
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
G120X_DP (Vdc_min), G120X_PN (Vdc_min), G120X_USS (Vdc_min)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [s]	1800.000 [s]	0.000 [s]
Description:	Sets the time threshold If this value is exceede Prerequisite: p1256 =	(kinetic buffering). red response can b	
Dependency:	See also: F07406		
	NOTICE		
	If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1240=3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the eve of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
G120X_DP (Vdc_min), G120X_PN (Vdc_min), G120X_USS (Vdc_min)	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc	7 -> F07405	
		F07405, t>p1255	
Dependency:	See also: F07405, F07		

p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
G120X_DP (Vdc_min),	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
G120X_PN (Vdc_min),	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
G120X_USS (Vdc_min)	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00[r p m]$	$50.00[\mathrm{rpm}]$	
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		
	If this value is exceeded a fault is output; the required response can be parameterized.		
	Kinetic buffering is not started below the speed threshold.		

r1261.0... 11

CO/BO: Bypass control/status word / Bypass STW / ZSW

Access level: 2
Can be changed: -
Unit group: -
Min:

Calculated: -
Scaling: -
Unit selection:-
Max:

Data type: Unsigned32
Dynamic index:
Function diagram: -
Factory setting:

Description: Bit field:	Control and feedback signals of the bypass switch.				
	Bit	Signal name	1 signal	0 signal	FP
	00	Command switch motor - power unit	Close	Open	-
	01	Command switch motor - line supply	Close	Open	-
	05	Feedback signal switch motor - power unit	Closed	Opened	-
	06	Feedback signal switch motor - line supply	Closed	Opened	-
	07	Bypass command (from p1266)	Yes	No	-
	10	Bypass in process sequence	Yes	No	-
	11	Bypass enabled	Yes	No	-
Dependency:	The "Bypass" function is only available for induction motors.				
	Note				
	Control bits 0 and 1 should be interconnected to the signal outputs via which the switches in the motor feeder cables should be controlled. These should be selected/dimensioned for switching under load.				
p1262[0...n]	Bypass dead time / Bypass t_dead				
	Access level: 2		Calculated: CALC_MOD_REG	Data type: FloatingPoint32	
	Can be changed: T, U		Scaling: -	Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -	Function diagram: -	
	Min:		Max:	Factory setting:	
	0.000 [s]		20.000 [s]	1.000 [s]	
Description: Dependency:	Sets the dead time for non-synchronized bypass.				
	The "Bypass" function is only available for induction motors.				
	Note				
	This parameter is used to define the changeover time of the contactors. It should not be shorter than the de-magnetizing time of the motor (p0347).				
	The total changeover time for the bypass is based on the total of p1262 plus the OFF time for the relevant switch (p1274[x]).				
p1263	Debypass delay time / Debypass t_del				
	Access level: 2		Calculated: -	Data type: FloatingPoint32	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: -	
	Min:		Max:	Factory setting:	
	0.000 [s]		300.000 [s]	0.100 [s]	
Description:	Sets the delay time to switch back to converter operation for a non-synchronized bypass.				
Dependency:	The "Bypass" function is only available for induction motors.				
p1264	Bypass delay time / Bypass t_del				
	Access level: 2		Calculated: -	Data type: FloatingPoint32	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group:-		Unit selection: -	Function diagram: -	
	Min:0.000 [s]			Factory setting:	
			300.000 [s]	1.000 [s]	
Description:	Sets the delay time for switching to line operation for a non-synchronized bypass.				
Dependency:	The "Bypass" function is only available for induction motors.				

p1265	Bypass speed threshold / Bypass n_thresh			
	Access level: 2	Calculated: -	Data type: Flo	
	Can be changed: T, U	Scaling: p2000	Dynamic ind	
	Unit group: 3_1	Unit selection: p0505	Function dia	
	Min:	Max:	Factory settin	
	0.00 [rpm]	210000.00 [rpm]	1480.00 [rpm	
Description:	Sets the speed threshold to activate the bypass.			
Dependency:	The "Bypass" function is only available for induction motors.			
	If the drive setpoint speed is entered via a motorized potentiometer, then the configuration bit p1030.4 should be set in order to ensure the bypass via speed threshold function.			
	Note			
	When selecting p1260 $=3$ and p1267.1 $=1$, the bypass is automatically activated when this speed is reached. The bypass speed threshold is only effective for positive directions of rotation. If the drive connected to the line supply requires negative speeds, then this can be achieved using p1820 (direction of rotation reversal).			
p1266	BI: Bypass control command / Bypass command			
	Access level: 2	Calculated: -	Data type: Un	/ Bi
	Can be changed: T, U	Scaling: -	Dynamic ind	
	Unit group: -	Unit selection: -	Function dia	
	Min:	Max:	Factory settin	
	-	-	0	
Description:	Sets the signal source for the control command to the bypass.			
Dependency:	The "Bypass" function is only available for induction motors.			
p1267	Bypass changeover source configuration / Chngov_src config			
	Access level: 2	Calculated: -	Data type: Un	
	Can be changed: T, U	Scaling: -	Dynamic ind	
	Unit group: -	Unit selection: -	Function dia	
	Min:	Max:	Factory settin	
	-	-	0000 bin	
Description:	Sets the cause that should initiate the bypass.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bypass via signal (BI: p1266)	Yes	No	-
	01 Bypass via reaching the speed threshold	Yes	No	-
Dependency:	The "Bypass" function is only available for induction motors.			
	Note			
	The parameter only has an effect for a non-synchronized bypass. p1267.0 = 1:			
	The bypass is initiated by setting a binary signal. expired, operation at the power unit is re-selecte p1267.1 = 1: When the speed threshold entered in p1265 is re the speed setpoint again falls below the thresho	en the command is reset, a hed, the bypass is switched value.	debypass de he system only	The bypass is initiated by setting a binary signal. When the command is reset, after the debypass delay time (p1263) ha expired, operation at the power unit is re-selected.

p1269[0...1]	BI: Bypass switch feedback signal / Bypass FS							
	Acc	s level: 3			Data type: Unsigned32 / Binary			
	Can	be changed: T, U	Scaling: -		Dynamic index: -			
	Unit	group: -	Unit selection: -		Function diagram: -			
	Min				Factory setting:			
	-		-		[0] 1261.0			
					[1] 1261.1			
Description:	Sets the signal source for the feedback signal of the bypass switch.							
Index:	[0] = Switch motor/drive							
	[1] = Switch motor/line supply							
Dependency:	The "Bypass" function is only available for induction motors.							
	Note							
	In the case of switches without a feedback signal, interconnect the corresponding control bit as the signal source: BI: p1269[0] = r1261.0							
	BI: p1269[1] = r1261.1							
	Entering p1269 $=0$ sets this interconnection automatically for switches without a feedback signal.							
p1270[0...n]	Flying restart configuration / Fly restart config							
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 4		Calculated: -		Data type: Unsigned16			
	Can be changed: T, U		Scaling:		Dynamic index: DDS, p0180			
	Unit group: -		Unit selection: -		Function diagram: -			
	Min:		Max:		Factory setting:			
	-				0000000000000011 bin			
Description:	Sets the configuration for the "flying restart function" function.							
Bit field:		Signal name		1 signal	0 signal	FP		
		Fast flying restar	uction m	Yes	No	-		
		PLL expansion fo	e model	Yes	No	-		
	12	Use peak current		Yes	No	-		
		Number of curre	se) bit 0	1	0	-		
		Number of curr	se) bit 1	1	0	-		
		Number of curre	se) bit 2	1	0	-		
	Not							
	ASM	Induction motor						
		t 00:						
		it is equivalent to						
	For	it 01:						
	This	it should only be	drives.					
p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir							
	Access level: 3		Calculated: -		Data type: FloatingPoint32			
	Can be changed: T, U		Scaling:		Dynamic index: DDS, p0180			
	Unit group: -		Unit selection:		Function diagram: -			
	Min:		Max:		Factory setting:			
	0 [H		650 [Hz]		0 [Hz]			
Description:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).							
	Note					The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).		

p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [Hz]	650 [Hz]	$5[\mathrm{~Hz}]$
Description:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).		
	Note		
	The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).		
p1274[0...1]	Bypass switch monitoring time / Switch t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [ms]	5000 [ms]	1000 [ms]
Description:	Sets the monitoring time for the bypass switch.		
	Sets the delay time to ensure reliable opening/closing of contactor if p29520 $=1$ (multi-pump control is enabled).		
Index:	[0] = Switch motor/drive		
	[1] = Switch motor/line supply		
Dependency:	The "Bypass" function is only available for induction motors.		
	Note		
	The monitoring is deactivated with p1274 $=0 \mathrm{~ms}$.		
	The changeover time for the bypass (p1262) is extended by the value in this parameter.		
p1280[0...n]	Vdc controller configuration (U/f) / Vdc_ctr config U/f		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6320, 6854
	Min:	Max:	Factory setting:
	0	3	1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.		
Value:	0: Inhibit Vde ctrl		
	1: Enable Vdc_max controller		
	$\begin{array}{ll}\text { 2: } & \text { Enable Vdc_min controller (kinetic buffering) } \\ \text { 3: } & \text { Enable Vdc_min controller and Vdc_max controller }\end{array}$		

Note

For high input voltages (p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller:

- set the input voltage as low as possible, and in so doing, avoid A07401 (p0210).
- set the rounding times (p1130, p1136).
- increase the ramp-down times (p1121).
- reduce the integral time of the controller (p1291, factor 0.5).
- activate the Vdc correction in the current controller (p1810.1 = 1) or reduce the derivative action time of the controller (p1292, factor 0.5).
In this case, we generally recommend to use vector control ($\mathrm{p} 1300=20$) (Vdc controller, see p1240).
The following measures are suitable to improve the Vdc_min controller:
- Optimize the Vdc_min controller (see p1287).
- Activate the Vdc correction in the current controller (p1810.1 = 1).

If a braking resistor is connected to the DC link ($\mathrm{pO} 219>0$), then the Vdc_max control is automatically deactivated.

p1281[0...n]	Vdc controller configuration / Vdc ctrl config					
	Access level: 3		Calculated: CALC_MOD_ALL		Data type: Unsigned16	
	Can be changed: T, U		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection:		Function diagram: -	
	Min:				Factory setting:	
	-		-		0000 bin	
Description:	Sets the configuration for the DC link voltage controller.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Vdc min control		Yes	No	-
	02	Vdc min shorter	rns	Yes	No	-

Note

For bit 00:
Deactivate the ramp-up for Vdc_min control.
For drives with a mechanical system that can oscillate and high moment of inertia, the speed can be more quickly tracked.
For bit 02:
When the line supply returns, normal operation is resumed earlier, and the system does not wait until the Vdc min controller reaches the setpoint speed.

r1282

G120X_DP (Vdc_max),
G120X_PN (Vdc_max),
G120X_USS (Vdc_max)

Vdc_max controller switch-in level (U/f) / Vdc_max on_level

Access level: 3
Can be changed: -
Unit group: -
Min:

- [V]

Calculated: -
Scaling: p2001
Unit selection: -
Max:

- [V]

Data type: FloatingPoint32
Dynamic index: -
Function diagram: 6320, 6854
Factory setting:

- [V]

Description: Displays the switch-in level for the Vdc_max controller.
If p1294 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:
$r 1282=1.15$ * sqrt(2) * p0210 (supply voltage)
If p1294 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:
r1282 = Vdc_max-50.0 V (Vdc_max: Overvoltage threshold of the power unit)
r1282 = Vdc_max - 25.0 V (for 230 V power units)
NOTICE
If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.

Note

The Vdc_max controller is not switched back off until the DC link voltage falls below the threshold 0.95 * r1282 and the controller output is zero.

p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
G120x_DP (Vdc_max),	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
G120X-PN (Vdc_max),	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1283.		

p1284[0...n]	Vdc_max controller time threshold (U/f)/Vdc_max t_thresh		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Unit selection: -
	Unit group: -	Max:	Function diagram: -
	Min:	$300.000[s]$	Factory setting:
	$0.000[s]$	$4.000[s]$	
Description:	Sets the monitoring time for the Vdc_max controller.		
	If the down ramp of the speed setpoint is held for longer than the time set in p1284, then fault F07404 is output.		

p1285[0...n]	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
	$\mathrm{r} 1286[\mathrm{~V}]=\mathrm{p} 1285[\%] \text { * } \operatorname{sqrt(2)} \text { * p0210 }$		
	¢ WARNING		
	An excessively high value may adversely affect normal drive operation.		

Vdc_min controller switch-in level (kinetic buffering) (U/f)/Vdc_min on_level		
Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2001	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: 6320,6854
Min:	Max:	Factory setting:
$-[\mathrm{V}]$	$-[V]$	
Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
Note		
The Vdc_min controller is not switched back off until the DC link voltage rises above the threshold $1.05 * r 1286 ~ a n d ~ t h e ~$		

p1287[0...n]	Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the Vdc_min controller (kinetic buffering).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1287.		
p1290[0...n]	Vdc controller proportional gain (U/f) / Vdc_ctrl Kp		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	0.00	100.00	1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
	Note		
	The gain factor is proportional to the capacitance of the DC link.		
	The parameter is pre-set to a value that is optimally adapted to the capacitance of the power unit.		
p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		
p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6320,6854
	Min:	Max:	Factory setting:
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
p1294	Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6320,6854
	Min:	Max:	Factory setting:
	0	1	0
Description:	Activates/deactivates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is deactivated, the activation threshold r 1282 for the Vdc_max controller is determined from the parameterized connection voltage p0210.		
Value:	0: Automatic		

p1296[0...n]	Vdc_min controller response (kinetic buffering) (U/f) /Vdc_min response		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:	
	1	0	

Description: Value:	Sets the response for the Vdc_min controller (kinetic buffering).		
	0: Buffer Vdc	7 -> F07405	
	Buff. Vdc until undervolt., n<p1297-> F07405, t>p1295-> F07406		
	Note		
	For p1296 = 1:		
	The quick stop ramp entered in p1135 must not be equal to zero, to prevent overcurrent shutdown if F07406 is trigge		
p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		
	If this value is exceeded a fault is output; the required response can be parameterized		

Note

Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.

r1298	CO: Vdc controller output (U/f)/Vdc_ctrl output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6320, 6854
	Min:	Max:	Factory setting:
	$-[r p m]$	$-[r p m]$	
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		

p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6300, 6301, 6851, 8012
	Min:	Max:	Factory setting:
	0	20	0
Description:	Sets the open and closed-loop control mode of a drive.		
Value:	0: U/f control with linear characteristic		
	1: U/f control with linear characteristic and FCC		
	2: U/f control with parabolic characteristic		
	4: U/f control with linear characteristic and ECO		
	7: U/f control for	c and ECO	
	20: Speed control (
Dependency:	For Standard Drive Control (p0096 = 1), settings p1300 = 0, 2 are possible, for Dynamic Drive Control (p0096 = 2) only p1300 $=20$ can be set.		
	Only operation with U/f characteristic is possible if the rated motor speed is not entered (p0311).		
	See also: p0300, p0311, p0500		
	NOTICE		
	Active slip compensation is required in the U/f control types with Eco mode (p1300 = 4, 7). The scaling of the slip compensation (p1335) should be set so that the slip is completely compensated (generally 100\%). The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.		
	Note		
	For motors, type p0300 = 6 and 6xx, operation with U/f control is only recommended for diagnostic purposes.		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C2(1), T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6301, 6851, 8012
	Min:	Max:	Factory setting:
	0	20	20
Description:	Sets the open and closed-loop control mode of a drive.		
Value:	0: U/f control with		
	1: U/f control with	nd FCC	
	2: U/f control with		
	4: U/f control with	nd ECO	
	7: U/f control for a parabolic characteristic and ECO		
	20: Speed control (encoderless)		
Dependency:	For Dynamic Drive Control (p0096 = 2), only p1300 = 20 can be set. Only operation with U/f characteristic is possible if the rated motor speed is not entered (p0311). See also: p0300, p0311, p0500		
	NOTICE		
	Active slip compensation is required in the U/f control types with Eco mode (p1300 = 4, 7). The scaling of the slip compensation (p1335) should be set so that the slip is completely compensated (generally 100\%). The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.		

Note

For bit 04:
Field orientation for the closed-loop control of application class Standard Drive Control (p0096=1). The field orientation is activated with the automatic calculation if p0096 is set $=1$.
For bit 05 (only effective for p1302.4 = 1):
The starting current when accelerating (p1311) generally results in an increase in the absolute current and flux. With p1302.5 = 1 the current is only increased in the direction of the load. p1302.5-in conjunction with p1310 and p1311 - are decisive when it comes to defining the quality of the starting response.

For bit 07:
For field orientation (bit04 = 1), an Iq, max controller supports the current limiting controller (see p1341). Inhibiting the integral component can prevent the drive from stalling under overload conditions.
For bit 08:
Taking into account the saturation characteristic can be activated to improve faster starting operations for high-rating motors.
For bit 09:
For field orientation (bit04 = 1), while the induction motor is being magnetized, the current is automatically increased if the magnetization time p0346 is shortened.

p1310[0...n]	Starting current (voltage boost) permanent /I_start (Ua) perm		
	Access level: 2	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6301,
	Min:	Max:	F851
	$0.0[\%]$	$250.0[\%]$	Factory setting:
		$50.0[\%]$	

Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:
	Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100%
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:
	- magnetize the induction motor.
	- hold the load.
	- compensate for losses in the system.
	This is the reason that the output voltage can be increased using p1310.
	The voltage boost can be used for both linear as well as square-law U/f characteristics.
	For field orientation (p1302.4 = 1, default setting for Standard Drive Control p0096=1), in the vicinity of low output frequencies, a minimum current is impressed with the magnitude of the rated magnetizing current. In this case, for p1310 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case. For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor current.
Dependency:	The starting current (voltage boost) is limited by the current limit p0640.
	Only for p1302.4 = 0 (no field orientation):
	The accuracy of the starting current depends on the setting of the stator and feeder cable resistance (p0350, p0352).
	For vector control, the starting current is realized using p1610.
	See also: p1300, p1311, p1312, r1315
	NOTICE
	The starting current (voltage boost) increases the motor temperature (particularly at zero speed).
	Note
	The starting current as a result of the voltage boost is only effective for U/f control (p1300).
	The boost values are combined with one another if the permanent voltage boost (p1310) is used in conjunction with other boost parameters (acceleration boost (p1311), voltage boost for starting (p1312)).
	However, these parameters are assigned the following priorities: p 1310 > p1311, p1312
	For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), then p1310 together with p1311 and p1302.5 are mainly responsible for the quality of the drive response.
p1311[0...n]	Starting current (voltage boost) when accelerating /I_start accel
	Can be changed: T, U Scaling: - Dynamic index: DDS, p0180
	Unit group: - Unit selection:- Function diagram: 6300, 6301,
	Min: Max: Factory setting:
	0.0 [\%] 250.0 [\%] 0.0 [\%]
Description:	p1311 only results in a voltage boost when accelerating and generates a supplementary torque to accelerate the load.
	The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed.
	The magnitude of the boost in Volt at a frequency of zero is defined as follows (not for field orientation):
	Voltage boost [V] = 1.732 * p0305 (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) xp1311 (voltage boost when accelerating [\%]) / 100%
Dependency:	The current limit p0640 limits the boost.
	For field orientation (p 1302 bit $4=1$, not PM230, PM250, PM260), p1311 is pre-assigned by the automatic calculation.
	For vector control, the starting current is realized using p1611.
	Refer to:p0500, p0096
	See also: p1300, p1310, p1312, r1315
	NOTICE
	The voltage boost results in a higher motor temperature increase.

Note

The output voltage is only limited if, as a result of p1331, the maximum output voltage (r0071) is fallen below.

p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6301
	Min:	Max:	Factory setting:
	0.00 [Hz]	$3000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	Sets the starting freque	rent Control) is activated.	
Dependency:	The correct operating mode must be set ($1300=1,6$).		
	\triangle WARNING		
	An excessively low value can result in instability.		
	Note		
	For p1333 $=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency.		
p1334[0...n]	U/f control slip compensation starting frequency / Slip comp start		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6310, 6853
	Min:	Max:	Factory setting:
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the starting frequency of the slip compensation.		
	Note		
	For p1334 $=0$, the starting frequency of the slip compensation is automatically set to 6% of the rated motor frequency		
p1335[0...n]	Slip compensation scaling / Slip comp scal		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6310, 6853
	Min:	Max:	Factory setting:
	0.0 [\%]	600.0 [\%]	0.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0 \%$: Slip compensation deactivated. p1335 = 100.0 \%: The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for p1335 = 100% are the precise motor parameters (p0350 ... p0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335. For U/f control types with Eco optimization (4 and 7), the slip compensation must be activated in order to guarantee correct operation. For p0096 = 1 (Standard Drive Control), the scaling of the slip compensation is set as default to 100%.		
	Note		
	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors. For synchronous motors, this effect does not occur and the parameter has no effect in this case. For the open-loop control modes p1300 = 5 and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency. If p1335 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p 1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

Note

The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.
For synchronous motors, this effect does not occur and the parameter has no effect in this case.
For the open-loop control modes p1300 = 5 and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.
If 1335 is changed during commissioning ($\mathbf{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1336[0...n]	Slip compensation limit value / Slip comp lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6310, 6853
	Min:	Max:	Factory setting:
	0.00 [\%]	600.00 [\%]	250.00 [\%]
Description:	Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).		
r1337	CO: Actual slip compensation / Slip comp act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6310, 6853
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip).		
Dependency:	p1335 > 0 \%: Slip compensation active.		
	See also: p1335		
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6300, 6310, 6853
	Min:	Max:	Factory setting:
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	See also: p1300, p1339, p1349		

Note

The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.
The resonance damping is active in a range from approximately 6% of the rated motor frequency (p0310). The shutoff frequency is determined by p1349.
For the open-loop control modes p1300 $=5$ and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.

p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T	
	Access level: 4	Data type: FloatingPoint32
	Can be changed: T, U	Dynamic index: DDS, p0180
	Unit group: -	Function diagram: 6310, 6853
	Min:	Factory setting:
	1.00 [ms]	20.00 [ms]
Description:	Sets the filter time constant for resonance damping for U/f control.	
Dependency:	See also: p1300, p1338, p1349	
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp	
	Access level: 3	Data type: FloatingPoint32
	Can be changed: T, U	Dynamic index: DDS, p0180
	Unit group: -	Function diagram: 6300
	Min:	Factory setting:
	0.000	0.000
Description:	Sets the proportional gain of the I_max frequency controller.	
	The I_max controller reduces the drive converter output current if the maximum current (r0067) is exceeded.	
	In the U/f operating modes (p1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).	
Dependency:	In the U/f modes (p1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.	
	NOTICE	
	When deactivating the I_max controller, the following must be carefully observed: When the maximum current (r0067) is exceeded, the output current is no longer reduced. The drive is switched off when the overcurrent limits are exceeded.	

Note

The I_max limiting controller becomes ineffective if the ramp-function generator is deactivated with p1122 = 1 . p1341 = 0:
I_max frequency controller deactivated and I_max voltage controller activated over the complete speed range.

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection:	Function diagram: 6300,6850
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$50.000[\mathrm{~s}]$	$0.300[\mathrm{~s}]$
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	See also: p1340		

22	Reserved	-	-
25	Acceleration torque instantaneous in the I/f mode	Yes	No

Note

For bit 16:
When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit.
For bit 19, 20:
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
For bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.
For bit 25:
When the bit is set, for high dynamic starting in the I/f mode, the acceleration precontrol torque smoothing only has a short minimum time (4 ms).

Note

For bit 16:
When the bit is set, the integral component of the speed controller is only held if it reaches the torque limit.
For bit 19, 20:
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
For bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.
For bit 25:
When the bit is set, for high dynamic starting in the I/f mode, the acceleration precontrol torque smoothing only has a short minimum time (4 ms).

p1401[0...n]	Flux control configuration / Flux ctrl config		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6491
	Min:	Max:	Factory setting:
	-	-	0000000000001110 bin
Description:	Sets the configuration for flux setpoint control		
Bit field:	Bit Signal name	1 signal	0 signal FP

01	Flux setpoint differentiation active	Yes	No	6723
02	Flux build-up control active	Yes	No	6722,
03	Flux characteristic load-dependent			6723
06	Quick magnetizing	Yes	No	6725
09	Dynamic load-dependent flux boost	Yes	No	6722
		No	6790,	
10	Flux boost low speed	Yes	No	6823
14	Efficiency optimization 2 active	Yes	No	-
				6722,

Note

RESM: reluctance synchronous motor (synchronous reluctance motor)
For bit 01:
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p 1570 is reached again at the end of the magnetizing time p0346.
The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.
For bit 02:
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant.
For bit 03:
Synchronous-reluctance motor:
Activation of the load-dependent optimum flux characteristic.
For bit 06:
Magnetizing is performed with maximum current (0.9 * r0067). With active identification of the stator resistance (see p0621) quick magnetizing is internally deactivated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
For bit 09:
Synchronous reluctance motor (RESM):
Dynamic increase in the flux setpoint when torque is quickly established.
For bit 10:
Synchronous reluctance motor (RESM):
For load-dependent optimum flux characteristic (p1401.3 = 1) the flux setpoint is increased at low speeds.
For bit 14:
When the function is activated, the following applies:

- the optimum flux is calculated and the power loss is entered for optimization purposes
- the efficiency optimization (p 1580) is not active.

It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp). Further, the smoothing time of the flux setpoint filter (p1582) should be increased.

p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config					
	Access level: 4		Calculated: CALC_MOD_REG Data type: Unsigned			
	Can be changed: T, U		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	-		-		0000000000	
Description:	Sets the configuration for the closed-loop control and the motor model.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	02	Current controlle		Yes	No	-
	10	d-current control		Yes	No	-
	12	q-current control		Yes	No	-
	13	Current controlle		Yes	No	-

	Note For The For Only satu Para For For	02: urrent controller adaptation (p0391 ... p03 ts 10,12 : for closed-loop controlled reluctance motor: ation model depending on the operating po eters p1720, p1715 act as scaling factor. 13: only permanent magnet synchronous abilization in the field weakening range.) is only calculated when The gain of the d, q curren t. otors	is set. oller is realized	at the
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config				
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Acce Can Unit Min:	s level: 4 e changed: T, U group: -	Calculated: CALC_MOD Scaling:- Unit selection: - Max:	Data type: Un Dynamic ind Function diag Factory settin 0000 bin	
Description: Bit field:	Sets Bit 02	he configuration for the closed-loop contro Signal name Current controller adaptation active	nd the motor model. 1 signal Yes	0 signal No	FP
	Note For b The	02: urrent controller adaptation (p0391 ... p03) is only calculated when	is set.	
r1407.0... 23	CO/ Acce Can Unit Min: -	O: Status word speed controller s level: 3 e changed: group: -	ZSW n_ctrl Calculated: - Scaling: Unit selection: Max:	Data type: Un Dynamic ind Function diag Factory settin	
Description:	Display and BICO output for the status word of the speed controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	U/f control active	Yes	No	-
	01	Encoderless operation active	Yes	No	-
	02	Reserved	-	-	-
	03	Speed control active	Yes	No	6040
	05	Speed controller I component frozen	Yes	No	6040
	06	Speed controller I component set	Yes	No	6040
	07	Torque limit reached	Yes	No	6060
	08	Upper torque limit active	Yes	No	6060
	09	Lower torque limit active	Yes	No	6060
	10	Reserved	-	-	-
	11	Speed setpoint limited	Yes	No	6030
	12	Ramp-function generator set	Yes	No	-
	13	Encoderless operation due to a fault	Yes	No	-
	14	I/f control active	Yes	No	-
	15	Torque limit reached (without precontrol)	Yes	No	6060
	17	Speed limiting control active	Yes	No	6640
	23	Acceleration model activated	Yes	No	-

p1452[0...n]	Speed controller speed actual value smoothing time (sensorless)/n_C n_act T_s SL		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6020,6040
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~ms}]$	$32000.00[\mathrm{~ms}]$	10.00 [ms]
Description:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control.		

Note

The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 = 4).

p1461[0...n]	Speed controller Kp adaptation speed upper scaling /n_ctr Kp n up scal		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6050
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (>p1465).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to		
	p1470).		
Dependency:	See also: p1464, p1465		

Note

If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

p1463[0...n]	Speed controller Tn adaptation speed upper scaling /n_ctr Tn n up scal		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6050
	Min:	Max:	Factory setting:
	$0.0[\%]$	$100.0[\%]$	
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred		
	to p1472).		
Dependency:	See also: p1464, p1465		

Note

If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6050
	Min:	Max:	Factory setting:
	$0.00[\mathrm{rpm}]$	$0.00[\mathrm{rpm}]$	
Description:	Sets the lower adaptation speed of the speed controller.		
	No adaptation is effective below this speed.		
Dependency:	See also: p1461, p1463, p1465		

Note

The product p0341 \times p0342 is taken into account when automatically calculating the speed controller (p0340 $=1,3,4$).

p1472[0...n]	Speed controller encoderless operation integral time /n_ctrl SL Tn		
	Access level: 2	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6040, 6050
	Min:	Max:	Factory setting:
	$0.0[\mathrm{~ms}]$	$100000.0[\mathrm{~ms}]$	20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		

Note

The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.

r1482	CO: Speed controller I torque output / n_ctrl I-M_outp		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 5040, 5042, $5210,6030,6040$
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the I speed controller.		
r1493	CO: Moment of inertia total, scaled / M_inert tot scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: 25_1	Unit selection: p0100	Function diagram: 6031
	Min:	Max:	Factory setting:
	- [kgm^{2}]	- [kgm^{2}]	- [kgm^{2}]
Description:	Display and connector output for the parameterized total moment of inertia. The value is calculated as follows: (p0341 * p0342) * p1496		
p1496[0...n]	Acceleration precontrol scaling / a_prectrl scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6020, 6031
	Min:	Max:	Factory setting:
	0.0 [\%]	10000.0 [\%]	$0.0 \text { [\%] }$
Description:	Sets the scaling for the acceleration precontrol of the speed/velocity controller.		
Dependency:	See also: p0341, p0342		

[^2]
Note

The parameter is set to 100% by the rotating measurement (refer to p1960).
The acceleration precontrol may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.
We also recommend that the precontrol mode is not used if there is gearbox backlash.

p1496[0...n]	Acceleration precontrol scaling / a_prectrl scal		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6020, 6031
	Min:	Max:	Factory setting:
	0.0 [\%]	10000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the acceleration precontrol of the speed/velocity controller.		
Dependency:	See also: p0341, p0342		
	¢ WARNING		
	The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 = 0) or the acceleration precontrol (p1496 = 0). The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).		
	Note		
	The parameter is set to 100\% by the rotating measurement (refer to p1960).		
	The acceleration precontrol may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.		
	We also recommend that the precontrol mode is not used if there is gearbox backlash.		
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6030, 6060, 6722
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controller output.		
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6060
	Min:	Max:	Factory setting:
	0.00 [ms]	100.00 [ms]	4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
	Note		
	The acceleration precontrol is inhibited if the smoothing is set to the maximum value.		
r1518[0...1]	CO: Accelerating torque / M_accel		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6060
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the accelerating torque for precontrol of the speed controller.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed		

Parameters

9.2 Parameter list

Dependency:	See also: p0341, p0342, p1496		
p1520[0...n]	CO: Torque limit upper / M_max upper		
	Access level: 2	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2003	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6630
	Min:	Max:	Factory setting:
	-1000000.00 [Nm]	$20000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, upper torque limit.		
Dependency:	See also: p1521, p1522, p1523, r1538, r1539		
	¢ DANGER		
	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p0340), the torque limit is set to match the current limit (p0640).		
p1521[0...n]	CO: Torque limit lower / M_max lower		
	Access level: 2	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2003	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6630
	Min:	Max:	Factory setting:
	-20000000.00 [Nm]	$1000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$
Description:	Sets the fixed, lower torque limit.		
Dependency:	See also: p1520, p1522, p1523		
	¢ DANGER		
	Positive values when setting the lower torque limit (p1521>0) can result in the motor accelerating in an uncontrollable fashion.		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p0340), the torque limit is set to match the current limit (p0640).		
p1522[0...n]	Cl : Torque limit upper / M_max upper		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: p2003	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6630
	Min:	Max:	Factory setting:
	-	-	1520[0]
Description:	Sets the signal source for the upper torque limit. See also: p1520, p1521, p1523		
Dependency:			

	¢ DANGER		
	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1523[0...n]	CI: Torque limit lower / M_max lower		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: p2003	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6020, 6630
	Min:	Max:	Factory setting:
	-	-	1521[0]
Description:	Sets the signal source for the lower torque limit.		
Dependency:	See also: p1520, p1521, p1522		
	\} \ DANGER		
	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 5620, 5630
	Min:	Max:	Factory setting:
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the upper torque limit or the torque limit when motoring.		
Dependency:	p1400.4 = 0: upper/lower		
	p1400.4 = 1: motoring / regenerating		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	This parameter can be freely interconnected.		
	The value has the meaning stated above if it is interconnected from connector input p1528.		
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6630
	Min:	Max:	Factory setting:
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the lower torque limit.		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	This parameter can be freely interconnected.		
	The value has the meaning stated above if it is interconnected from connector input p1528.		

r1526	CO: Torque limit upper without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6060, 6630, 6640
	Min:		Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the upper torque limit of all torque limits without offset.		
Dependency:	See also: p1520, p1521, p1522, p1523, p1528, p1529		
r1527	CO: Torque limit lower without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index:-
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6060, 6630, 6640
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the lower torque limit of all torque limits without offset.		
Dependency:	See also: p1520, p1521, p1522, p1523, p1528, p1529		
p1528[0...n]	Cl: Torque limit upper scaling / M_max upper scal		
	Access level: 4	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6630
	Min:	Max:	Factory setting:
	-	-	1524[0]
Description:	Sets the signal source for the scaling of the upper torque limit in p1522.		
	\} \ DANGER		
	For p1400.4 = 0 (torque limiting, upper/lower) the following applies: Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower scaling / M_max lower scal		
	Access level: 4	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6630
	Min:	Max:	Factory setting:
	-		1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit in p1523.		
	¢ DANGER		
	For p1400.4 = 0 (torque limiting, upper/lower) the following applies: Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1530[0...n]	Power limit motoring / P_max mot		
	Access level: 2	Calculated:	CALC_MOD_LIM_REF

r1537[0...1]	Current limit minimum torque-generating current / Isq_min		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6640, 6710
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the minimum limit for the torque-generating current component. Index 0 indicates the signal limited by the Vdc controller.		
Index:	[0] = Limited		
	[1] = Unlimited		
r1538	CO: Upper effective torque limit / M_max upper eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6640
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective upper torque limit.		
	Note		
	The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
r1539	CO: Lower effective torque limit / M_max lower eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dynamic index: -
	Unit group: 7_1	Unit selection: p0505	Function diagram: 6020, 6640
	Min:	Max:	Factory setting:
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective lower torque limit.		

Note

The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.
This may be the case for rotating measurements (see p1960).
The torque limit p 1520 can be re-calculated using p $0340=1,3$ or 5 .

r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p 2003	Dynamic index: -
	Unit group: $7 _1$	Unit selection: p0505	Function diagram: 6060
	Min:	Max:	Factory setting:
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Displays the torque limit to limit the speed controller output.		
Index:	$[0]=$ Upper limit		
	$[1]=$ Lower limit		

r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
	Access level: 4	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limit for the torque-generating current component using the stall calculation, the current limit of the power unit as well as the parameterization in p0640.		
Index:	[0] = Upper limit		
	[1] = Lower limit		
p1552[0...n]	Cl: Torque limit upper scaling without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6060
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the scaling of the upper torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1553[0...n]	Stall limit scaling / Stall limit scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	80.0 [\%]	130.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the stall limit for the start of field weakening.		
	\ DANGER		
	If the stall current limit is increased, then the q current setpoint can exceed the stall limit; as a consequence, a hysteresis effect can occur when loading and unloading.		
p1554[0...n]	Cl: Torque limit lower scaling without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 6060
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
r1566[0...n]	Flux reduction torque factor transition value / Flux red M trans		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6790
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]

NOTICE

A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

Note

For p1570 > 100\%, the flux setpoint increases as a function of the load from 100\% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.
The following applies for a synchronous reluctance motor:
The scaling allows the flux setpoint to be adapted when operating with load-dependent optimum flux characteristic or with constant flux setpoint.

p1570[0...n]	CO: Flux setpoint / Flux setp		
G120X_DP (PM330),	Access level: 3	Calculated:	Data type: FloatingPoint32
G120X_PN (PM330),		CALC_MOD_LIM_REF	
G120X_USS (PM330)	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Max:	Function diagram: 6722
	Min:	200.0 [\%]	Factory setting:
	50.0 [\%]	103.0 [\%]	
Description:	Sets the flux setpoint referred to rated motor flux.		
	The following applies for a synchronous reluctance motor:		
	Scaling the flux setpoint.		
	See also: p0500		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

Note

For p1570 $>100 \%$, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.
The following applies for a synchronous reluctance motor:
The scaling allows the flux setpoint to be adapted when operating with load-dependent optimum flux characteristic or with constant flux setpoint.

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6723, 6724
	Min:	Max:	Factory setting:
	0.0 [Vrms]	150.0 [Vrms]	10.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	See also: p0500		
	Note		
	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
G120X DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6723, 6724
	Min:	Max:	Factory setting:
	0.0 [Vrms]	150.0 [Vrms]	2.0 [Vrms]

Description: Dependency:	Sets a dynamic voltage reserve.		
	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		
p1575[0...n]	Voltage target value limit / U_tgt val lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6725
	Min:	Max:	Factory setting:
	50.00 [\%]	300.00 [\%]	200.00 [\%]
Description:	Sets the limit of the voltage target value. In steady-state field weakening operation this corresponds to the required output voltage. The value of 100% refers to p0304.		
	Note The output voltage is only limited if the maximum output voltage (r0071) minus the voltage reserve (p 1574) corresponds to a value higher than p1575. Limiting via p1575 allows the influence of the voltage ripple of the line supply voltage to be eliminated at the operating point.		
p1578[0...n]	Flux reduction flux decrease time constant / Flux red dec T		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6791
	Min:	Max:	Factory setting:
	20 [ms]	5000 [ms]	200 [ms]
Description:	The following applies for a synchronous reluctance motor:		
	Sets the time constant for reducing the flux setpoint for a load-dependent optimum flux characteristic.		
Dependency:	See also: p1579		
	Note To avoid remagnetization processes for load-dependent flux characteristics and for fast load changes, the time constant to reduce the flux setpoint must be set to an appropriately high value. As a consequence, it is preset with a multiple of the time constant used for the flux build up.		
p1579[0...n]	Flux reduction flux build-up time constant / Flux red incr T		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6791
	Min:	Max:	Factory setting:
	0 [ms]	5000 [ms]	4 [ms]
Description:	The following applies for a synchronous reluctance motor:		
	Sets the time constant for establishing the flux setpoint for a load-dependent optimum flux characteristic.		
Dependency:	See also: p1578		
	Note To quickly establish the flux for torque changes, an appropriately short time constant for the flux build-up must be selected. It is preset with the inverse value of the rated motor frequency (p0310).		

p1580[0...n]	Efficiency optimization / Efficiency opt		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	0 [\%]	100 [\%]	0 [\%]
Description:	Sets the efficiency optimization.		
	When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
	For p1580 $=100 \%$, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
	Note		
	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp).		
p1580[0...n]	Efficiency optimization / Efficiency opt		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	0 [\%]	100 [\%]	100 [\%]
Description:	Sets the efficiency optimization. When optimizing the efficiency, the flux setpoint of For p1580 = 100%, under no-load operating conditi	the closed-loop control is ada tions, the flux setpoint is redu	ted as a function of the load. d to 50% of the rated motor flux.
Dependency:	See also: p0500		
	Note It only makes sense to activate this function if the dy In order to avoid oscillations, if required, the speed Further, the smoothing time of the flux setpoint filte	ynamic response requirement controller parameters should er (p 1582) should be increase	of the speed controller are low. adapted (increase Tn, reduce Kp)
p1581[0...n]	Flux reduction factor / Flux red factor		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [\%]	100 [\%]	100 [\%]
Description:	The following applies for a synchronous reluctance motor:		
	Sets the lower limit of the flux setpoint to evaluate the optimum flux characteristic.		
	The value is referred to the rated motor flux (p0357 * r0331).		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: 6722, 6724
	Min:	Max:	Factory setting:
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		

p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth		
	Access level: 4	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722
	Min:	Max:	Factory setting:
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux setpoint in the field-weakening range		
Recommendation:	Smoothing should be especially used if there is no regenerative feedback into the line supply. This means that the DC link voltage can quickly increase in regenerative operation		
	Note		
	Only the flux setpoint rise is smoothed		
p1586[0...n]	Field weakening characteristic scaling / Field weak scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	80.0 [\%]	120.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the precontrol characteristic for the start of field weakening.		
	For values above 100% and for partial load situations, the field weakening starts at higher speeds.		
	Note		
	If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations. If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.		
p1590[0...n]	Flux controller P gain / Flux controller Kp		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723
	Min:	Max:	Factory setting:
	0.0	999999.0	10.0
Description:	Sets the proportional gain for the flux controller.		
	Note		
	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameters ($\mathrm{p} 0340=4$), this value is re-calculated.		
p1592[0...n]	Flux controller integral time / Flux controller Tn		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	30 [ms]
Description:	Sets the integral time for the flux controller.		
	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned. When calculating controller parameters ($\mathrm{p} 0340=4$), this value is re-calculated.		

r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6724
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the output of the field weakening controller (synchronous motor).		
Index:	[0] = Pl output		
	[1] = l output		
p1595[0...n]	Field weakening controller additional setpoint / Field_ctr add_setp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6726
	Min:	Max:	Factory setting:
	-80.00 [\%]	50.00 [\%]	0.00 [\%]
Description:	Sets an additional setpoint for the field weakening controller.		
	The value refers to the dynamic voltage reserve (p1574).		
	Note		
	For a value equal to zero, the field weakening controller is activated when the maximum voltage, calculated with the average value of the DC link voltage, is reached.		
	Negative values cause the field weakening controller to intervene earlier, so that the voltage can move away from the modulation depth limit.		
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723, 6724
	Min:	Max:	Factory setting:
	10 [ms]	10000 [ms]	300 [ms]
Description:	Sets the integral-action time of the field-weakening controller.		
r1597	CO: Field weakening controller output / Field_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6723
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the output of the field weakening controller.		
	The value is referred to the rated motor flux.		
r1598	CO: Total flux setpoint / Flux setp total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6714, 6723, $6724,6725,6726$
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]

Description:	Displays the effective flux setpoint.
The value is referred to the rated motor flux.	

p1601[0...n]	Current injection ramp time / I_inject t_ramp		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6790
	Min:	Max:	Factory setting:
	1 [ms]	10000 [ms]	20 [ms]
Description:	Synchronous-reluctance motor:		
	Sets the ramp-up time of the current setpoint ($\mathrm{p} 1610, \mathrm{p} 1611$) when switching over from closed-loop controlled to open-loop controlled operation.		

p1610[0...n]	Torque setpoint static (sensorless) / M_set static		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6700, 6721, $6722,6726$
	Min:	Max:	Factory setting:
	-200.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control in the low speed range.		
	This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		

NOTICE

p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.

Note

For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current, RESM: no-load magnetizing current).
For p1610 = 100%, a current setpoint is calculated that corresponds to the rated motor torque.
Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors as well as closed-loop controlled reluctance motors.
p1611[0...n] Additional acceleration torque (sensorless)/ M_suppl_accel
Access level: 2 Calculated: CALC MOD ALL
Can be changed: T, U
Unit group: -

Min:

Max:
Scaling: -
Unit selection:
200.0 [\%]

Data type: FloatingPoint32
Dynamic index: DDS, p0180
Function diagram: 6700, 6721, 6722, 6726
Factory setting:
30.0 [\%]

Description: Enters the dynamic torque setpoint for the low-speed range for sensorless vector control. This parameter is entered as a percentage referred to the rated motor torque (r0333).

Note

When accelerating and braking p1611 is added to p 1610 and the resulting total torque is converted into an appropriate current setpoint and controlled.
For pure accelerating torques, it is always favorable to use the torque precontrol of the speed controller (p1496).

r1614	EMF maximum / EMF max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6725
			Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual maximum possible electromotive force (EMF) of the separately excited synchronous motor.		
Dependency:	The value is the basis for the flux setpoint.		
	The maximum possible EMF depends on the following factors:		
	- Actual DC link voltage (r0070).		
	- Maximum modulation depth (p1803).		
	- Field-generating and torque-generating current setpoint.		
p1616[0...n]	Current setpoint smoothing time / _set T_smooth		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6721, 6722
	Min:	Max:	Factory setting:
	4 [ms]	10000 [ms]	40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
	Note		
	This parameter is only effective in the range where current is injected for sensorless vector control.		
r1623[0...1]	Field-generating current setpoint (steady-state)/ Id_set stationary		
	Access level: 4	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6723
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the steady-state field generating current setpoint (Id_set).		
	Note		
	For index [1]:		
	Reserved.		
r1624	Field-generating current setpoint total / Id_setp total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dynamic index: -
	Unit group: 6_2	Unit selection: p0505	Function diagram: 6640, 6721, 6723, 6727
	Min:	Max:	Factory setting:
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limited field-generating current setpoint (Id_set).		
	This value comprises the steady-state field-generating current setpoint r1623 and a dynamic component that is only set when changes are made to the flux setpoint.		

p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6710
	Min:	Max:	Factory setting:
	0.1 [ms]	50.0 [ms]	4.8 [ms]
Description:	Sets the smoothing time constant for the setpoint of the torque-generating current components.		
	Note		
	The smoothing time does not become effective until the field-weakening range is reached.		
p1703[0...n]	Isq current controller precontrol scaling / Isq_ctr_prectrScal		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6714
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	60.0 [\%]
Description:	Sets the scaling of the dynamic current controller precontrol for the torque/force-generating current component Isq.		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6714
	Min:	Max:	Factory setting:
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the current controller.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
p1717[0...n]	Current controller integral-action time / I_ctrl Tn		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 5714, 6700, 6714, 7017
	Min:	Max:	Factory setting:
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral-action		
Dependency:	See also: p1715		
p1720[0...n]	Current controller d axis p gain / Id_ctrl Kp		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the d-current controller for the lower adaptation current range.		
	This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		

p1722[0...n]	Current controller d axis integral time / I_ctrl d-axis Tn		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral time of the d-current controller.		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	30 [\%]	150 [\%]	30 [\%]
Description:	Sets the speed threshold for deactivating the integral component of the Isd controller. The d current controller is only effective as P controller for speeds greater than the threshold value. Instead of the integral component, the quadrature arm decoupling is effective.		
	¢ WARNING		
	For settings above 80%, the d current controller is active up to the field weakening limit. When operated at the voltage limit, this can result in an unstable behavior. In order to avoid this, the dynamic voltage reserve p1574 should be increased.		
	Note		
	The parameter value is referred to the synchronous rated motor speed.		
p1731[0...n]	Isd controller combination current time component / Isd ctr I_combi T1		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant to calculate the d current DC component difference (combination current) to add to the d current controller actual value.		
	Note		
	It is not added for p1731 $=0$.		
r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
	Access level: 4	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group 5_1	Unit selection: p0505	Function diagram: 5700, 5714, 6714, 5718
	Min:	Max:	Factory setting:
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the direct axis voltage setpoint Ud.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		

r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dynamic index: -
	Unit group: 5_1	Unit selection: p0505	Function diagram: 6714,6731
	Min:	Max:	Factory setting:
	$-[$ Vrms $]$	$-[$ Vrms $]$	$-[V r m s]$
Description:	Display and connector output for the quadrature axis voltage setpoint Uq.		
Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed with p0045		

p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
	Access level: 3	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	0.000	0.000	
	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.		

p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	1000.0 [\%]	5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r 1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1 .		
Dependency:	If a stalled drive is detected (r1408.12 = 1), fault F07902 is output after the delay time set in p2178.		
	See also: p2178		
	Note		
	Monitoring is only effective in the low-speed range (below p1755 * (100\% - p1756)).		
r1746	Motor model error signal stall detection / MotMod sig stall		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Signal to initiate stall detection		

	Note The signal is not calcula	only in the low speed range (low p1755 * (100 \% - p1756)).
p1749[0...n]	Motor model incr	ed encoderless operatio	/ Incr n_chng no enc
	Access level: 4	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	99.0 [\%]	50.0 [\%]

[^3]
p1750[0...n]
 G120X DP (PM330), G120X_PN (PM330), G120X_USS (PM330)

Motor model configuration / MotMod config
Access level: 4 Calculated

CALC_MOD_LIM_REF

Scaling: -
Unit selection: -
Max:

Data type: Unsigned16

Dynamic index: DDS, p0180
Function diagram: -
Factory setting:
0000000001001100 bin

Description:	Sets the configuration for the motor model.				
	Bit $0=1$: Forces open-loop speed-controlled starting (ASM).				
	Bit 1 = 1: Forces the system to pass through frequency zero, open-loop-controlled (ASM).				
	Bit $2=1$: Drive remains in full closed-loop control mode, even at zero frequency (ASM).				
	Bit 3 = 1: Motor model evaluates the saturation characteristic (ASM).				
	Bit $6=1$: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).				
	Bit 7 = 1: Use rugged switchover limits to switchover the model (open-loop/closed-loop controlled) for regenerative operation (ASM).				
	Bit $8=1$: Open-loop speed controlled operation independent of the speed setpoint (except for OFF3) (ASM).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Controlled start	Yes	No	-
	01	Controlled through 0 Hz	Yes	No	-
	02	Closed-loop ctrl oper. down to zero freq. for passive loads	Yes	No	-
	03	Motor model Lh_pre $=\mathrm{f}$ (PsiEst)	Yes	No	-
	06	Closed-/open-loop controlled when motor is blocked	Yes	No	-

| $07 \quad$ Use rugged changeover limits | Nes |
| :--- | :--- | :--- | :--- |
| Dependency: | See also: p0500 |

Note

Bits $0 \ldots 2$ only have an influence for sensorless vector control, bit 2 is pre-assigned depending on p0500.
For bit $2=1$:
The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.
This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p 1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
For bit $2=0$:
Bit 3 is also automatically deactivated.
For bit $6=1$:
The following applies for sensorless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into openloop controlled operation.
For bit $7=1$:
The following applies for sensorless vector control of induction motors:
If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
The effective time condition for changing over into open-controlled operation is obtained from the minimum value of p1758 and 0.5 * r0384.
Is recommended that bit 7 is activated for applications that demand a high torque at low frequencies, and at the same time require low speed gradients..
Adequate parameterization of the current setpoint must be ensured (p1610, p1611).
For bit $8=1$: no influence on the functionality of bits $0,1,2$
The following applies for sensorless vector control of induction motors:
Changeover into open-loop speed controlled operation is no longer dependent on the speed setpoint (except for OFF3), but instead is essentially dependent on time condition p1758. As a consequence, a drive can be started or reversed in closed-loop speed controlled operation with setpoints from an external control system, if these briefly lie in the openloop speed control range.

r1751

Description
Bit field:

Motor model status / MotMod status

Access level: 4

Can be changed: -

Unit group: -
Min:
-
Displays the status of the motor model.

Bit	Signal name
00	Controlled operation
01	Set ramp-function generator
02	Stop RsLh adaptation
03	Feedback
05	Holding angle
06	Acceleration criterion

Calculated:-

Scaling: -

Unit selection: -
Max:

-
 -

Data type: Unsigned32
Dynamic index: -
Function diagram: -
Factory setting:
9.2 Parameter list

p1769[0...n]	Motor model changeover delay time closed-loop control / MotMod t cl_ctrl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the wait time for a transition from open-loop controlled to closed-loop controlled operation after twice the lower changeover speed p1755 * (1 - p1756 / 100%) has been exceeded - and below the upper switchover speed p1755.		
Dependency:	See also: p1755, p1756		
	Note		
	With p1759 $=0 \mathrm{~ms}$ and above p1755, the delay time becomes ineffective and the model changeover is determined by the output frequency only (changeover for p1755).		
r1770	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6730
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the P component of the controller for speed adaptation.		
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 6730
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the I component of the controller for speed adaptation.		
p1774[0...n]	Motor model offset voltage compensation alpha / MotMod offs comp A		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-5.000 [V]	5.000 [V]	0.000 [V]
Description:	Sets the offset voltage in the alpha direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		

Note

The value is pre-set during the rotating measurement.

p1775[0...n]	Motor model offset voltage compensation beta / MotMod offs comp B		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:	
	$-5.000[\mathrm{~V}]$	$5.000[\mathrm{~V}]$	$0.000[\mathrm{~V}]$

Description: Sets the offset voltage in the beta direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.

p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf					
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3 Can be changed: T, U Unit group: Min:		Calculated: CALC_MOD_CON Scaling:- Unit selection: - Max:		Data type: Unsigned16 Dynamic index: DDS, p0180 Function diagram: - Factory setting: 0000100000010100 bin	
Description:	Sets the configuration for the adaptation circuit of the motor model. Induction motor (ASM): Rs, Lh and offset compensation.					
Bit field:		Signal name		1 signal	0 signal	FP
		Select motor mod		Yes	No	-
		Select motor mod		Yes	No	-
		Select motor mod		Yes	No	-
		Select T(valve) wit		Yes	No	-
		Filter time combin	trl integral tim	Yes	No	-
		Fast flying restart	uction motor	Yes	No	-
Dependency:	In the U/f characteristic operating mode, only bit 7 and bit 11 are relevant.					
	No Wh dea In or cha ASM RES	selecting the com ivated and is instead der that the correctio ging over the drive Induction motor : synchronous relu	rlocking via Rs motor mode daptation (sel number mus	(bit 7), the com ted using bit 0 be entered into	ensation in the bit 1) are corre 0826 for each	it is ted w motor
p1784[0...n]	Motor model feedback scaling / MotMod fdbk scal					
	Access level: 4		Calculated: CALC_MOD_CON		Data type: FloatingPoint32	
	Can be changed: T, U		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	0.0 [\%] 1000.0 [\%]				0.0 [\%]	
Description:		the scaling for mod				

Note

Feeding back the measured model fault to the model states increases the control stability and makes the motor model rugged against parameter errors.
When feedback is selected (p1784 > 0), Lh adaptation is not effective.

p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:	
	0.000	10.000	0.100

Description: Sets the proportional gain for the Lh adaptation of the motor model for an induction motor (ASM).

p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn		
	Access level: 4	Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	10 [ms]	10000 [ms]	100 [ms]
Description:	Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM).		
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [mH]	- [mH]	- [mH]
Description: Dependency:	Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM). See also: p0826, p1780		

Note

The adaptation result is reset if the magnetizing inductance of the induction motor is changed ($\mathrm{p} 0360, \mathrm{r} 0382$). This also happens when changing over the data set if a different motor is not being used (p0826).
The display of the inactive data sets is only updated when changing over the data set.

p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	0.500 [kHz]	16.000 [kHz]	4.000 [kHz]
Description:	Sets the pulse frequency for the converter.		
	This parameter is pre-set to the rated converter value when the drive is first commissioned.		
Dependency:	Minimum pulse frequency: p1800 >= 12 * p1082 * r0313 / 60		
	See also: p0230		

Note

The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).
When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).
If a sine-wave filter is parameterized as output filter $(\mathrm{p} 0230=3)$, then the pulse frequency cannot be set below the minimum value required for the filter.
For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).
If $p 1800$ is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).
The pulse frequency cannot be changed when the motor data identification is activated.

p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
G120X_DP (PM330),	Access level: 2	Calculated: -	Data type: FloatingPoint32
G120X_PN (PM330),	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
G120X_USS (PM330)	Unit group: -	Unit selection: -	Function diagram: 8021
	Min:	Max:	Factory setting:
	$0.500[\mathrm{kHz}]$	$4.000[\mathrm{kHz}]$	$4.000[\mathrm{kHz}]$

Description:	Sets the drive converter switching frequency.
	This parameter is pre-set to twice the rated converter value when the drive is first commissioned.
Dependency:	Minimum pulse frequency: p1800 >= 12 * p1082 * r0313 / 60
	See also: p0230
	Note
	The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).
	If a sine-wave filter is parameterized as output filter $(\mathrm{p} 0230=3)$, then the pulse frequency cannot be set below the minimum value required for the filter.
	For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).
	If p 1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p 1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).
	The pulse frequency cannot be changed when the motor data identification is activated.
r1801[0...1]	CO: Pulse frequency / Pulse frequency
	Access level: 2 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: p2000 Dynamic index: -
	Unit group: - Unit selection: - Function diagram: -
	Min: Max: Factory setting:
	- [kHz] - [kHz] - [kHz]
Description:	Display and connector output for the actual converter switching frequency.
Index:	[0] = Actual
	[1] = Modulator minimum value
	Note
	The selected pulse frequency (p1800) may be reduced if the drive converter has an overload condition (p0290).
p1802[0...n]	Modulator mode / Modulator mode
	Access level: 3 Calculated: Data type: Integer16
	Can be changed: T Scaling: - Dynamic index: DDS, p0180
	Unit group: - Unit selection: - Function diagram: -
	Min: Max: Factory setting:
	0 0 10
Description:	Sets the modulator mode.
Value:	0: Automatic changeover SVM/FLB
	2: Space vector modulation (SVM)
	3: SVM without overcontrol
	4: SVM/FLB without overcontrol
	10: SVM/FLB with modulation depth reduction
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type ($\mathrm{p} 1802=3$). This does not apply to power units PM260.
	p1802 = 10 can only be set for power units PM230 and PM240 and for r0204.15 $=0$.
	See also: p0230, p0500

Note

When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.
When changing p1802[x], the values for all of the other existing indices are also changed.

p1802[0...n]	Modulator mode / Modulator mode		
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 4	Calculated: CALC_MOD_LIM_REF	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	19	9
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	9: Edge modulation		
	19: Optimized pulse pattern		
Dependency:	Setting p1802 = 19 (optimized pulse pattern) is only released for chassis/built-in power units and SIMOTICS FD motors up to a maximum speed of p1082 <= $60 \times 100 \mathrm{~Hz} / \mathrm{rO313}$. See also: p0500		
	NOTICE		
	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2$), the modulation depth must be limited using p1803 (default p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple. When changing p1802[x], the values for all of the other existing indices are also changed.		
	Note		
	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple. When changing p1802[x], the values for all of the other existing indices are also changed.		
p1803[0...n]	Maximum modulation depth / Modulat depth max		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723
	Min:	Max:	Factory setting:
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	See also: p0500		
	Note $p 1803=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		
p1803[0...n]	Maximum modulation depth / Modulat depth max		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 4	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6723
	Min:	Max:	Factory setting:
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	See also: p0500		

\qquad
Note delay).

p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:-	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [ms]	10000.0 [ms]	0.0 [ms]
Description:	Sets the filter time constant for the DC link voltage.		
	This time constant is used to calculate the modulation depth.		
r1809	CO: Modulator mode actual / Modulator mode act		
	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	9	-
Description:	Displays the effective modulator mode.		
Value:	1: Flat top modulation (FLB)		
	2: Space vector modulation (SVM)		
	9: Optimized pulse pattern		
r1809	CO: Modulator mode actual / Modulator mode act		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	9	-
Description:	Displays the effective modulator mode.		
Value:	1: Flat top modulation (FLB)		
	2: Space vector modulation (SVM)		
	3: Edge modulation from $28 \mathrm{~Hz} ; 23: 3$		
	4: Edge modulation from $28 \mathrm{~Hz} ; 19: 1$		
	5: Edge modulation from $60 \mathrm{~Hz} ; 17: 3$		
	6: Edge modulation from $60 \mathrm{~Hz} ; 17: 1$		
	7: Edge modulation from 100 Hz ; 9:2		
	8: Edge modulation from 100 Hz ; 9:1		
	9: Optimized pulse pattern		

p1810	Modulator configuration / Modulator config		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0000 bin
Description:	Sets the configuration for the modulator.		
Bit field:	Bit Signal name	1 signal	0 signal

00 Avg value filter for U_lim (only for Vdc_comp in modulator)
01
01

DC link voltage compensation in the current control | Yes | No |
| :--- | :--- |
| NOTICE | No |
| Bit $1=1$ can only be set under a pulse inhibit and for r0192.14=1. | |

Note

For bit $00=0$:
Voltage limitation from the minimum of the DC link voltage (lower ripple in the output current, reduced output voltage).
For bit $00=1$:
Voltage limitation from averaged DC link voltage (higher output voltage with increased ripple in the output current).
The selection is only valid if the DC link compensation is not performed in the Control Unit (bit $1=0$).
For bit $01=0$:
DC link voltage compensation in the modulator.
For bit 01 = 1 :
DC link voltage compensation in the current control.

p1811[0...n]	Pulse frequency wobbulation amplitude / Puls wobb ampl		
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [\%]	20 [\%]	10 [\%]
Description:	Sets the amplitude of the statistical wobbulation signal.		
	This signal is used to vary the pulse frequency to create a more pleasant sound.		
	Note		
	p1811 > 0 is possible, if the following applies:		
	- configuration: p1810.2 = 1 (wobbulation activated)		
	- pulse frequency: p1800 <= 2000 / p115[0]		
	- output filter, filter type: p0230<3 (no sine-wave filter)		
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the phase sequence reversal for the motor without setpoint change.		
	If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this parameter. This means that the direction of the motor is reversed without the setpoint being changed.		
Value:	0: OFF		
	1: ON		
	Note		
	This setting can only be changed when the pulses are inhibited.		
p1822	Power unit line phases monitoring tolerance time / PU ph monit t_tol		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	500 [ms]	540000 [ms]	1000 [ms]

Description:	Sets the tolerance time for line phase monitoring for blocksize power units. If a line phase fault is present for longer than this tolerance time, then a corresponding fault is output.		
Dependency:	See also: F30011		
	NOTICE		
	When operating with a failed line phase, depending on the active power, values higher than the default value can either immediately damage the power unit or damage it over the long term.		
	Note		
	For the setting p1822 = maximum value, line phase monitoring is deactivated.		
p1825	Converter valve threshold voltage / Threshold voltage		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [Vrms]	100.0 [Vrms]	0.6 [Vrms]
Description:	Sets the threshold voltage drop of the valves (power semiconductor devices) to be compensated.		
	Note		
	The value is automatically calculated in the motor data identification routine.		
p1828	Compensation valve lockout time phase U / Comp t_lock ph U		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U.		
	Note		
	The value is automatically calculated in the motor data identification routine.		
p1828	Compensation valve lockout time phase U / Comp t_lock ph U		
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	7.80 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U.		
	Note		
	The value is automatically calculated in the motor data identification routine.		
p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V.		

p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	7.80 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V .		
p1830	Compensation valve lockout time phase W / Comp t_lock ph W		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection:	Function diagram: -
		Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	$3.99 \text { [} \mu \mathrm{s}]$	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase W.		
p1830	Compensation valve lockout time phase W / Comp t_lock ph W		
$\begin{aligned} & \text { G120X_DP (PM330), } \\ & \text { G120X_PN (PM330), } \\ & \text { G120X_USS (PM330) } \end{aligned}$	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [$\mu \mathrm{s}$]	7.80 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase W.		
p1832	Dead time compensation current level / t_dead_comp I_lev		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:	Dynamic index: -
	Unit group: -	Unit selection:	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [Arms]	$10000.0 \text { [Arms] }$	$0.0 \text { [Arms] }$
Description:	Sets the current level for the dead time compensation.		
	Above the current level, the dead time - resulting from the converter switching delays - is compensated by a previously calculated constant value. If the relevant phase current setpoint falls below the absolute value defined by p1832, the corrective value for this phase is continuously reduced.		
Dependency:	The factory setting of p1832 is automatically set to 0.02 * rated drive converter current (r0207).		
r1838.0... 15	CO/BO: Gating unit status word 1 / Gating unit ZSW1		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling:	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-		-
Description:	Display and BICO output for status word 1 of the power unit.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Fault time-critical	ON	OFF -
	01 Gating unit mode bit 0	ON	OFF -
	02 Pulse enable	ON	OFF -
	03 Switch-off signal path STO_B	Inactive	Active -
	04 Switch-off signal path STO_A	Inactive	Active -

05	Gating unit mode bit 1	ON	OFF	
06	Gating unit mode bit 2	ON	OFF	-
07	Brake state	ON	OFF	-
08	Brake diagnostics	ON	OFF	-
09	Armature short-circuit braking	Active	Not active	-
10	Gating unit state bit 0	ON	OFF	-
11	Gating unit state bit 1	ON	OFF	-
12	Gating unit state bit 2	ON	OFF	-
13	Alarm status bit 0	ON	OFF	-
14	Alarm status bit 1	ON	OFF	-
15	Diagnostics 24 V	ON	OFF	-

NOTICE
p1900 = 3:
This setting should only be selected if the motor data identification was already carried out at standstill.
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
During the rotating measurement it is not possible to save the parameter (p0971).

Note

The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300<20 (U/f controls).
An appropriate alarm is output when the parameter is set.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p1900 is automatically set to 0 after the motor data identification routine has been completed.
If a reluctance motor has been parameterized, a pole position identification is carried out during the stationary measurement. As a consequence, faults that occur can also be assigned to the pole position identification.
For Ulf control (p1300), identification with speed controller optimization does not make sense (e.g. p1900 = 1).

p1900

G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)

Motor data identification and rotating measurement/ MotID and rot meas

Access level: 2
Can be changed: C2(1), T
Unit group: -
Min:
0

Calculated: -
Scaling: -
Unit selection: -
Max:
12

Data type: Integer16
Dynamic index: -
Function diagram: -
Factory setting:
2

Description: Sets the motor data identification and speed controller optimization.
The motor identification should first be performed with the motor stationary (p1900 = 1, 2; also refer to p1910). Based on this, additional motor and control parameters can be determined using the motor data identification with the motor rotating ($\mathrm{p} 1900=1,3$; also refer to p 1960).
p1900 = 0:
Function inhibited.
p1900 = 1:
Sets p1910 = 1 and p1960 $=0,1$ depending on p1300
When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.
With the following switch-on command, a rotating motor data identification routine is carried out - and in addition, a speed controller optimization by making measurements at different motor speeds.
p1900 = 2:
Sets p1910 = 1 and p1960 $=0$
When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next switch-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.
p1900 = 3:
Sets p1960 = 0, 1 depending on p1300
This setting should only be selected if the motor data identification was already carried out at standstill.
When the drive enable signals are present, with the next switch-on command, a rotating motor data identification routine is carried out - and in addition, speed controller optimization by taking measurements at different motor speeds. p1900 = 11, 12:
The same as $\mathrm{p} 1900=1,2$ with the difference, that after the measurement, the system immediately goes into operation. For this purpose, p1909.18 is set $=\mathrm{p} 1959.13$ is set $=1$.

Value:
0: Inhibited
1: Identifying motor data and optimizing the speed controller
2: Identifying motor data (at standstill)

NOTICE

```
p1900 = 3:
```

This setting should only be selected if the motor data identification was already carried out at standstill.
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
During the rotating measurement it is not possible to save the parameter (p0971).

Note

The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300<20 (U/f controls).
An appropriate alarm is output when the parameter is set.
The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.
The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.
p1900 is automatically set to 0 after the motor data identification routine has been completed.
If a reluctance motor has been parameterized, a pole position identification is carried out during the stationary measurement. As a consequence, faults that occur can also be assigned to the pole position identification. For U/f control (p1300), identification with speed controller optimization does not make sense (e.g. p1900 = 1).

p1901

Test pulse evaluation configuration / Test puls config

Access level: 3
Can be changed: T
Unit group: -
Min:

Calculated: CALC_MOD_ALL
Scaling: -
Unit selection: -
Max:

Data type: Unsigned32
Dynamic index: -
Function diagram: -
Factory setting: 0000 bin

Description: Sets the configuration for the test pulse evaluation.
Bit 00: Check for conductor-to-conductor short circuit once/always when the pulses are enabled.
Bit 01: Check for ground fault once/always when the pulses are enabled.
Bit 02: Activation of the tests selected using bit 00 and/or bit 01 each time the pulses are enabled
Recommendation: If the ground fault test is incorrectly initiated because the motor is not at a complete standstill, then the pulse cancellation delay time (p 1228) should be increased.
Bit field:

Dependency:

$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
Yes	No	-
Yes	No	-
Yes	No	-

The ground fault test is only possible when the motor is stationary, and is therefore only realized when flying restart is deactivated (p1200 = 0).
See also: p0287

Note

If a conductor-to-conductor short-circuit is detected during the test, this is displayed in r 1902.1 .
If a ground fault is detected during the test, this is displayed in r1902.2.
For bit 02 = 0:
If the test was successful once after POWER ON (see r1902.0), then it is not repeated.
For bit $02=1$:
The test is not only performed after POWER ON, but also each time the pulses are enabled.

p1901	Test pulse evaluation configuration / Test puls config					
G120X_DP (PM330),	Access level: 3		Calculated: CALC_MOD_ALL		Data type: Unsigned32	
G120X_PN (PM330),	Can be changed: T		Scaling: -		Dynamic index: -	
G120X_USS (PM330)	Unit group: -		Unit selection: -		Function diagram: -	
	Min:				Factory setting:	
	-		-		0000 bin	
Description:	Sets the configuration for the test pulse evaluation.					
	Bit 00: Check for conductor-to-conductor short circuit once/always when the pulses are enabled.					
	Bit 01: Check for ground fault once/always when the pulses are enabled.					
	Bit 02: Activation of the tests selected using bit 00 and/or bit 01 each time the pulses are enabled					
Recommendation:	If the ground fault test is incorrectly initiated because the motor is not at a complete standstill, then the pulse cancellation delay time (p1228) should be increased.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Phase short-ci		Yes	No	-
	01	Ground fault		Yes	No	-
		Test pulse at		Yes	No	-
Dependency:	The ground fault test is only possible when the motor is stationary, and is therefore only realized when flying restart is deactivated (p1200 $=0$). See also: p0287					
	No If a If a For If th For The For	onductor-to-con round fault is d it $02=0$: test was succe it $02=1$: est is not only hassis power un	during the te displayed in r1 e r1902.0), the t also each tim termined using	, this is display 2.2. it is not repea the pulses are the summed o	in r1902.1. d. nabled. put current (se	
r1902	Test pulse evaluation status / Test puls ev stat					
	Access level: 4		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group:		Unit selection:		Function diagram: -	
	Min:		Max:		Factory setting:	
					-	
Description:	Displays the status of the test pulse evaluation.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Short-circuit t		Yes	No	-
	01	Phase short-ci		Yes	No	-
	02	Ground fault		Yes	No	-
	03	Ground fault		Yes	No	-
	04	Identification width	inimum pulse	Yes	No	-
	05	Pulse frequen		Yes	No	-
	06	Short-circuit t	ted	Yes	No	-
	07	Short-circuit t		Yes	No	-
		Motor phase i		Yes	No	-
	Not If th esta For A te	ground fault t lished during t it 04: pulse longer that	ssfully perform urred	d, then sufficie	current was	to be

Note

The following applies to permanent-magnet synchronous motors:
Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.
When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current. If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be de-selected. Bit 19 = 1:
All parameters are automatically saved after a successful motor data identification.
If a speed controller optimization run is then selected, the parameters are only saved after this measurement has been completed.
Bit 22 ... 24: only for reluctance motors
Bit $22=1$:
Only that measurement is carried out that is required for the flying restart of a reluctance motor. The bit is reset after a successful measurement

Description:	Sets the motor data identification routine.
	The motor data identification routine is carried out after the next switch-on command. p1910 = 1 :
	All motor data and the drive converter characteristics are identified and then transferred to the following parameters:
	p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830
	After this, the control parameter $\mathrm{p} 0340=3$ is automatically calculated.
	$\mathrm{p} 1910=20:$
	Only for internal SIEMENS use.
Value:	0: Inhibited
	1: Complete identification (ID) and acceptance of motor data
	2: Complete identification (ID) of motor data without acceptance
	20: Voltage vector input
	21: Voltage vector input without filter
	22: Rectangular voltage vector input without filter
	23: Triangular voltage vector input without filter
	24: Rectangular voltage vector input with filter
	25: Triangular voltage vector input with filter
	26: Enter voltage vector with DTC correction
	27: Enter voltage vector with AVC
	28: Enter voltage vector with DTC + AVC correction
Dependency:	"Quick commissioning" must be carried out ($\mathrm{p} 0010=1, \mathrm{p} 3900>0$) before executing the motor data identification routine!
	When selecting the motor data identification routine, the drive data set changeover is suppressed.
	See also: p1900
	See also: F07990, A07991

NOTICE

After the motor data identification ($\mathrm{p} 1910>0$) has been selected, alarm A07991 is output and a motor data identification routine is carried out as follows at the next switch-on command:

- current flows through the motor and a voltage is present at the drive converter output terminals.
during the identification routine, the motor shaft can rotate through a maximum of half a revolution.
however, no torque torque is generated.

Note

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
When setting p1910, the following should be observed:

1. "With acceptance" means:

The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting.
2. "Without acceptance" means:

The identified parameters are only displayed in the range r1912 ... r1926 (service parameters). The controller settings remain unchanged.
3. For settings 27 and 28 , the AVC configuration set using p1840 is active.

The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it. The duration of the measurements can lie between 0.3 s and several minutes. This time is mainly influenced by the motor size. At the end of the motor data identification, p1910 is automatically set to 0 , if only the stationary measurement is selected, then p1900 is also reset to 0 , otherwise, the rotating measurement is activated.

p1910

G120X_DP (PM330),
G120X_PN (PM330), G120X USS (PM330)

Motor data identification selection / MotID selection

Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dynamic index:-
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	28	1

Description:	Sets the motor data identification routine.
	The motor data identification routine is carried out after the next switch-on command. p1910 = 1:
	All motor data and the drive converter characteristics are identified and then transferred to the following parameters:
	p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830
	After this, the control parameter $\mathrm{p} 0340=3$ is automatically calculated.
	p1910 = 20:
	Only for internal SIEMENS use.
Value:	0: Inhibited
	1: Complete identification (ID) and acceptance of motor data
	2: Complete identification (ID) of motor data without acceptance
	20: Voltage vector input
	21: Voltage vector input without filter
	22: Rectangular voltage vector input without filter
	23: Triangular voltage vector input without filter
	24: Rectangular voltage vector input with filter
	25: Triangular voltage vector input with filter
	26: Enter voltage vector with DTC correction
	27: Enter voltage vector with AVC
	28: Enter voltage vector with DTC + AVC correction
Dependency:	"Quick commissioning" must be carried out ($\mathrm{p} 0010=1, \mathrm{p} 3900>0$) before executing the motor data identification routine!
	When selecting the motor data identification routine, the drive data set changeover is suppressed.
	See also: p1900
	See also: F07990, A07991
	NOTICE
	After the motor data identification ($\mathrm{p} 1910>0$) has been selected, alarm A07991 is output and a motor data identification routine is carried out as follows at the next switch-on command: - current flows through the motor and a voltage is present at the drive converter output terminals. - during the identification routine, the motor shaft can rotate through a maximum of half a revolution. - however, no torque torque is generated.

Note

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
When setting p1910, the following should be observed:

1. "With acceptance" means:

The parameters specified in the description are overwritten with the identified values and therefore have an influence on the controller setting.
2. "Without acceptance" means:

The identified parameters are only displayed in the range r1912 ... r1926 (service parameters). The controller settings remain unchanged.
3. For settings 27 and 28, the AVC configuration set using p1840 is active.

The switch-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it. The duration of the measurements can lie between 0.3 s and several minutes. This time is mainly influenced by the motor size. At the end of the motor data identification, p1910 is automatically set to 0 , if only the stationary measurement is selected, then p1900 is also reset to 0 , otherwise, the rotating measurement is activated.

r1912[0...2] Identified stator resistance / R_stator ident

Access level: 4	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram:
Min:	Max:	Factory setting:
$-[o h m]$	$-[o h m]$	$-[o h m]$

r1926[0...2]	Identified effective valve lockout time / t_lock_valve id					
	Access level: 4				Data type: FloatingPoint32	
	Can be changed: -		Scaling: -		Dynamic index: -	
	Unit group: -		Unit selection: -		Function diagram: -	
					Factory setting:	
	- [$\mu \mathrm{s}$]		- [$\mu \mathrm{s}$]		- [$\mu \mathrm{s}$]	
Description: Index:	Displays the identified effective valve lockout time.					
	[0] = Phase U					
	[1] = Phase V					
	[2] = Phase W					
r1927[0...2]	Identified rotor resistance / R_rotor ident					
	Access level: 4		Calculated: -		Data type: FloatingPoint32	
	Can be changed: - Scals				Dynamic index: -	
	Unit group: Unit selection				Function diagram:	
			Max:		Factory setting:	
	- [ohm]		- [ohm]		- [ohm]	
Description: Index:	Displays identified rotor resistance (on separately excited synchronous motors: damping resistance).					
	[0] = Phase U					
	[1] = Phase V					
	[2] = Phase W					
p1959[0...n]	Rotating measurement configuration / Rot meas config					
	Access level: 3		Calculated: CALC_MOD_ALL		Data type: Unsigned16	
	Can be changed: T		Scaling: -		Dynamic index: DDS, p0180	
	Unit group: -		Unit selection: -		Function diagram: -	
	Min:		Max:		Factory setting:	
	-		-		0000000000011110 bin	
Description:	Sets the configuration of the rotating measurement.					
Bit field:		Signal name		1	0 signal	FP
		Saturation cha		Ye	No	-
		Moment of in		Ye	No	-
		Re-calculates		Ye	No	-
		Speed control		Ye	No	-
		Do not chang measuremen	ring the	Ye	No	-
		Measurement		Ye	No	-
	13	After measure	ration	Ye	No	-
		Calculate spee		Ye	No	-
Dependency:	See also: F07988					
	Note					
	The following parameters are influenced for the individual optimization steps:					
	Bit 02: p0341, p0342					
	Bit 03: p1400.0, p1458, p1459, p1463, p1470, p1472, p1496					
	Bit 04: Dependent on p1960					
	p1960 = 1, 3: p1400.0, p1458, p1459, p1470, p1472, p1496					

p1959[0...n]	Rotating measurement configuration / Rot meas config					
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3			Calculated: CALC_MOD_ALL	Data type: Unsigned16	
	Can be changed: T			Scaling: -	Dynamic index: DDS, p0180	
	Unit group: -			Unit selection: -	Function diagram: -	
	Min:			Max:	Factory setting:	
	-				0001000000011110 bin	
Description:	Sets the configuration of the rotating measurement.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	01	Saturation ch		Yes	No	-
	02	Moment of in		Yes	No	-
	03	Re-calculates		Yes	No	-
	04	Speed contro		Yes	No	-
	11	Do not chang measuremen		Yes	No	-
	12	Measuremen		Yes	No	-
	13	After measur		Yes	No	-
	14	Calculate spe		Yes	No	-
Dependency:	See also: F07988					
	Note					
	The following parameters are influenced for the individual optimization steps:					
	Bit 01: p0320, p0360, p0362 ... p0369					
	Bit 02: p0341, p0342					
	Bit 03: p1400.0, p1458, p1459, p1463, p1470, p1472, p1496					
	Bit 04: Dependent on p1960					
	p1960 = 1, 3: p1400.0, p1458, p1459, p1470, p1472, p1496					
	For bit $12=1$:					
p1960	Rotating measurement selection / Rot meas sel					
	Access level: 3			Calculated: -	Data type: Integer16	
	Can be changed: T			Scaling: -	Dynamic index: -	
	Unit group: -			Unit selection: -	Function diagram: -	
	Min:			Max:	Factory setting:	
	0			3	0	
Description:	Sets the rotating measurement.					
	The rotating measurement is carried out after the next switch-on command.					
	The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300). p1300 < 20 (U/f open-loop control):					
	It is not possible to select rotating measurement or speed controller optimization.					
	p1300 = 20, 22 (encoderless operation):					
	Only rotating measurement or speed controller optimization can be selected in the encoderless mode.					
Value:	0: Inhibited					
	1: Rotating measurement in encoderless operatio					
	3: Speed controller optimization in encoderless operation					
Dependency:	Before the rotating measurement is carried out, the motor data identification routine ($\mathrm{p} 1900, \mathrm{p} 1910, \mathrm{r} 3925$) should have already been done.					
	When selecting the rotating measurement, the drive data set changeover is suppressed.					

DANGER

For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.

NOTICE

To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971). During the rotating measurement it is not possible to save the parameter (p0971).

Note

When the rotating measurement is activated, it is not possible to save the parameters (p0971).
Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.
The ramp-up and ramp-down times (p1120, p1121) are limited, for the rotating measurement, to 900 s .

Dependency:	See also: p0310, p1959
	See also: F07984, F07985

r1968	Speed_ctrl_opt dynamic factor actual /n_opt dyn_fact act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$-[\%]$	$-[\%]$	
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	See also: p1959, p1967		
	See also: F07985		

Note

This dynamic factor only refers to the control mode of the speed controller set in p1960.

r1969

	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: 25_1	Unit selection: p0100	Function diagram: -
	Min:	Max:	Factory setting:
	- [kgm^{2}]	- [kgm^{2}]	- [kgm^{2}]
Description:	Displays the determ	drive.	
	After it has been de	ed to p0341, p0342.	
Dependency:	IEC drives (p0100 =		
	NEMA drives (p0100		
	See also: p0341, p03		
	See also: F07984		

r1970[0...1]	Speed_ctrl_opt vibration test vibration frequency determined / n_opt f_vib det		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the vibration frequencies determined by the vibration test.		
Index:	[0] = Frequency low		
	[1] = Frequency high		
Dependency:	See also: p1959		
	See also: F07985		
p1974	Speed_ctrl_opt saturation characteristic rotor flux maximum / n_opt rot_fl max		
	Access level: 4	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	104 [\%]	120 [\%]	120 [\%]
Description:	Sets the maximum flux setpoint to measure the saturation characteristic.		
p1980[0...n]	Polld technique / PollD technique		
	Access level: 3	Calculated: CALC_MOD_REG	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	10	4
Description:	Sets the pole position identification technique.		
	$\mathrm{p} 1980=1,8$: The current magnitude is set using p0329.		
	p1980 $=4,6$: The current magnitude of the first measurement section is set using p0325, the second using p0329. p1980 = 10: The rated motor current is impressed to align.		
	The current magnitudes are limited to the rated power unit values.		
Value:	1: Voltage pulsing 1st harmonics		
	4: Voltage pulsing 2-stage		
	6: Voltage pulsing 2-stage inverse		
	8: Voltage pulsing 2nd harmonic, inverse		
	10: DC current injection		
Dependency:	See also: p1780		
	See also: F07969		
	Note		
	Voltage pulse technique ($\mathrm{p} 1980=1,4,8$) cannot be applied for operation with sine-wave output filters (p0230).		
r1992.0... 15	CO/BO: PolID diagnostics / PolID diag		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and BICO output for the diagnostics information of the pole position identification (pollD)		
Bit field:	Bit Signal name	1 signal	0 signal FP

	$00 \quad$ Critical encoder fault occurred	Yes	No
	$02 \quad$ Encoder parking active	Nos	No

Note

If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
Example 1:
The signal of an analog input (e.g. r0755[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p2000).
Example 2:
The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).

p2001	Reference voltage / Reference voltage		
	Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	10 [Vrms]	100000 [Vrms]	1000 [Vrms]
Description:	Sets the reference quantity for voltages.		
	All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values ($=$ rms value) like the DC link voltage.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	Note:		
	This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value.		
Dependency:	p2001 is only updated during automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning has been carried out first for drive data set zero and as a result overwriting of the parameter has not been blocked by setting p0573 $=1$.		
	See also: r3996		

p2002
 Reference current / I_ref

Access level: 3	Calculated: CALC_MOD_ALL	Data type: FloatingPoint32
Can be changed: T	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
$0.10[$ Arms]	100000.00 [Arms]	100.00 [Arms]

Description: Sets the reference quantity for currents.
All currents specified as relative value are referred to this reference quantity.
The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).
Dependency: This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .
See also: r3996

NOTICE

If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor must be taken into account.
Example:
p2002 = 100 A
Reference quantity 100 A corresponds to 100%
p0305[0] = 100 A
Rated motor current 100 A for MDSO in DDSO --> 100% corresponds to 100% of the rated motor current p0305[1] = 50 A
Rated motor current 50 A for MDS1 in DDS1 --> 100% corresponds to 200% of the rated motor current When the reference current is changed, short-term communication interruptions may occur.

p2016[0...3]	CI: Comm IF USS PZD send word / Comm USS send word		
	Access level: 3	Calculated: -	Data type: Unsigned32 I Integer16
	Can be changed: T, U	Scaling: 4000 H	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the PZD (actual values) to be sent via the commissioning interface USS. The actual values are displayed on an intelligent operator panel (IOP).		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
r2019[0...7]	Comm IF error statistics / Comm err		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-		
Description:	Displays the receive errors at the commissioning interface (USS, RS232).		
Index:			
	[1] = Number of rejected telegrams		
	[2] = Number of framing errors		
	[3] = Number of overrun errors		
	[4] = Number of parity errors		
	[5] = Number of starting character errors		
	$[6]$ = Number of checksum errors		
	[7] = Number of length errors		
p2020	Field bus interface baud rate / Field bus baud		
G120X_USS	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 9310
	Min:	Max:	Factory setting:
		13	
Value:	Sets the baud rate for the field bus interface (RS485).		
	4: 2400 baud		
	5: 4800 baud		
	6: 9600 baud		
	7: 19200 baud		
	8: 38400 baud		
	9: $\quad 57600$ baud		
	10: 76800 baud		
	11: 93750 baud		
	12: 115200 baud		
	13: 187500 baud		

	Note		
	Fieldbus IF: Fieldbus interface		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
	When p2030 = 1 (USS), the following applies:		
	Min./max./factory setting: 4/13/8		
	For p2030 = 2 (Modbus RTU), the following applies:		
	Min./max./factory setting: 5/13/7		
	For p2030 $=5$ (BACnet MS/TP) the following applies:		
	Possible values/factory setting: $(6,7,8,10) / 8$		
	If p2030 $=8$ (P1), the following applies:		
	Min./max./factory setting: 5/7/5		
p2021	Field bus interface address / Field bus address		
G120X_USS	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9310
	Min:	Max:	Factory setting:
	0	255	0
Description:	Displays or sets the address for the fieldbus interface (RS485).		
	The address can be set as follows:		
	1) Using the address switch on the Control Unit.		
	--> p2021 displays the address setting.		
	--> A change only becomes effective after a POWER ON.		
	2) Using p2021		
	--> Only if an address of 0 or an address that is invalid for the fieldbus selected in p2030 has been set using the address switch.		
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".		
	--> A change only becomes effective after a POWER ON.		
Dependency:	See also: p2030		
	Note		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
	When p2030 = 1 (USS), the following applies:		
	Min./max./factory setting: 0/31/0		
	When p2030 = 2 (Modbus), the following applies:		
	Min./max./factory setting: 1/247/1		
	If p2030 $=5$ (BACnet), the following applies:		
	Min./max./factory setting: 0/127/1		
	If p2030 $=8$ (P1), the following applies:		
	Min./max./factory setting: 1/99/99		
p2022	Field bus int USS PZD no. / Field bus USS PZD		
G120X_USS	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9310
	Min:	Max:	Factory setting:
	0	8	2
Description:	Sets the number of 16-bit words in the PZD part of the USS telegram for the field bus interface.		
Dependency:	See also: p2030		

Index:

[0] = Analog Input 0
[1] = Analog Input 1
[2] = Analog Input 2 (IO module)
[3] = Analog Input 3 (IO module)
[4] = Analog Input 10
[5] = Analog Input 11
[6] = Analog Input 12 (IO module)
[7] = Analog Input 13 (IO module)
[8] = Analog Output 0
[9] = Analog Output 1
[10] = Analog Value 0
[11] = Analog Value 1
[12] = Analog Value 2
[13] = Analog Value 3
[14] = Analog Value 4
[15] = Analog Value 5
[16] = Analog Value 6
[17] = Analog Value 7
[18] = Analog Value 8
[19] = Analog Value 9
[20] = Analog Value 10
[21] = Analog Value 12
[22] = Analog Value 13
[23] = Analog Value 14
[24] = Analog Value 15
[25] = Analog Value 16
[26] = Analog Value 17
[27] = Analog Value 18
[28] = Analog Value 19
[29] = Analog Value 20
[30] = Analog Value 21
[31] = Analog Value 22
[32] = Analog Value 25
[33] = Analog Value 28
[34] = Analog Value 29
[35] = Analog Value 30
[36] = Analog Value 31
[37] = Analog Value 32
[38] = Analog Value 33
[39] = Analog Value 34
[40] = Analog Value 39
[41] = Analog Value 40
[42] = Analog Value 41
[43] = Analog Value 5000
[44] = Analog Value 5001
[45] = Analog Value 5002
[46] = Analog Value 5003
[47] = Analog Value 5004
[48] = Analog Value 5005
[49] = Analog Value 5006
[50] = Analog Value 5007
[51] = Analog Value 5100

	[52] = Analog Value 5101		
	[53] = Analog Value 5102		
	[54] = Analog Value 5103		
	[55] = Analog Value 5104		
	[56] = Analog Value 5105		
	[57] = Analog Value 5106		
	[58] = Analog Value 5107		
	[59] = Analog Value 5200		
	[60] = Analog Value 5201		
	[61] = Analog Value 5202		
	[62] = Analog Value 5203		
	[63] = Analog Value 5204		
	[64] = Analog Value 5205		
	[65] = Analog Value 5206		
	[66] = Analog Value 5207		
	[67] = Analog Value 5300		
	[68] = Analog Value 5301		
	[69] = Analog Value 5302		
	[70] = Analog Value 5303		
	[71] = Analog Value 5304		
	[72] = Analog Value 5305		
	[73] = Analog Value 5306		
	[74] = Analog Value 5307		
	[75] = Analog Output 2 (IO module)		
Dependency:	See also: p2030		
p2027	Fieldbus interface BACnet language selection / BACnet language		
G120X_USS	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9310
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the language for the BACnet obj		
Value:	$0:$ German		
	1: English		
	Note		
	Changes only become effective after POWER ON.		
r2029[0...7]	Field bus interface error statistics / Field bus error		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 9310
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the receive errors on the field bus interface (RS485).		

p2044	PROFIdrive fault delay / PD fault delay		
G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2410
	Min:	Max:	Factory setting:
	0 [s]	100 [s]	0 [s]
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	See also: r2043		
	See also: F01910		
p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
G120X_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2410
	Min:	Max:	Factory setting:
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the additional monitoring time to monitor the process data received via PROFIBUS.		
	Enables short bus faults to be compensated.		
	If no process data is received within this time, then an appropriate message is output.		
Dependency:	See also: F01910		
	Note		
	For controller STOP, the additional monitoring time is not effective.		
r2050[0...11]	CO: PROFIdrive PZD receive word / PZD recv word		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000 H	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2440, 2468, 9360
	Min:	Max:	Factory setting:
	-	-	-
Description: Index:			
	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.$\text { [0] = PZD } 1$		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	NOTICE		
	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types. A BICO interconnection for a single PZD can only take place either on r2050 or r2060.		

p2051[0...16]	CI: PROFldrive PZD send word / PZD send word		
G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned32 I Integer16
	Can be changed: T, U	Scaling: 4000H	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2450, 2470, 9370
	Min:	Max:	Factory setting:
	-	-	[0] 2089[0]
			[1] 63[0]
			[2...16] 0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
	[14] = PZD 15		
	[15] = PZD 16		
	[16] = PZD 17		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2051[0...16]	CI: PROFIdrive PZD send word / PZD send word		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 I Integer16
	Can be changed: T, U	Scaling: 4000H	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2450, 2470, 9370
	Min:	Max:	Factory setting:
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		

r2063[0...15]	PROFIdrive diagnostics PZD send double word / Diag send DW				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2470	
	Min		Max:	Factory setting:	
	-		-	-	
Description: Index:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.				
	[0] = PZD $1+2$				
	[1] = PZD $2+3$				
	[2] $=$ PZD $3+4$				
	[3] $=$ PZD $4+5$				
	[4] $=$ PZD $5+6$				
	[5] = PZD $6+7$				
	[6] $=$ PZD $7+8$				
	[7] $=$ PZD $8+9$				
	[8] = PZD $9+10$				
	[9] = PZD $10+11$				
	[10] = PZD $11+12$				
	[11] = PZD $12+13$				
	[12] = PZD $13+14$				
	[13] = PZD $14+15$				
	[14] = PZD $15+16$				
	[15] = PZD 16 + 17				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
	16	Bit 16	ON	OFF	-
	17	Bit 17	ON	OFF	-
	18	Bit 18	ON	OFF	-
	19	Bit 19	ON	OFF	-
	20	Bit 20	ON	OFF	-
	21	Bit 21	ON	OFF	-
	22	Bit 22	ON	OFF	-
	23	Bit 23	ON	OFF	-
	24	Bit 24	ON	OFF	-
	25	Bit 25	ON	OFF	-

26	Bit 26	ON	OFF
27	Bit 27	ON	OFF
28	Bit 28	ON	OFF
29	Bit 29	ON	OFF
30	Bit 30	ON	OFF
31	Bit 31	ON	OFF

r2067[0...1]	PZD maximum interconnected / PZDmaxIntercon		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	-	-	-
	Display for the maximum interconnected PZD in the receivelsend direction		
	Index 0: receive $(\mathrm{r} 2050, \mathrm{r2060})$		
	Index 1: send $(\mathrm{p} 2051, \mathrm{p} 2061)$		

r2074[0...11] PROFIdrive diagnostics bus address PZD receive / Diag addr recv
G120X_DP

Access level: 3
Can be changed: -
Unit group: -
Min:

Calculated:-
Scaling:
Unit s
Max:

Data type: Unsigned16
Dynamic index: -
Function diagram: -
Factory setting:

Description: Displays the PROFIBUS address of the sender from which the process data (PZD) is received.
Index:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12

Note

Value range:
0-125: Bus address of the sender
65535: Not assigned
r2075[0...11] PROFIdrive diagnostics telegram offset PZD receive / Diag offs recv
G120X_DP

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection:-	Function diagram: 2410
Min:	Max:	Factory setting:

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
G120X_DP, G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2472
	Min:	Max:	Factory setting:
	-		[0] 899.0
			[1] 899.1
			[2] 899.2
			[3] 2139.3
			[4] 899.4
			[5] 899.5
			[6] 899.6
			[7] 2139.7
			[8] 2197.7
			[9] 899.9
			[10] 2199.1
			[11] 1407.7
			[12] 0
			[13] 2135.14
			[14] 2197.3
			[15] 2135.15
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 1.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] = Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] $=$ Bit 13		
	[14] $=$ Bit 14		
	[15] $=$ Bit 15		
Dependency:	See also: p2088, r2089		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2472
	Min:	Max:	Factory setting:
	-	-	0

\begin{tabular}{|c|c|c|c|}
\hline Index:

Dependency: \& $$
\begin{aligned}
& {[0]=\text { Bit } 0} \\
& {[1]=\text { Bit } 1} \\
& {[2]=\text { Bit } 2} \\
& {[3]=\text { Bit } 3} \\
& {[4]=\text { Bit } 4} \\
& {[5]=\text { Bit } 5} \\
& {[6]=\text { Bit } 6} \\
& {[7]=\text { Bit } 7} \\
& {[8]=\text { Bit } 8} \\
& {[9]=\text { Bit } 9} \\
& {[10]=\text { Bit } 10} \\
& {[11]=\text { Bit } 11} \\
& {[12]=\text { Bit } 12} \\
& {[13]=\text { Bit } 13} \\
& {[14]=\text { Bit } 14} \\
& {[15]=\text { Bit } 15} \\
& \text { See also: p2088, r2089 }
\end{aligned}
$$ \& \&

\hline p2084[0...15] \& | BI: Binector-connec |
| :--- |
| Access level: 3 |
| Can be changed: T, U |
| Unit group: |
| Min: | \& | word 5 / Bin/c |
| :--- |
| Calculated: |
| Scaling: - |
| Unit selection: |
| Max: | \& | Data type: Unsigned32 / Binary Dynamic index:- |
| :--- |
| Function diagram: 2472 |
| Factory setting: |
| 0 |

\hline Description: \& Selects bits to be sent to The individual bits are co \& word 5. \&

\hline Index: \& $$
\begin{aligned}
& {[0]=\text { Bit } 0} \\
& {[1]=\text { Bit } 1} \\
& {[2]=\text { Bit } 2} \\
& {[3]=\text { Bit } 3} \\
& {[4]=\text { Bit } 4} \\
& {[5]=\text { Bit } 5} \\
& {[6]=\text { Bit } 6} \\
& {[7]=\text { Bit } 7} \\
& {[8]=\text { Bit } 8} \\
& {[9]=\text { Bit } 9} \\
& {[10]=\text { Bit } 10} \\
& {[11]=\text { Bit } 11} \\
& {[12]=\text { Bit } 12} \\
& {[13]=\text { Bit } 13} \\
& {[14]=\text { Bit } 14} \\
& {[15]=\text { Bit } 15}
\end{aligned}
$$ \& \&

\hline Dependency: \& See also: p2088, r2089 \& \&

\hline p2088[0...4] \& Invert binector-con \& us word / Bi \&

\hline G120X_DP, G120X_PN \& | Access level: 3 |
| :--- |
| Can be changed: T, U |
| Unit group: |
| Min: | \& | Calculated:- |
| :--- |
| Scaling: - |
| Unit selection: |
| Max: | \& | Data type: Unsigned16 Dynamic index:- |
| :--- |
| Function diagram: 2472 |
| Factory setting: |
| [0] 1010100000000000 bin |
| [1...4] 0000000000000000 bin |

\hline
\end{tabular}

Description: Index:	Setting to invert the individual binector inputs of the binector-connector converter. [0] = Status word 1				
	[1] = Status word 2				
	[2] = Free status word 3				
	[3] = Free status word 4				
	[4] = Free status word 5				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	See also: p2080, p2081, p2082, p2083, r2089				
p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
G120X_USS	Access level: 3		Calculated: -	Data type: Unsig	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram	
	Min:		Max:	Factory setting:	
	-			000000000000	
Description:	Setting to invert the individual binector inputs of the binector-connector converter.				
Index:	[0] = Status word 1				
	[1] = Status word 2				
	[2] = Free status word 3				
	[3] = Free status word 4				
	[4] = Free status word 5				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-

	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2091.0... 15	BO	PROFIdrive	/ PZD2 recv bitw		
	Acc	s level: 3	Calculated: -	Data type: U	
	Can	e changed: -	Scaling: -	Dynamic ind	
	Unit	group: -	Unit selection: -	Function dia 9206	8, 9204,
	Min		Max:	Factory setti	
	-		-	-	
Description:	Bine	tor output for bits	2 received from the PROFI	controller.	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

r2092.0... 15	BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2468, 9204,9206	
	Min		Max:	Factory settin	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2093.0... 15	BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 2468, 9204, 9206	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-

		Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2094.0... 15		Connector-b	ector output / Con/bin		
		ss level: 3	Calculated: -	Data type: U	
		be changed: -	Scaling: -	Dynamic ind	
		group: -	Unit selection: -	Function dia	8,9360
	Min		Max:	Factory setti	
	-		-	-	
Description:		tor output for b ZD is selected	on of a PZD word received	the PROFIdriv	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:		Iso: p2099			
r2095.0... 15		Connector-b	ector output / Con/bin		
		ss level: 3	Calculated: -	Data type: U	
		be changed: -	Scaling: -	Dynamic ind	
		group: -	Unit selection: -	Function dia	8,9360
	Min			Factory settin	
	-				
Description:		tor output for bi ZD is selected	PZD word received from the	FIdrive controll	
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	

9.2 Parameter list

	From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters: Connector input p2099[0] to binector output in r2094.0... 15		
p2100[0...19]	Change fault response fault number / Chng resp F_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects the faults for which the fault response should be changed		
Dependency:	The fault is selected and the required response is set under the same index.		
	See also: p2101		
	Note		
	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
p2101[0...19]	Change fault response response / Chng resp resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	0	6	0
Description:	Sets the fault response for the selected fault.		
Value:	0: NONE		
	1: OFF1		
	2: OFF2		
	3: OFF3		
	5: STOP2		
	6: Internal armature short-circuit / DC braking		
Dependency:	The fault is selected and the required response is set under the same index. See also: p2100		
	NOTICE		
	For the following cases, it is not possible to re-parameterize the fault response to a fault: - fault number does not exist (exception value $=0$). - Message type is not "fault" (F). - fault response is not permissible for the set fault number.		

```
Note
Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been
resolved.
The fault response can only be changed for faults with the appropriate identification.
Example:
F12345 and fault response = NONE (OFF1, OFF2)
--> The fault response NONE can be changed to OFF1 or OFF2.
For value = 1 (OFF1):
Braking along the ramp-function generator down ramp followed by a pulse inhibit.
For value = 2 (OFF2):
Internal/external pulse inhibit.
For value = 3 (OFF3):
Braking along the OFF3 down ramp followed by a pulse inhibit.
For value = 5 (STOP2):
n_set = 0
For value = 6 (armature short-circuit, internal/DC braking):
This value can only be set for all drive data sets when p1231=4.
a) DC braking is not possible for synchronous motors.
b) DC braking is possible for induction motors.
```

p2103[0...n]	BI: 1st acknowledge faults / 1st acknowledge		
G120x_DP, G120x_PN	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	$\begin{aligned} & \text { Function diagram: } 2441,2442, \\ & 2443,2447,2475,2546,9220, \\ & 9677,9678 \end{aligned}$
	Min:	Max:	Factory setting:
	-	-	[0] 2090.7
			[1] 0
			[2] 2090.7
			[3] 2090.7
Description:	Sets the first signal source to acknowledge faults.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note

A fault acknowledgment is triggered with a $0 / 1$ signal.

p2103[0...n]	BI: 1st acknowledge faults / 1st acknowledge		
G120X_USS	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	$\begin{aligned} & \text { Function diagram: 2441, 2442, } \\ & 2443,2447,2475,2546,9220, \\ & 9677,9678 \end{aligned}$
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the first signal source to acknowledge faults.		
	NOTICE		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

Note

A fault acknowledgment is triggered with a $0 / 1$ signal.

p2107[0...n]	BI: External fault 2 / External fault 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
		-	1
Description: Dependency:	Sets the signal source for external fault 2. See also: F07861		
	Note		
	An external fault is triggered with a $1 / 0$ signal.		
p2108[0...n]	BI: External fault 3 / External fault 3		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation: - BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	See also: p3110, p3111, p3112		
	See also: F07862		
	Note		
	An external fault is triggered with a $1 / 0$ signal.		
p2108[0...n]	BI: External fault 3 / External fault 3		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling:	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	4022.1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	See also: p3110, p3111, p3112		
	See also: F07862		
	Note		
	An external fault is triggered with a $1 / 0$ signal.		
r2109[0...63]	Fault time removed in milliseconds / t_flt resolved ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8060
	Min:	Max:	Factory setting:
	- [ms]	- [ms]	- [ms]

Description: Dependency:	Displays the system runtime in milliseconds when the fault was removed. See also: r0945, r0947, r0948, r0949, r2130, r2133, r2136, p8400		
	NOTICE		
	The time comprises r2136 (days) and r2109 (milliseconds).		
	Note The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the fault buffer and the assignment of the indices is shown in r0945.		
r2110[0...63]	Alarm number / Alarm number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling:-	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	-
Description:	This parameter is identical to r2122.		
p2111	Alarm counter / Alarm counter		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 8050, 8065
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		
Dependency:	When p2111 is set to 0 , the following is initiated: - all of the alarms of the alarm buffer that have gone [0...7] are transferred into the alarm history [8...63]. - the alarm buffer [0...7] is deleted.		
	See also: r2110, r2122, r2123, r2124, r2125		
	Note		
	The parameter is reset to 0 at POWER ON.		
p2112[0...n]	BI: External alarm 1 / External alarm 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external alarm 1.		
Dependency:	See also: A07850		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
r2114[0...1]	System runtime total / Sys runtime tot		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-		-

Description:	Displays the total system runtime for the drive unit.		
	The time comprises r2114[0] (milliseconds) and r 2114 [1] (days).		
	After r2114[0] has reached a value of 86.400 .000 ms (24 hours) this value is reset and r2114[1] is incremented.		
Index:	[0] = Milliseconds		
	[1] = Days		
Dependency:	See also: r0948, r2109, r2123, r2125, r2130, r2136, r2145, r2146		
	Note		
	When the electronic power supply is switched out, the counter values are saved.		
	After the drive unit is switched on, the counter continues to run with the last value that was saved.		
p2116[0...n]	BI: External alarm 2 / External alarm 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for external alarm 2.		
Dependency:	See also: A07851		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-		
Description: Dependency:	Sets the signal source for external alarm 3.		
	See also: A07852		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	-	-	4022.0
Description:	Sets the signal source for external alarm 3.		
Dependency:	See also: A07852		
	Note		
	An external alarm is triggered with a $1 / 0$ signal.		

p2118[0...19]	Change message type message number / Chng type msg_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects faults or alarms for which the message type should be changed.		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2119		
	Note		
	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
p2119[0...19]	Change message type type / Change type type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	1	3	1
Description:	Sets the message type for the selected fault or alarm.		
Value:	1: \quad Fault (F)		
	2: Alarm (A)		
	3: \quad No message (N)		
Dependency:	Selects the fault or alarm selection and sets the required type of message realized under the same index. See also: p2118		
	Note		
	Re-parameterization is also possible if a message is present. The change only becomes effective after the message has gone.		
	The message type can only be changed for messages with the appropriate identification (exception, value $=0$). Example: F12345(A) --> Fault F12345 can be changed to alarm A12345.		
	In this case, the message number that may be possibly entered in p2100[0...19] and p2126[0...19] is automatically removed.		
r2120	CO: Sum of fault and alarm buffer changes / Sum buffer changed		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the sum of all of the fault and alarm buffer changes in the drive unit.		
Dependency:	See also: r0944, r2121		
r2121	CO: Counter alarm buffer changes / Alrm buff changed		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:

r2125[0...63]	Alarm time removed in milliseconds / t_alarm res ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8065
	Min:		Factory setting:
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2134, r2145, r2146, p8400		
	NOTICE		
	The time comprises r2146 (days) and r2125 (milliseconds).		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		
p2126[0...19]	Change acknowledge mode fault number / Chng ackn F_no		
	Access level: 3	Calculated:-	Data type: Unsigned16
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index		
	See also: p2127		
	Note		
	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
p2127[0...19]	Change acknowledge mode mode / Chng ackn mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8050, 8075
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the acknowledge mode for selected fault.		
Value:	1: Acknowledgment only using POWER ON		
	2: Ack IMMEDIATELY after the fault cause has been removed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index See also: p2126		
	NOTICE		
	It is not possible to re-parameterize the acknowledge mode for a fault in the following cases: - fault number does not exist (exception value $=0$). - Message type is not "fault" (F). - Acknowledge mode is not permissible for the set fault number.		

	Not Re-p reso The Exam F123 --> T	rameterization is also poss ed. cknowledge mode can only ple: 45 and acknowledge mode e acknowledge mode can	sent. The change only beco aults with the appropriate id POWER ON) MMEDIATELY to POWER ON.	effective after fication.	as been
p2128[0...15]	Fau Acc Can Unit Min 0	ts/alarms trigger sel s level: 3 e changed: T, U group: -	gger sel Calculated: - Scaling: - Unit selection:- Max: 65535	Data type: U Dynamic ind Function dia Factory setti 0	$0,8070$
Description: Dependency:	Sets the faults/alarms for which a trigger signal should be generated in r2129.0... 15 . If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0... 15 is set. See also: r2129				
r2129.0... 15	CO/ Acce Can Unit Min	O: Faults/alarms trig s level: 3 e changed: group: -	trigger word Calculated: - Scaling: - Unit selection:- Max:	Data type: U Dynamic ind Function dia Factory setti	
Description:	Display and BICO output for the trigger signals of the faults/alarms set in p2128[0...15].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Trigger signal p2128[0]	ON	OFF	-
	01	Trigger signal p2128[1]	ON	OFF	-
	02	Trigger signal p2128[2]	ON	OFF	-
		Trigger signal p2128[3]	ON	OFF	-
	04	Trigger signal p2128[4]	ON	OFF	-
	05	Trigger signal p2128[5]	ON	OFF	-
	06	Trigger signal p2128[6]	ON	OFF	-
	07	Trigger signal p2128[7]	ON	OFF	-
		Trigger signal p2128[8]	ON	OFF	-
		Trigger signal p2128[9]	ON	OFF	-
		Trigger signal p2128[10]	ON	OFF	-
		Trigger signal p2128[11]	ON	OFF	-
		Trigger signal p2128[12]	ON	OFF	-
		Trigger signal p2128[13]	ON	OFF	-
		Trigger signal p2128[14]	ON	OFF	-
		Trigger signal p2128[15]	ON	OFF	-
Dependency:	If the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0...15 is set. See also: p2128				
	CO: r2129 = 0 --> None of the selected messages has occurred. CO: r2129 > 0 --> At least one of the selected messages has occurred.				

r2134[0...63]	Alarm value for float values / Alarm value float			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: 8065	
	Min:	Max:	Factory setting:	
		-	-	
Description: Dependency:	Displays additional information about the active alarm for float values.			
	See also: r2110, r2122, r2123, r2124, r2125, r2145, r2146, r3121, r3123			
	Note			
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2135.12... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dynamic index:-	
	Unit group: -	Unit selection: -	Function diagram: 2548	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Display and BICO output for the second status word of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	12 Fault motor overtemperature	Yes	No	8016
	13 Fault power unit thermal overload	Yes	No	8021
	14 Alarm motor overtemperature	Yes	No	8016
	15 Alarm power unit thermal overload	Yes	No	8021
r2136[0...63]	Fault time removed in days / t_flt resolv days			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dynamic index:-	
	Unit group: -	Unit selection: -	Function diagram: 8060	
	Min:	Max:	Factory setting:	
	-	-	-	
Description:	Displays the system runtime in days when the fault was removed.			
Dependency:	See also: r0945, r0947, r0948, r0949, r2109, r2130, r2133, p8401			
	NOTICE			
	The time comprises r2136 (days) and r2109 (milliseconds).			

	12	External alarm 3 (A07852) effective	Yes	No	8065	
	13	External fault 1 (F07860) effective	Yes	No	8060	
	14	External fault 2 (F07861) effective	Yes	No	8060	
	15	External fault 3 (F07862) effective	Yes	No	8060	
Dependency:	See also: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112					
r2139.0... 15	CO/BO: Status word faults/alarms 1 / ZSW faultalarm 1					
	Access level: 2		Calculated: -	Data type: Unsigned16		
	Can be changed: -		Scaling: -	Dynamic index: -		
	Unit group: -		Unit selection: -	Function diagram: 2548		
	Min:		Max:	Factory setting:		
	-		-	-		
Description:	Display and BICO output for status word 1 of faults and alarms.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
		Being acknowledged	Yes	No	-	
	01	Acknowledgment required	Yes	No	-	
	03	Fault present	Yes	No	8060	
	06	Internal message 1 present	Yes	No	-	
	07	Alarm present	Yes	No	8065	
	08	Internal message 2 present	Yes	No	-	
	11	Alarm class bit 0	High	Low	-	
		Alarm class bit 1	High	Low	-	
		Maintenance required	Yes	No	-	
		Maintenance urgently required	Yes	No	-	
		Fault gone/can be acknowledged	Yes	No	-	
	Note					
	For bit 03, 07:					
	The that buff For Thes For The on	bits are set if at least one fault/alarm o he fault/alarm buffer should only be r r was also detected (r0944, r9744, r2 it 06, 08: status bits are used for internal diag its 11,12 : status bits are used for the classificat rtain automation systems with integr	ata is entered into the fault/ ter "fault present" or "alarm urposes only. ternal alarm classes and are AMICS functionality.	buffer with de ent" has occur nded for diagn	he reas ge in	
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2					
	Access level: 3		Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32		
	Can be changed: T, U		Scaling: -	Dynamic index: DDS, p0180		
	Unit group: 3_1		Unit selection: p0505	Function diagram: 8010		
	Min:		Max:	Factory setting:		
	0.00 [rpm]		$300.00 \text { [rpm] }$	$90.00 \text { [rpm] }$		
Description:	Sets "\|n "\|n	he hysteresis speed (bandwidth) for ct\|<= speed threshold value 2" (BO: ct	> speed threshold value 2" (BO: r2	wing signals:		
Dependency:	See also: p2155, r2197					

p2141[0...n]	Speed threshold 1 / n_thresh val 1		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]
Description:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	See also: p2142, r2199		
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010
	Min:	Max:	Factory setting:
	0.00 [rpm]	300.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or I / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	See also: p2141, r2199		
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 8012
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the negated enable ($0=$ enable) of the motor stall monitoring.		
Dependency:	See also: p2163, p2164, p2166, r2197, r2198		
	See also: F07900		
	Note		
	When interconnecting the enable signal with r 2197.7 then the stall signal is suppressed if there is no speed setpoint actual value deviation.		
r2145[0...63]	Alarm time received in days / t_alarm recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 8065
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the system runtime in days when the alarm occurred.		
Dependency:	See also: r2110, r2122, r2123, r2124, r2125, r2134, r2146, p8401		
	NOTICE		
	The time comprises r2145 (days) and r2123 (milliseconds).		
	Note		
	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

p2155[0...n]	Speed threshold 2 / n_thresh val 2			
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010	
	Min:	Max:	Factory setting:	
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]	
Description:	Sets the speed threshold value for the following messages:			
	"\|n_act	< = speed threshold value 2" (BO: r2197.1)		
	"\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	See also: p2140, r2197			
p2156[0...n]	On delay comparison value reached / t_on cmpr val rchd			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180	
	Unit group: -	Unit selection:	Function diagram: 8010	
	Min:	Max:	Factory setting:	
	0.0 [ms]	10000.0 [ms]	0.0 [ms]	
Description:	Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1).			
Dependency:	See also: p2141, p2142, r2199			
p2161[0...n]	Speed threshold 3 / n_thresh val 3			
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010, 8011	
	Min:	Max:	Factory setting:	
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]	
Description:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0).		
Dependency:	See also: p2150, r2199			
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max			
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180	
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010	
	Min:	Max:	Factory setting:	
	0.00 [rpm]	60000.00 [rpm]	0.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).			
Dependency:	See also: r1084, r1087, r2197			
	NOTICE			
	For p0322 = 0, the following applies: p2162 <= 0.1 * p0311 For p0322 > 0, the following applies: p2162 <= 1.02 * p0322-p1082 If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.			

p2166[0...n]			
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8011
	Min:	Max:	Factory setting:
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	See also: p2163, p2164, r2197		
p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8011
	Min:	Max:	Factory setting:
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		
p2168[0...n]	Load monitoring stall monitoring torque threshold / Stall_mon M_thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the torque threshold of the stall monitoring of the pump or fan.		
	If, in the monitored speed range from p2182 to p2165, the torque exceeds this threshold, then this is evaluated as either the motor having stalled or heavy-duty starting.		
Dependency:	For pumps, the following applies (p2193 = 4):		
	- the leakage characteristic must lie below the torque threshold for the stall monitoring		
	- the torque threshold for dry running operation must lie below the torque threshold for stall monitoring		
	For fans, the following applies (p2193 = 5) :		
	- the torque threshold for the stall monitoring must lie above the torque threshold to identify belt breakage (p2191)		
	See also: p2165, p2181, p2191, p2193		
	See also: A07891, F07894, A07926		
	Note		
	The following applies for p2168=0:		
	The special stall monitoring for pump/fan is deactivated.		
	Then, only the remaining load monitoring functions (e.g. the leakage monitoring for a pump) for pump or fan are realized.		
r2169	CO: Actual speed smoothed signals / n_act smth message		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8010
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output of the smoothed speed actual value for messages.		
Dependency:	See also: p2153		

p2170[0...n]	Current threshold value / I_thres		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2002	Dynamic index: DDS, p0180
	Unit group: 6_2	Unit selection: p0505	Function diagram: 8022
	Min:	Max:	Factory setting:
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the absolute current threshold for the messages. "I_act >= I_threshold p2170" (BO: r2197.8) "I_act < I_threshold p2170" (BO: r2198.8)		
Dependency:	See also: p2171		
p2171[0...n]	Current threshold value reached delay time / I_thresh rch t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8022
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	10 [ms]
Description:	Sets the delay time for the comparison of the current actual value (r0068) with the current threshold value (p2170).		
Dependency:	See also: p2170		
p2172[0...n]	DC link voltage threshold value / Vdc thresh val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2001	Dynamic index: DDS, p0180
	Unit group: 5_2	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0 [V]	2000 [V]	800 [V]
Description:	Sets the DC link voltage threshold value for the following messages:		
	"Vdc_act <= Vdc_threshold p2172" (BO: r2197.9)		
	"Vdc_act > Vdc_threshold p2172" (BO: r2197.10)		
Dependency:	See also: p2173		
p2173[0...n]	DC link voltage comparison delay time / t_del Vdc		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	10 [ms]
Description:	Sets the delay time for the comparison of the DC link voltage r0070 with the threshold value p2172.		
Dependency:	See also: p2172		
p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8012
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	Sets the speed threshold for the message "Motor blocked" (BO: r2198.6).		

	Note Missing output load is signaled in the following cases: - the motor is not connected. - a phase failure has occurred.		
p2180[0...n]	Output load detection delay time / Out_load det t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8022
	Min:	Max:	Factory setting:
	0 [ms]	10000 [ms]	2000 [ms]
Description:	Sets the delay time for the message "output load not available" (r2197.11 = 1).		
Dependency:	See also: p2179		
p2181[0...n]	Load monitoring response / Load monit resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8013
	Min:	Max:	Factory setting:
	0	8	0
Description:	Sets the response when evaluating the load monitoring.		
Value:	$0: \quad$ Load monitoring disabled		
	1: A07920 for torque/speed too low		
	2: A07921 for torque/speed too high		
	3: A07922 for torque/speed out of tolerance		
	4: F07923 for torque/speed too low		
	5: F07924 for torque/speed too high		
	6: F07925 for torque/speed out of tolerance		
	7: Pump/fan load monitoring as alarm		
	8: Pump/fan load monitoring as fault		
Dependency:	See also: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, p2193, r2198, p3230, p3231 See also: A07891, A07892, A07893, F07894, F07895, F07896, F07898, A07920, A07921, A07922, F07923, F07924, F07925		

Note

The response to the faults F07923 ... F07925 can be set.
This parameter setting has no effect on the generation of fault F07936.
$p 2181=7,8$ can only be combined with $p 2193=4,5$.

p2182[0...n]	Load monitoring speed threshold value 1 / n_thresh 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		

Description: Dependency:	Sets the speed/torque envelope curve for load monitoring.		
	The following applies: p2189 > p2190		
	See also: p2184, p2190		
	See also: A07926		
	Note		
	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2190<p2189		
	See also: p2184, p2189		
	See also: A07926		
	Note		
	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2191[0...n]	Load monitoring torque threshold no load / M_thresh no load		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 7_1	Unit selection: p0505	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Setting of the torque threshold to identify dry running operation for pumps or belt breakage for fans.		
Dependency:	The following applies: $22191<$ p2168 if p2168 <> 0		
	See also: p2181, p2182, p2184, p2193		
	See also: A07892, F07895, A07926		
	Note		
	For the setting p2191 $=0$, the monitoring for dry running operation or belt breakage is deactivated. Pre-assignment: p2191 = 5% of the rated motor torque (p0333).		
p2192[0...n]	Load monitoring delay time / Load monit t_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8013
	Min:	Max:	Factory setting:
	0.00 [s]	65.00 [s]	10.00 [s]
Description:	Sets the delay time to evaluate the load monitoring.		
p2193[0...n]	Load monitoring configuration / Load monit config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 8013
	Min:	Max:	Factory setting:
	0	5	1
Description:	Sets the load monitoring configuration.		


```
Note
For bit 00:
The threshold value is set in p1080 and the hysteresis in p2150
For bit 01, 02:
The threshold value is set in p2155 and the hysteresis in p2140
For bit 03:
1 signal direction of rotation positive.
0 signal: direction of rotation negative.
The hysteresis is set in p2150.
For bit 04:
The threshold value is set in r1119 and the hysteresis in p2150.
For bit 05:
The threshold value is set in p1226 and the delay time in p1228.
For bit 06:
The hysteresis is set in p2162.
For bit 07:
The threshold value is set in p2163 and the hysteresis is set in p2164.
For bit 08:
The threshold value is set in p2170 and the delay time in p2171.
For bit 09, 10:
The threshold value is set in p2172 and the delay time in p2173
For bit 11:
The threshold value is set in p2179 and the delay time in p2180
For bit 13:
Only for internal Siemens use.
```

r2198.4... 12	CO/BO: Status word monitoring 2 / ZSW monitor 2					
	Access level: 3		Calculated: -	Data type: Unsigned16		
	Can be changed: -		Scaling: -	Dynamic index: -		
	Unit group: -		Unit selection: -	Function diagram: 2536		
	Min:		Max:	Factory setting:		
	-		-	-		
Description:	Display and BICO output for the second status word of the monitoring functions.					
Bit field:	Bit	Signal name	1 signal	0 signal	FP	
	04	\|n_set	< p2161	Yes	No	8011
	05	n_set >0	Yes	No	8011	
	06	Motor blocked	Yes	No	8012	
	07	Motor stalled	Yes	No	8012	
	08	\|I_act	< I_threshold value p2170	Yes	No	8022
	11	Load in the alarm range	Yes	No	8013	
	12	Load in the fault range	Yes	No	8013	

Note

For bit 12:
This bit is reset after the fault cause disappears, even if the fault itself is still present.

r2199.0...5	CO/BO: Status word monitoring 3 / ZSW monitor 3		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2537
	Min:	Max:	Factory setting:
Description:	-	-	-
	Display and BICO output for the third status word of the monitoring functions.		

Bit field:	Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
	00	$\mid n_{_}$act $\mid<$speed threshold value 3	Yes	No	8010
	01	for n comparison value reached or exceeded	Yes	No	8010
	04	Speed setpoint - actual value deviation in tolerance t_on	Yes	No	8011
	05	Ramp-up/ramp-down completed	Yes	No	8011

Note

For bit 00:
The speed threshold value 3 is set in p2161.
For bit 01:
The comparison value is set in p 2141 . We recommend setting the hysteresis (p 2142) for canceling the bit to a value lower than that in p2141. Otherwise, the bit is not reset.

p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	-	Factory setting:
Description:	-	0	
	Sets the signal source to switch in/switch out the technology controller.		
	The technology controller is switched in with a 1 signal.		

p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3		
	Access level: 2	Calculated: -	Scaling: PERCENT

p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:		Factory setting:
	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	90.00 [\%]
Description: Dependency:	Sets the value for fixed value 9 of the technology controller.		
	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the value for fixed value 10 of the technology controller.		
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2211[0...n]	CO: Technology controller fixed value $11 /$ Tec_ctr fix val 11		
	Access level: 2	Calculated: -	Scaling: PERCENT

p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950
	Min:		Factory setting:
	-200.00 [\%]	200.00 [\%]	150.00 [\%]
Description:	Sets the value for fixed	controller.	
Dependency:	See also: p2220, p2221, p2222, p2223, r2224, r2229		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the method to select the fixed setpoints.		
Value:	1: Direct selection		
	2: Binary selection		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	See also: p2221, p2222, p2223		
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	See also: p2220, p2222, p2223		
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller. See also: p2220, p2221, p2223		
Dependency:			

p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	See also: p2220, p2221, p2222		
r2224	CO: Technology controller fixed value effective / Tec_ctr FixVal eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7950, 7951
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the selected and active fixed value of the technology controller.		
Dependency:	See also: r2229		
r2225.0	CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW		
	Access level: 3	Calculated:-	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	崖	-	-
Description:	Display and BICO output for the status word of the fixed value selection of the technology controller.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	Technology controller fixed value selected	Yes	No $\begin{aligned} & \text { 7950, } \\ & 7951\end{aligned}$
r2229	Technology controller number actual / Tec_ctrl No. act		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7950
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of the selected fixed setpoint of the technology controller.		
Dependency:	See also: r2224		
p2230[0...n]	Technology controller motorized potentiometer configuration / Tec_ctr mop config		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	-	- 00000100 bin	
Description:	Sets the configuration for the motorized potentiometer of the technology controller.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Data save active	Yes	No
	02 Initial rounding-off active	Yes	No
	03 Non-volatile data save active for p2230.0 =	1 Yes	No

p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to continually reduce the setpoint for the motorized potentiometer of the technology controller The setpoint change (CO: r2250) depends on the set ramp-down time (p2248) and the duration of the signal that is present (BI: p2236).		
Dependency:	See also: p2235		
p2237[0...n]	Technology controller motorized potentiometer maximum value / Tec_ctrl mop max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum value for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2238		
p2238[0...n]	Technology controller motorized potentiometer minimum value / Tec_ctrl mop min		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:-	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the minimum value for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2237		
p2240[0...n]	Technology controller motorized potentiometer starting value / Tec_ctrl mop start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the starting value for the motorized potentiometer of the technology controller. For p2230.0 $=0$, this setpoint is entered after ON.		
Dependency:	See also: p2230		
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.		
Dependency:	See also: r2250		

p2247[0...n]	Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2248		
	Note		
	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 $=1$) the ramp-up is correspondingly extended.		
p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7954
	Min:	Max:	Factory setting:
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	See also: p2247		
	Note		
	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 $=1$) the ramp-down is correspondingly extended.		
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7954
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	See also: r2245		
p2251	Technology controller mode / Tec_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	0	0
Description:	Sets the mode for using the technology controller output.		
Value:	0: Technology controller as main speed setpoint		
Dependency:	$\mathrm{p} 2251=0$ is only effective if the enable signal of the technology controller is interconnected ($\mathrm{p} 2200>0$) .		

p2252	Technology controller configuration / Tec_ctrl config				
	Access level: 3		Calculated: CALC_MOD_ALL	Data type: Unsigned16	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group: - U		Unit selection: -	Function diagram: -	
	Min: M		Max:	Factory setting:	
	- -			0000000000000000 bin	
Description:	Sets the configuration of the technology controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	04	Ramp-up/ramp-down function generator bypass	Deactivated	Activated	-
	05	Integrator active for skip speeds	Yes	No	-
	06	Internal controller limit not displayed	Yes	No	-
		Activate Kp adaptation	Yes	No	7958
		Activate Tn adaptation	Yes	No	7958
Dependency:	For	it $04=0$:			
		tting is only effective when the PID controller is	is deactivated.		

| 1 CAUTION |
| :--- | :--- |
| For bit $04=1$: |
| The PID controller can oscillate if the ramp-up and ramp-down times of the speed setpoint channel are not taken into |
| account when setting controller parameters p2280 and p2285. |

Note

For bit $04=0$:
The ramp-function generator in the speed setpoint channel is bypassed when the technology controller is operational. As a consequence, ramp times p1120, p1121 are not taken into consideration when configuring the controller.
For bit $04=1$:
The ramp-function generator in the speed setpoint channel is not bypassed when the technology controller is operational.
As a consequence, the ramp-up and ramp-down times ($\mathrm{p} 1120, \mathrm{p} 1121$) remain effective, and must be taken into account as controlled system variables when setting the PID controller parameters (p2280, p2285).
The enable ramps of the PID controller are ensured in this setting by p1120, p1121 as well as rounding functions p1130 and p1131. The ramp-up/ramp-down time of the PID controller limiting p2293 must be set appropriately shorter, as otherwise this has an impact on the speed setpoint channel.
For bit $05=0$:
The integral component of the PID controller is held if a skip band or the minimum speed range is passed through in the speed set point channel.
This prevents the speed from oscillating between the edges of the skip band.
For bit 05 = 1:
The setting is only effective if a skip band is no longer active.
The integral component of the PID controller is not held in the range of the skip speeds.
The skip band is passed through even for small system deviations and low controller gain factors. In so doing, the controller integral time must be selected large enough so that no undesirable speed oscillations occur between the skip band edges.
The influence of a minimum speed p1080 on the integration behavior can be reduced by raising the lower PID controller limit to p1080 / p2000 * 100\%.
For bit $06=1$:
In r2349, bit 10 and bit 11 are not displayed when reaching internal limits (e.g. for OFF1/3).
p2253[0...n] CI: Technology controller setpoint 1 / Tec_ctrl setp 1
Access level: $2 \quad$ Calculated: -

Can be changed: T, U
Unit group:-
Min:

Calculated:-

Scaling: PERCENT
Unit selection:-
Max:

Data type: Unsigned32 1 FloatingPoint32
Dynamic index: CDS, p0170
Function diagram: 7958
Factory setting:

Dependency:	See also: p2257		
	Note		
	The ramp-down time is referred to 100%.		
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:		Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		
p2263	Technology controller type / Tec_ctrl type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the type of technology controller.		
Value:	0: D component in the actual value signal		
	1: D component in system deviation		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the actual value of the technology controller.		

p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed actual value after the filter (PT1) of the technology controller.		
p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	$100.00 \text { [\%] }$
Description:	Sets the upper limit for the actual value signal of the technology controller.		
Dependency:	See also: p2264, p2265, p2271		
	See also: F07426		
	NOTICE		
	If the actual value exceeds this upper limit, this results in fault F07426.		
p2268	Technology controller lower limit actual value / Tec_ctrl I_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the technology controller.		
Dependency:	See also: p2264, p2265, p2271		
	See also: F07426		
	NOTICE		
	If the actual value falls below this lower limit, this results in fault F07426.		
p2269	Technology controller gain actual value / Tech_ctrl gain act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	Sets the scaling factor for the actual value of the technology controller. See also: p2264, p2265, p2267, p2268, p2271		
Dependency:			

r2273	CO: Technology controller system deviation / Tec_ctrl sys_dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the system deviation between the setpoint and actual value of the technology controller.		
Dependency:	See also: p2263		
p2274	Technology controller differentiation time constant / Tec_ctrl D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the technology controller.		
	Note		
	p2274 = 0: Differentiation is disabled.		
p2280	Technology controller proportional gain / Tec_ctrl Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:-	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000	1000.000	0.500
Description:	Sets the proportional gain (P component) of the technology controller.		
	Note		
	$\underline{\text { p2280 }}=0$: The proportional gain is disabled.		
p2285	Technology controller integral time / Tec_ctrl Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	10.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the technology controller.		
	NOTICE		
	The following applies for p2251 $=0$: If the output of the technology controller lies within the range of a suppression (skip) bandwidth (p1091 ... p1094, p1101) or below the minimum speed (p1080), the integral component of the controller is held so that the controller temporarily works as a P controller. This is necessary in order to prevent the controller from behaving in an unstable manner, as the ramp-function generator switches to the parameterized up and down ramps ($\mathrm{p} 1120, \mathrm{p} 1121$) at the same time in order to avoid setpoint steps. This state can be exited or avoided by changing the controller setpoint or by using the start speed (= minimum speed).		

Note

When the controller output reaches the limit, the I component of the controller is held.
p2285 = 0:
The integral time is disabled and the I component of the controller is reset.

p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	56.13
Description:	Sets the signal source to	technology contro	
p2289[0...n]	Cl : Technology controller precontrol signal / Tec_ctr prectr_sig		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for	he technology contr	
p2290[0...n]	BI: Technology controller limiting enable / Tec_ctrl lim enab		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source to enable the technology controller output. The technology controller output is enabled with a 1 signal. The technology controller output is held with a 0 signal.		
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:	See also: p2292		
	1 CAUTION		
	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	See also: p2291		
	\} CAUTION		
	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		

p2293	Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller.		
Dependency:	See also: p2291, p2292		
	Note		
	The time refers to the set maximum and minimum limits (p2291, p2292).		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the technology controller.		
Dependency:	See also: p2295		
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-100.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		
p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
Description:	Sets the signal source for the scaling value of the technology controller.		
Dependency:	See also: p2295		
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLim s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	-	-	1084[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:	See also: p2291		

Note

If the technology controller operates on the speed/setpoint channel ($\mathrm{p} 2251=0$), then the starting value is interpreted as the starting speed and when operation is enabled, is connected to the output of the technology controller (r2294). If fault F07426 "technology controller actual value limited" occurs while ramping up to the starting value and if the associated reaction has been set to "NONE" (see p2100, p2101), the starting value is kept as the speed setpoint instead of a switch to closed-loop control operation.

p2306	Technology controller system deviation inversion / Tec_ctr SysDev inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7958
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to invert the system deviation of the technology controller. The setting depends on the type of control loop.		
Value:	0: No inversion		
	1: Inversion		
	\} CAUTION		
	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
	Note		
	The correct setting can - inhibit the technology - increase the motor sp - if the actual value inc - if the actual value de If value $=0$: The drive reduces the For value $=1$: The drive increases the	re the actual value s r speed, then the inv speed, then the in al value rises (e.g. for ual value increases	technology controller). uld be switched out. uld be set. ns, intake pump, compressor). ing fans, discharge pumps).
p2310	Cl : Technology controller Kp adaptation input value signal source / Kp adapt inp s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for the input value of the adaptation of proportional gain Kp for the technology controller.		
Dependency:	See also: p2252, p2311, p2312, p2313, p2314, p2315, r2316		
p2311	Technology controller Kp adaptation lower value / Kp adapt lower val		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the lower value for the adaptation of proportional gain Kp for the technology controller.		
Dependency:	See also: p2310, p2312, p2313, p2314, p2315, r2316		
	¢ CAUTION		
	The upper value must be set higher than the lower value (p2312 > p2311).		

Note

Kp adaptation is activated with p2252.7 = 1 .

p2312	Technology controller Kp adaptation upper value / Kp adapt upper val		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.000	1000.000	10.000
Description:	Sets the upper value for the adaptation of proportional gain $K p$ for the technology controller.		
Dependency:	See also: p2310, p2311, p2313, p2314, p2315, r2316		
	\triangle CAUTION		
	The upper value must be set higher than the lower value (p2312 > p2311).		
	Note		
	Kp adaptation is activated with p2252.7 $=1$.		
p2313	Technology controller Kp adaptation lower starting point / Kp adapt lower pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description: Dependency:	Sets the lower starting point for the adaptation of proportional gain Kp for the technology controller.		
	See also: p2310, p2311, p2312, p2314, p2315, r2316		
	\triangle CAUTION		
	The upper starting point must be set higher than the lower starting point (p2314 > p2313).		
	Note		
	$\underline{K p ~ a d a p t a t i o n ~ i s ~ a c t i v a t e d ~ w i t h ~ p 2252.7 ~}=1$.		
p2314	Technology controller Kp adaptation upper starting point / Kp adapt upper pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.00 [\%]	400.00 [\%]	100.00 [\%]
Description: Dependency:	Sets the upper activation point for the adaptation of proportional gain Kp for the technology controller.		
	See also: p2310, p2311, p2312, p2313, p2315, r2316		
	¢ CAUTION		
	The upper starting point must be set higher than the lower starting point (p2314 > p2313).		
	Note		
	$\underline{K p}$ adaptation is activated with p2252.7 $=1$.		
p2315	Cl: Technology controller Kp adaptation scaling signal source / Kp adapt scal s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source to scale the results of the adaptation of the proportional gain Kp for the technology controller.		

Dependency:	See also: p2310, p2311, p2312, p2313, p2314, r2316		
	Note		
r2316	CO: Technology controller, Kp adaptation output / Kp adapt outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and connector output for the output signal of the adaption of proportional gain Kp for the technology controller.		
Dependency:	See also: p2252, p2310, p2311, p2312, p2313, p2314, p2315		
p2317	Cl: Technology controller Tn adaptation input value signal source / Tn adapt inp s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the input value of the adaptation of integral time Tn for the technology controller.		
Dependency:	See also: p2252, p2318, p2319, p2320, p2321, r2322		
	Note		
	Tn adaptation is activated with p2252.8 $=1$.		
p2318	Technology controller Tn adaptation upper value / Tn adapt upper val		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	3.000 [s]
Description:	Sets the upper value for the adaptation of integral time Tn for the technology controller.		
Dependency:	See also: p2317, p2319, p2320, p2321, r2322		
	Note		
	Tn adaptation is activated with p2252.8 $=1$.		
p2319	Technology controller Tn adaptation lower value / Tn adapt lower val		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	10.000 [s]
Description:	Sets the lower value for the adaptation of integral time Tn for the technology controller.		
Dependency:	See also: p2317, p2318, p2320, p2321, r2322		
	Note		
	Tn adaptation is activated with p2252.8 $=1$.		

p2320	Technology controller Tn adaptation lower starting point / Tn adapt lower pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower activation point for the adaptation of integral time Tn for the technology controller.		
Dependency:	See also: p2317, p2318, p2319, p2321, r2322		
	¢ CAUTION		
	The upper starting point must be set higher than the lower starting point (p2321 > p2320).		
	Note		
	Tn adaptation is activated with p2252.8=1.		
p2321	Technology controller Tn adaptation upper starting point / Tn adapt upper pt		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	0.00 [\%]	400.00 [\%]	100.00 [\%]
Description: Dependency:	Sets the upper activation point for the adaptation of integral time Tn for the technology controller.		
	See also: p2317, p2318, p2319, p2320, r2322		
	\triangle CAUTION		
	The upper starting point must be set higher than the lower starting point (p2321 > p2320).		
	Note		
	Tn adaptation is activated with p2252.8=1.		
r2322	CO: Technology controller Tn adaptation output / Tn adapt output		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7959
	Min:	Max:	Factory setting:
	- [s]	- [s]	- [s]
	Display and connector output for the output signal of the adaption of integral time Tn for the technology controller.		
Dependency:	See also: p2252, p2317, p2318, p2319, p2320, p2321		
	Note		
	Tn adaptation is activated with p2252.8 $=1$.		
p2339	Techn. controller threshold value f. I comp. hold for skip speed / Tec_ctrl thr_skip		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	200.00 [\%]	2.00 [\%]
Description:	Sets the threshold value for the system deviation of the technology controller, which controls holding the controller integral component in the range of the skip speeds of the ramp-function generator.		
Recommendation:	To avoid speed setpoint steps in the range of the skip speeds, we recommend setting p2252 bit $4=1$ (ramp-function generator bypass deactivated).		

Dependency:	The parameter has no effect for p2252 bit $5=1$ (integrator hold deactivated). See also: r2273
	Note Only p2251 = 0: If the output signal of the technology controller reaches a skip band in the speed setpoint channel, then the integral component of the controller is held, if at the same time, the system deviation is lower than the threshold value set here. By holding the integral component, it can be avoided that the controller oscillates in the range of the skip bands.
r2344	CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: PERCENT Dynamic index: -
	Unit group: - Unit selection: - Function diagram: 7958
	Min: Max: Factory setting:
	- [\%] - [\%] - [\%]
Description:	Displays the smoothed speed setpoint of the technology controller prior to switching to operation with fault response (see p2345).
Dependency:	See also: p2345
	Note
	Smoothing time $=10 \mathrm{~s}$
p2345	Technology controller fault response / Tech_ctrl flt resp
	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: T, U Scaling: - Dynamic index: -
	Unit group: - Unit selection:- Function diagram: 7958
	Min: Max: Factory setting:
	020
Description:	Sets the response of the technology controller to the occurrence of fault F07426 (technology controller actual value limited).
	The fault response is executed if status bit 8 or 9 in the technology controller status word r 2349 is set. If both status bits are zero, a switch back to technology controller operation will follow.
Value:	0: Function inhibited
	1: On fault: Changeover to r2344 (or p2302)
	2: On fault: Changeover to p2215
Dependency:	The parameterized fault response is only effective if the technology controller mode is set to p2251 = 0 (technology controller as main setpoint).
	See also: p2267, p2268, r2344
	See also: F07426

NOTICE

Dependent upon the application, the changing over of the setpoint when fault F07426 occurs can lead to the fault condition disappearing and the re-activation of the technology controller. This can repeat itself and cause limit oscillations. In this case, a different fault response or a different fixed setpoint 15 for the fault response $2345=2$ should be selected.

Note

The parameterized fault response can only be achieved if the default fault response of the technology controller fault F07426 is set to "NONE" (see p2100, p2101). If a fault response other than "NONE" is entered in p2101 for F07426, p2345 must be set to zero.
If the fault occurs during ramping up to the starting setpoint $p 2302$, this starting setpoint is retained as the final value (there is no changeover to the fault response setpoint).

	Note
p2350 $=1$	
This is the Ziegler-Nichols standard tuning (ZN tuning). In this case, it should involve a response to a step.	
	p2350 $=2$
For this tuning, a low overshoot is obtained (O/S). However, it should be faster than option 1.	
	p2350 = 3
For this tuning, a low or no overshoot is obtained. However, it is not as fast as option 2.	

Note

The technology controller must be activated (p2200) and configured (p2251=0) in order to use the function. Negative speed setpoints should be excluded.

p2371	Closed-loop cascade control configuration / Csc_ctrl config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	8	0
Description:	Parameter for configuring the connection and disconnection of external motors to and from the line voltage.		
	Connecting external motors to the line voltage enables up to three additional drives to be controlled by the technology controller in addition to the main drive. The complete system, therefore, comprises one closed-loop-controlled main drive and up to three other drives, which can be controlled via contactors or motor starters. The contactors or motor starters are switched by the converter's digital outputs (see also r2379).		
	Switching-in motor:		
	If the main drive is operated at maximum speed and the deviation at the technology controller input increases further, the control will in addition connect external motors M1 through M3 to the line voltage. At the same time, the main drive is ramped down to the closed-loop cascade control switch-in/switch-out speed (p2378) via the down ramp, so that the total output power can be kept as constant as possible. During this time the technology controller is switched off.		
	If the main drive is operated at minimum speed and the deviation at the technology controller input decreases further, the control will disconnect external motors M1 through M3 from the line voltage. At the same time, the main drive is ramped up to the closed-loop cascade control switch-in/switch-out speed (p2378) via the up ramp, so that the total output power can be kept as constant as possible.		
Value:	0: Closed-loop cascade control in		
	1: $\quad M 1=1 X$		
	2: $\quad M 1=1 X, M 2=1 X$		
	3: $\quad M 1=1 X, M 2=2 X$		
	4: $\quad M 1=1 X, M 2=1 X, M 3=1 X$		
	5: $\quad M 1=1 X, M 2=1 X, M 3=2 X$		
	6: $\quad M 1=1 X, M 2=2 X, M 3=2 X$		
	7: $\quad M 1=1 X, M 2=1 X, M 3=3 X$		
	8: $\quad M 1=1 X, M 2=2 X, M 3=3 X$		
Dependency:	See also: p2372		

Note

Selecting 2 X means that a motor is switched in with twice the power (as opposed to 1 X , which equates to the motor power at the converter).

p2372

Closed-loop cascade control mode motor selection / Csc_ctrl mode

Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
0	3	0
Parameter for selecting the control mode for switching-in and switching-out external motors.		
Selection 2 and 3 support selection options for automatically interchanging the motors, which are connected to the line		
supply.		
$0:$	Fixed sequence	
$1:$	Closed-loop cascade control after absolute operating hours	
$2:$	Automatic replacement after continuous operating hours	

Note

For p2372 = 0:
Motor selection for switching-in/switching-out follows a fixed sequence and is dependent on the closed-loop cascade control configuration (p2371).
For p2372 = 1:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
For p2372 = 2:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
In addition, those motors which have been in operation continuously for longer than the time set in p2381 are interchanged automatically.
If p2371 = 4 (selection of three identical motors), the switch is only performed between two motors, if the required input power of one single external motor is sufficient for the actual operating point.
For p2372 = 3:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
In addition, those motors which have been in operation for a total time longer than that set in p2382 are interchanged automatically.
For p2372 = 2, 3:
This automatic interchange (autochange) is only possible if the designated motor is not in operation. If all motors are in operation, the interchange will not be possible and alarm A07427 appears.
Autochange mode is only possible if p2371 $=2,4$ (motors of the same size).
p2373
Closed-loop cascade control switch-in threshold / Csc_ctrl sw-in thr
Access level: 3 Calculated: - Data type: FloatingPoint32

Can be changed: T, U
Scaling: PERCENT
Dynamic index:-
Unit group: 9_1
Unit selection: p0595
Function diagram: -
Min:
0.0 [\%]

Max:
200.0 [\%]

Factory setting:
20.0 [\%]

Description: Threshold value for the delayed switching-in or non-delayed switching-out of external motors connected to the line. Motor switching-in is activated if the maximum speed is reached and the wait time in p2374 has expired.
Dependency: See also: p2374

p2374

Description:

Dependency:

Access level: 3

Can be changed: T, U
Unit group: -

Min:

0 [s]

Csc_ctrl t_in_del

Calculated: -
Scaling: -
Unit selection:-
Max:
650 [s]

Data type: Unsigned16
Dynamic index:-
Function diagram: -
Factory setting: 30 [s]

Additional delay time for connecting external motors to the line voltage after the system deviation of the technology controller has exceeded the threshold value p2373 and the motor has reached the maximum speed.
See also: p2373

Note

If the deviation at the technology controller input exceeds the overcontrol threshold p2376, the delay time is bypassed.

p2375	Closed-loop cascade control switch-out delay / Csc_ctrl t_out_del		
	Access level: 3	Calculated:-	Data type: Unsigned16
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	650 [s]	30 [s]
Description:	Additional delay time for the disconnection of external motors from the line after the system deviation of the technology controller has exceeded the threshold p2373 and the motor has reached the minimum speed p1080.		
Dependency:	See also: p2373, p2376		
	Note		If the deviation at the technology controller input exceeds the overcontrol threshold -p2376, the delay time is bypassed.
p2376	Closed-loop cascade control overcontrol threshold / Csc_ctr ovctr_thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	25.0 [\%]
Description:	Threshold value for instantaneous switching-in or switching-out external motors.		
	Note If the maximum speed is reached and the deviation at the technology controller input exceeds the overcontrol threshold p2376 at the same time, the delay time p2374 is bypassed and the motor is immediately switched-in (connected). If the minimum speed is reached and the deviation at the technology controller input exceeds the overcontrol threshold -p2376 at the same time, the delay time p2375 is bypassed and the motor is immediately switched-out (disconnected).		
p2377	Closed-loop cascade control interlocking time / Csc_ctrl t_interl		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	650 [s]	0 [s]
Description:	Interlocking time during which, following the connection or disconnection of an external motor, no further motors are connected or disconnected using the closed-loop cascade control. This avoids duplicate switching operations.		
p2378	Closed-loop cascade control switch-in/switch-out speed / Csc_ctrl n_in/out		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	50.0 [\%]
Description:	Sets the speed for the main drive, which is approached directly after an external motor has been connected or disconnected.		

r2379.0... 10	CO/BO: Closed-loop cascade control status word / Csc_ctrl ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the status word of the closed-loop cascade control		
Bit field:	Bit Signal name	1 signal	0 signal \quad FP
	00 Start external motor 1	Yes	No
	01 Start external motor 2	Yes	No
	02 Start external motor 3	Yes	No
	03 Switch-in motor	Yes	No
	04 Switch-in/switch-out active	Yes	No
	05 All motors active	Yes	No
	06 Automatic replacement not possible	Yes	No
	07 Alarm active	Yes	No
	08 Motor in normal operation	Yes	No
	09 Frequency reaches limit	Yes	No
	10 Fixed frequency motor switchover	Yes	No
p2380[0...2]	Closed-loop cascade control operating hours / Csc_ctrl op_hrs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [h]	340.28235 E 36 [h]	$0.0 \text { [h] }$
Description:	Displays the operating hours for the external motors.		
Index:	[0] = Motor 1		
	[1] = Motor 2		
	[2] = Motor 3		
p2381	Closed-loop cascade control max time for continuous operation / Csc_ctrl t_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
		Max:	Factory setting:
	0.1 [h]	100000.0 [h]	24.0 [h]
Description:	Time limit for the continuous operation of external motors.		
	Continuous operation is measured starting from when a motor is connected to the line voltage. It ends when a motor is disconnected from the line.		
p2382	Closed-loop cascade control operating time limit / Csc_ctrl t_max op		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.1[\mathrm{~h}$	100000.0 [h]	24.0 [h]

Description: \quad Limit for the total operating time of external motors. \quad The total operating time of an external motor increases every time it is switched in.

p2384	Closed-loop cascade control motor switch-on delay / Csc_ctr t_del_on		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$	
Description:	Delay time once the switch-in conditions have been met until the external motor is switched on.		
	The activation of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by		
	this time, while the main motor speed already decreases down to the switch-in speed (p2378).		

Description: Time during which the switch-in speed (see p2378) of the main motor is maintained after an external motor has been switched-in and the main motor has been decelerated to the switch-in speed.

p2386

Closed-loop cascade control motor switch-off delay / Csc_ctrl t_del_off		
Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: T, U	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
$0.000[\mathrm{~s}]$	$999.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$

Description:	Delay time once the switch-out conditions have been met until the external motor is switched off. The resetting of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by this time, while the main motor ramps up to the switch-out speed (p2378).
p2387	Closed-loop cascade control holding time switch-out speed / CscCtr t_hld n_out
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: T, U Scaling: - Dynamic index: -
	Unit group: - Unit selection: - Function diagram: -
	Min: Max: Factory setting:
	0.000 [s] 999.000 [s] 0.000 [s]
Description:	Time during which the switch-out speed (see p2378) of the main motor is maintained after an external motor has been switched-out and the main motor has been accelerated to the switch-out speed.
p2388	Cascade control switch-in speed hysteresis / Csc_ctrl speed hys
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: T, U Scaling: - Dynamic index: -
	Unit group: 3_1 Unit selection: p0505 Function diagram: -
	Min: Max: Factory setting:
	0.000 [rpm] 999.000 [rpm] 0.000 [rpm]
Description:	Sets the hysteresis for the cascade control switch-in/switch-out speed of the maximum speed reached.
p2390[0...n]	Speed start of hibernation mode / Hib mode n_start
	$\begin{array}{ll}\text { Access level: } 3 & \text { Calculated: } \\ \text { CALC_MOD_LIM_REF } & \text { Data type: FloatingPoint32 }\end{array}$
	Can be changed: T, U Scaling: p2000 Dynamic index: DDS, p0180
	Unit group: 3_1 Unit selection: p0505 Function diagram: 7038
	Min: Max: Factory setting:
	0.000 [rpm] 21000.000 [rpm] 0.000 [rpm]
Description:	Sets the speed for the start of the "hibernation mode" function.
	The total speed of this activation threshold is the sum of the minimum speed p1080 and p2390. If the speed setpoint undershoots this start speed, the delay time in p2391 is started. If the restart threshold is no longer reached before the delay time expires, the hibernation mode boost speed p2395 is impressed for the time period p2394 and then the motor is brought to a standstill via the down ramp of the setpoint channel. The drive is switched off (hibernation mode active). The drive is automatically switched on again as soon as the speed setpoint exceeds the restart threshold.

Note

The speed at which the hibernation mode is started is set to 4% of the nominal speed when commissioning is completed.

p2391[0...n]	Hibernation mode delay time / Hib mode t_delay		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7038
	Min:	Max:	Factory setting:
	$0[s]$	120 [s]	
Description:	Sets the delay time for the "hibernation mode" function.		
	To ensure that the drive can be shut down (pulse inhibit), a restart condition must not occur during this time.		
Dependency:	See also: p2390, p2392, p2393		

p2392	Hibernation mode restart value with technology controller / Hib start w/ tec		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: 7038
	Min:	Max:	Factory setting:
	0.000 [\%]	200.000 [\%]	0.000 [\%]
Description:	Sets the motor restart time with the "Hibernation mode" function.		
	If the hibernation mode function is active, the technology controller continues to operate and supplies a speed setpoint to the setpoint channel. Since the drive is deactivated, there is no system deviation at the input of the technology controller. As soon as this exceeds the restart value p2392, the drive is automatically switched on and the speed is controlled to 1.05 * ($\mathrm{p} 1080+\mathrm{p} 2390$) via the up ramp of the setpoint channel.		

Note

The restart value is set to 5% when commissioning is completed.

p2393[0...n]	Hibernation mode restart speed relative w/o techn controller / Hib start w/o tec		
	Access level: 3	Calculated: CALC_MOD_LIM_REF	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting speed to restart the motor for the "hibernation mode" function.		
	When the hibernation mode is active, a speed setpoint is still supplied to the setpoint channel. If the setpoint increases again and in so doing exceeds the restart speed, the drive is automatically switched on and the speed setpoint is controlled to p1080 $+\mathrm{p} 2390+\mathrm{p} 2393$ via the up ramp of the setpoint channel.		
	The restart speed is the sum of the minimum speed p1080, the hibernation start speed p2390 and the relative restart speed p2393.		
Dependency:	See also: p1080		

Note

The parameter is set to 6% of the nominal speed when commissioning is exited.

p2394[0...n]	Hibernation mode boost time period / Hib mode t_boost		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Unit selection: -
	Unit group: -	Max:	Function diagram: 7038
	Min:	$3599[\mathrm{~s}]$	Factory setting:
	$0[\mathrm{~s}]$	$0[\mathrm{~s}]$	
Description:	Sets the boost time period for the "hibernation mode" function.		
	Before the drive is finally switched off (hibernation mode), the setpoint speed is moved to the boost speed p2395 for		
	the time set in p2394. Depending on the application, this allows the hibernation intervals to be extended (in time).		

T CAUTION
The controller is not operational while the boost speed is being impressed. As a result, for example, for pump
applications, it must be ensured that the tank does not overflow as a result of the additional boost. For compressors,
it must be ensured that the boost speed does not result in an overpressure condition.

Note

For p2394 $=0$ s, the following applies:
The boost speed is not used.
9.2 Parameter list

p2395[0...n]	Hibernation mode boost speed / Hib mode n_boost		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the boost speed for the "hibernation mode" function.		
	The motor is accelerated to the hibernation mode boost speed p2395 for the hibernation mode boost time period p2394 before it is brought to a standstill via the down ramp of the setpoint channel (p1121) and subsequently switched off (pulse inhibit).		
Dependency:	See also: p2394		
	¢ CAUTION		
	The controller is not operational while the boost speed is being impressed. As a result, for example, for pump applications, it must be ensured that the tank does not overflow as a result of the additional boost. For compressors, it must be ensured that the boost speed does not result in an overpressure condition.		
p2396[0...n]	Hibernation mode max. shutdown time / Hib t_off max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 7038
	Min:	Max:	Factory setting:
	0 [s]	863999 [s]	0 [s]
Description:	Sets the maximum shutdown time for the "Hibernation mode" function.		
	If the drive is in the hibernation mode (pulse inhibit) then it is switched on again at the latest after the maximum switchoff time has expired. If the restart conditions are fulfilled earlier, then the drive is correspondingly switched on earlier.		

| \bigwedge DANGER |
| :--- | :--- |
| The drive automatically powers itself up at the latest after the maximum switch-off time has expired. |

| \triangle CAUTION |
| :--- | :--- |
| Once the maximum shutdown time has expired, the drive switches itself on automatically and accelerates to the start |
| speed. The technology controller only becomes effective again when this speed is reached (for p2398 = 1). |
| Depending on the application, for instance for pumps, it should be ensured that as a result of cyclic starts the tank does |
| not overflow or for compressors, an overpressure condition does not occur. |

Note

Automatic restart once the maximum OFF time has elapsed is deactivated by setting p2396=0 s.

r2397[0...1]	CO: Hibernation mode output speed actual / Hib n_outp act		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: $3 _1$	Unit selection: p0505	Function diagram: 7038
	Min:	Max:	Factory setting:
	$-[r \mathrm{rm}]$	$-[r p m]$	$-[r p m]$
Description:	Display and connector output for the actual output speed for the "hibernation mode" function.		

[^4]

p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection:-	Function diagram: 1021
	Min:	Max:	Factory setting:
	-10000.00 [\%]	10000.00 [\%]	0.00 [\%]
Description:	Setting and connector out	e value.	
Dependency:	See also: p2901, r2902, p2930		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	The value can be used to interconnect a scaling function (e.g. scaling the main setpoint).		
p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 1021
	Min:	Max:	Factory setting:
	-10000.00 [\%]	10000.00 [\%]	0.00 [\%]
Description:	Setting and connector out	e value.	
Dependency:	See also: p2900, p2930		
	NOTICE		
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
	Note		
	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)		
r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 1021
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description: Index:	Display and connector output for frequently used percentage values.		
	$[0]=\text { Fixed value }+0 \%$		
	[1] = Fixed value +5 \%		
	[2] = Fixed value $+10 \%$		
	[3] = Fixed value $+20 \%$		
	[4] = Fixed value $+50 \%$		
	[5] = Fixed value +100 \%		
	[6] = Fixed value +150 \%		
	[7] = Fixed value $+200 \%$		
	[8] = Fixed value -5 \%		
	[9] = Fixed value -10 \%		
	[10] = Fixed value -20\%		
	[11] $=$ Fixed value -50 \%		
	[12] = Fixed value -100\%		
	[13] = Fixed value -150\%		
	[14] = Fixed value -200\%		

Dependency:	See also: p2900, p2901, p2930	
	Note	
	The signal sources can, for example, be used to interconnect scalings.	
p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]	
	Access level: 3 Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U Scaling: p2003	Dynamic index: DDS, p0180
	Unit group: - Unit selection: -	Function diagram: 1021
	Min: Max:	Factory setting:
	-100000.00[Nm] 100000.00[Nm]	0.00 [Nm]
Description:	Setting and connector output for a fixed torque value.	
Dependency:	See also: p2900, p2901, r2902	
	NOTICE	
	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.	
	Note	
	The value can, for example, be used to interconnect a supplementary torque.	
r2969[0...6]	Flux model value display / Psi_mod val displ	
	Access level: 3 Calculated: -	Data type: FloatingPoint32
	Can be changed: - Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	- -	-
Description:	Displays the values of the direct access flux model for the synchronous reluctance motor (RESM) for diagnostic purposes.	
	Valid values are only displayed when the pulses are inhibited.	
	For index [0]:	
	Displays the entered direct axis current id in Arms:	
	For index [1, 2, 3]:	
	Displays the saturation curves of the direct axis flux psid(id, iq):	
	- r2969[1]: flux in Vsrms with respect to the direct axis current for iq = 0	
	- r2969[2]: flux in Vsrms with respect to the direct axis current for iq =0.5* p2950	
	- r2969[3]: flux in Vsrms with respect to the direct axis current for iq = p2950	
	For index [4, 5, 6]:	
	Displays the relative error of the current inversion (id(psid, iq) - id) / p2950:	
	- r2969[4]: error with respect to direct axis current for iq $=0$	
	- r2969[5]: error with respect to direct axis current for iq $=0.5$ * p2950	
	- r2969[6]: error with respect to direct axis current for iq = p2950	
Index:	[0] = d-current	
	[1] = d-flux iq0	
	[2] = d-flux iq1	
	[3] = d-flux iq2	
	[4] = d-current error iq0	
	[5] = d-current error iq1	
	[6] = d-current error iq2	
	Note	
	RESM: reluctance synchronous motor (synchronous reluctance motor)	

p3110	External fault 3 switch-on delay / Ext fault 3 t_on		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2546
	Min:	Max:	Factory setting:
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the delay time for external fault 3.		
Dependency:	See also: p2108, p3111, p3112		
	See also: F07862		
p3111[0...n]	BI: External fault 3 enable / Ext fault 3 enab		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the enable signal of external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	See also: p2108, p3110, p3112		
	See also: F07862		
p3112[0...n]	BI: External fault 3 enable negated / Ext flt 3 enab neg		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the negated enable signal of external fault 3 .		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	See also: p2108, p3110, p3111		
	See also: F07862		
r3113.0... 15	CO/BO: NAMUR message bit bar / NAMUR bit bar		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	Display and BICO output for the status of the NAMUR message bit bar.		
	The faults and alarms are assigned to the appropriate signaling/message classes and influence a specific message bit.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Fault converter information electro	ware error Yes	No
	01 Network fault	Yes	No -

02	DC link overvoltage	Yes	No	
03	Fault drive converter power electronics	Yes	No	
04	Drive converter overtemperature	Yes	-	
05	Ground fault	Yes	-	
06	Motor overload	Yes	No	-
07	Bus error	Yes	No	-
08	External safety-relevant shutdown	Yes	No	-
10	Error communication internal	Yes	No	-
11	Fault infeed	Yes	No	-
15	Other faults	Yes	No	-

Note

For bit 00:
Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occurs again, contact Technical Support.
For bit 01:
A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply voltage. Check the wiring.
For bit 02:
The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.
For bit 03:
An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure, ...).
Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).
For bit 04:
The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet cooling.
For bit 05:
A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.
For bit 06:
The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and limits that have been set. Check the ambient temperature / motor cooling.
For bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is faulted or interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the bus configuration / clock cycles.
For bit 08:
A safety operation monitoring function (Safety) has detected an error.
For bit 09:
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
For bit 10:
The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles.
For bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check the closed-loop infeed control.
For bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.


```
Note
The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the fault buffer and the assignment of the indices is shown in r0945.
For bits 20 ... 16:
Bits 20, 19, 18, 17, \(16=0,0,0,0,0-->\) PROFIdrive message class 0 : not assigned
Bits \(20,19,18,17,16=0,0,0,0,1-->\) PROFIdrive message class 1 : hardware fault/software error
Bits \(20,19,18,17,16=0,0,0,1,0-->\) PROFIdrive message class 2 : line fault
Bits \(20,19,18,17,16=0,0,0,1,1-->\) PROFIdrive message class 3 : supply voltage fault
Bits 20, 19, 18, 17, \(16=0,0,1,0,0-->\) PROFIdrive message class 4: DC link fault
Bits 20, 19, 18, 17, \(16=0,0,1,0,1-->\) PROFIdrive message class 5: power electronics faulted
Bits \(20,19,18,17,16=0,0,1,1,0-->\) PROFIdrive message class 6: overtemperature electronic components
Bits \(20,19,18,17,16=0,0,1,1,1-->\) PROFIdrive message class 7 : ground fault/phase fault detected
Bits 20, 19, 18, 17, \(16=0,1,0,0,0-->\) PROFIdrive message class 8 : motor overload
Bits 20, 19, 18, 17, \(16=0,1,0,0,1-->\) PROFIdrive message class 9: communication error to the higher-level control
Bits \(20,19,18,17,16=0,1,0,1,0-->\) PROFIdrive message class 10 : safe monitoring channel has identified an error
Bits \(20,19,18,17,16=0,1,0,1,1->\) PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
Bits 20, 19, 18, 17, \(16=0,1,1,0,0-->\) PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error Bits \(20,19,18,17,16=0,1,1,0,1-->\) PROFIdrive message class 13 : infeed unit faulted
Bits \(20,19,18,17,16=0,1,1,1,0-->\) PROFIdrive message class 14 : braking controller/Braking Module faulted Bits \(20,19,18,17,16=0,1,1,1,1-->\) PROFIdrive message class 15 : line filter faulted
Bits \(20,19,18,17,16=1,0,0,0,0-->\) PROFIdrive message class 16 : external measured value/signal state outside the permissible range
Bits \(20,19,18,17,16=1,0,0,0,1-->\) PROFIdrive message class 17: application/technology function faulted Bits \(20,19,18,17,16=1,0,0,1,0-->\) PROFIdrive message class 18 : error in the parameterization/configuration/ commissioning sequence
Bits \(20,19,18,17,16=1,0,0,1,1-->\) PROFIdrive message class 19: general drive fault
Bits \(20,19,18,17,16=0,1,1,0,0-->\) PROFIdrive message class 20 : auxiliary unit faulted
```

r3123[0...63]	Diagnostic attribute alarm / Diag_attr alarm				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 8065	
	Min:		Max:	Factory setting:	
	-		-		
Description:	Displays the diagnostic attribute of the alarm which has occurred.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Hardware replacement recommended	Yes	No	-
	11	Alarm class bit 0	High	Low	-
	12	Alarm class bit 1	High	Low	-
	13	Maintenance required	Yes	No	-
	14	Maintenance urgently required	Yes	No	-
	15	Message has gone	Yes	No	-
	16	PROFIdrive fault class bit 0	High	Low	-
	17	PROFIdrive fault class bit 1	High	Low	-
	18	PROFIdrive fault class bit 2	High	Low	-
	19	PROFIdrive fault class bit 3	High	Low	-
	20	PROFIdrive fault class bit 4	High	Low	-
Dependency:	See also: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3121				

Note
The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.
For bit 12,11 :
These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only
on certain automation systems with integrated SINAMICS functionality.
For bits $20 \ldots 16$:
Bits $20,19,18,17,16=0,0,0,0,0-->$ PROFIdrive message class 0 : not assigned
Bits $20,19,18,17,16=0,0,0,0,1-->$ PROFIdrive message class 1 : hardware fault/software error
Bits $20,19,18,17,16=0,0,0,1,0-->$ PROFIdrive message class 2 : line fault
Bits $20,19,18,17,16=0,0,0,1,1-->$ PROFIdrive message class 3 : supply voltage fault
Bits $20,19,18,17,16=0,0,1,0,0-->$ PROFIdrive message class 4 : DC link fault
Bits $20,19,18,17,16=0,0,1,0,1-->$ PROFIdrive message class 5 : power electronics faulted
Bits $20,19,18,17,16=0,0,1,1,0-->$ PROFIdrive message class 6 : overtemperature electronic components
Bits $20,19,18,17,16=0,0,1,1,1-->$ PROFIdrive message class 7 : ground fault/phase fault detected
Bits $20,19,18,17,16=0,1,0,0,0-->$ PROFIdrive message class 8 : motor overload
Bits $20,19,18,17,16=0,1,0,0,1-->$ PROFIdrive message class 9 : communication error to the higher-level control
Bits $20,19,18,17,16=0,1,0,1,0-->$ PROFIdrive message class 10 : safe monitoring channel has identified an error
Bits $20,19,18,17,16=0,1,0,1,1-->$ PROFIdrive message class 11 : incorrect position actual value/speed actual value
or not available
Bits $20,19,18,17,16=0,1,1,0,0-->$ PROFIdrive message class 12 : internal (DRIVE-CLiQ) communication error
Bits $20,19,18,17,16=0,1,1,0,1-->$ PROFIdrive message class 13 : infeed unit faulted
Bits $20,19,18,17,16=0,1,1,1,0-->$ PROFIdrive message class 14 : braking controller/Braking Module faulted
Bits $20,19,18,17,16=0,1,1,1,1-->$ PROFIdrive message class 15 : line filter faulted
Bits $20,19,18,17,16=1,0,0,0,0-->$ PROFIdrive message class 16 : external measured value/signal state outside the
permissible range
Bits $20,19,18,17,16=1,0,0,0,1-->$ PROFIdrive message class 17 : application/technology function faulted
Bits $20,19,18,17,16=1,0,0,1,0-->$ PROFIdrive message class 18 : error in the parameterization/configuration/
commissioning sequence
Bits $20,19,18,17,16=1,0,0,1,1-->$ PROFIdrive message class 19 : general drive fault
Bits $20,19,18,17,16=0,1,1,0,0-->$ PROFIdrive message class 20 : auxiliary unit faulted
r3131

Dependency: See also: r2131, r3132

Calculated: -
Scaling: -
Unit selection: -
Max:
-

Data type: Integer32
Dynamic index: -
Function diagram: 8060
Factory setting:

r3132

Description: Displays the component number of the oldest fault that is still active.
Dependency: See also: r2131, r3131

Access level: 3	Calculated: -
Can be changed: -	Scaling: -
Unit group: -	Unit selection: -
Min:	Max:
-	-
Displays the component number of the oldest fault that is still active.	
See also: r2131, r3131	

Data type: Integer32
Dynamic index:-
Function diagram: 8060
Factory setting:

p3235	Phase failure signal motor monitoring time / Ph_fail t_monit		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [ms]	2000 [ms]	320 [ms]
Description:	Sets the monitoring time for phase failure detection of the motor.		
	NOTICE		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 = 0 .		
	Note For p3235 = 0 the function is deactivated. The monitoring is automatically deactivated during a flying restart for a motor that is still rotating. 3-phase phase failures cannot be detected and are indicated by other messages (e.g. F07902).		
r3313	Efficiency optimization 2 optimum flux / Optimum flux		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 6722, 6837
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the calculated, optimum flux.		
Dependency:	See also: p1401, p3315, p3316		
	Note		
	The function is activated via p1401.14 = 1.		
p3315[0...n]	Efficiency optimization 2 minimum flux limit value / Min flux lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722,6837
	Min:	Max:	Factory setting:
	10.0 [\%]	200.0 [\%]	50.0 [\%]
Description: Dependency:	Sets the minimal limit value for the calculated optimum flux.		
	See also: p1401, r3313, p3316		
	Note		
	The function is activated via p1401.14 = 1.		
p3316[0...n]	Efficiency optimization 2 maximum flux limit value / Max flux lim val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: 6722, 6837
	Min:	Max:	Factory setting:
	10.0 [\%]	200.0 [\%]	110.0 [\%]
Description:	Sets the maximum limit value for the calculated optimum flux.		
Dependency:	See also: p1401, r3313, p3315		
	Note		

p3320[0...n]	Fluid flow machine power point 1 / Fluid_mach P1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P) / speed (n)		
	p3320 / p3321 --> point 1 (P1 / n1)		
	p3322 / p3323 --> point 2 (P2 / n2)		
	p3324 / p3325 --> point 3 (P3 / n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		
Dependency:	See also: r0041, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3321[0...n]	Fluid flow machine speed point 1 / Fluid_mach n1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	0.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P) / speed (n)		
	p3320 / p3321 --> point 1 (P1 / n1)		
	p3322 / p3323 --> point 2 (P2 / n2)		
	p3324 / p3325 --> point 3 (P3 / n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		
Dependency:	See also: r0041, p3320, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3322[0...n]	Fluid flow machine power point 2 / Fluid_mach P2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	50.00

p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 4 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 4 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed.The energy saved is displayed in r0041.		
	The energy saved is displayed in r0041.		
p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 5 as a [\%].		
Dependency:	See also: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		
	Note		
	The reference value for power and speed is the rated power/rated speed. The energy saved is displayed in r0041.		
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00	100.00	100.00

p3334	2/3 wire control selection / 2/3 wire select		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2272, 2273
	Min:	Max:	Factory setting:
	0	4	0
Description:	Sets the two wire control/three wire control.		
Value:	0: \quad No wire control		
	1: Two wire control clockwise/counterclockwise 1		
	2: Two wire control clockwise/counterclockwise 2		
	3: Three wire control enable clockwise/counterclockwise		
	4: Three wire control enable ON/reversing		
Dependency:	See also: p3330, p3331, p3332, r3333		
p3340[0...n]	BI: Limit switch start / Lim switch start		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description: Dependency:	Sets the signal source for the start of motion dependent on the sign of the setpoint.		
	See also: p3342, p3343, r3344		
	See also: A07352		
p3342[0...n]	BI: Limit switch plus / Lim switch plus		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1
Description:	Sets the signal source for the limit switch plus.		
	BI: p3342 = 1-signal:		
	Limit switch is inactive.		
	BI: p3342 = 0 signal:		
	Limit switch is active.		
Dependency:	See also: p3340, p3343, r3344		
	Note		
	For p1113 = 0, the drive traverses with a positive speed setpoint towards the positive limit switch - or for p1113 = 1 with a negative speed setpoint.		
p3343[0...n]	BI: Limit switch minus / Lim switch minus		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	1

Dependency:	The compound braking current is only activated if the DC link voltage exceeds the threshold value in r1282. Compound braking does not operate in the following cases: - DC braking activated (p1230, r1239). - motor is still not magnetized (e.g. for flying restart). - vector control parameterized (p1300 >= 20). - synchronous motor used (p0300 $=2 x x$).	
	NOTICE	
	Generally, increasing the braking current improves the braking effect when stopping the motor. However, if the value is set too high, then the drive can be tripped (shut down) as a result of overcurrent or ground fault. Recommendation: p3856 < 100 \% x (r0209-r0331) / p0305 / 2 Compound braking generates a current in the motor with a ripple manifesting the rotational frequency. The higher the braking current is set, the higher the resulting ripple, especially when the Vdc_max control is simultaneously active (refer to p1280).	
	Note	
	The parameter value is entered relative to the rated motor current (p0305).	
	Compound braking is deactivated with p3856=0\%.	
p3857[0...n]	DC quantity controller P gain / DC_ctrl Kp	
	Access level: 3 Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: - Unit selection: -	Function diagram: 6797
	Min: Max:	Factory setting:
	0.000100000 .000	0.000
Description:	Sets the proportional gain of the DC quantity controller for the overmodulation ran	
p3858[0...n]	DC quantity controller integral time / DC_ctrl Tn	
	Access level: 3 Calculated: CALC_MOD_CON	Data type: FloatingPoint32
	Can be changed: T, U Scaling: -	Dynamic index: DDS, p0180
	Unit group: - Unit selection: -	Function diagram: 6797
	Min: Max:	Factory setting:
	0.00 [ms] 1000.00 [ms]	2.00 [ms]
Description:	Sets the integral time for the DC quantity controller.	
r3859.0... 1	CO/BO: Compound braking/DC quantity control status word / Comp-br/DC_ctr ZSW	
	Access level: 3 Calculated: -	Data type: Unsigned32
	Can be changed: - Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: 6797
	Min: Max:	Factory setting:
	- -	-
Description:	Display and connector output for the status word of the compound braking and DC quantity control.	
Bit field:	Bit Signal name 1 signal	0 signal FP
	00 Compound braking active Yes	No
	01 DC quantity control active in the overmodulation range Yes	No
Dependency:	See also: p3856	

p3884	CI: ESM setpoint technology controller / ESM setp tech_ctrl		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7033
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoint for p3881 = 4 (technology controller) in the essential service mode (ESM). See also: p3881		
Dependency:			
	Note		
	ESM: Essential Service Mode		
	For p3884 = 0:		
	The technology controller uses the setpoint from p2253.		
r3887[0...1]	ESM number of activations/faults / ESM act/fault qty		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7033
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of activations and faults that have occurred for the essential service mode (ESM).		
Index:	[0] = Activation of the essential service mode		
	[1] = Faults during the essential service mode		
Dependency:	See also: p3888		
	Note		
	ESM: Essential Service Mode		
p3888	ESM reset number of activations/faults / ESM act/F qty r		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7033
	Min:	Max:	Factory setting:
	0	1	0
Description:	Setting to reset the number of activations and faults that have occurred for the essential service mode (ESM). 1: counter reset active ($\mathrm{r} 3887[0,1]$) 0 : inactive		
Dependency:	See also: r3887		
	Note		
	ESM: Essential Service Mode		
	The parameter is automatically reset to zero after the counter has been reset.		
r3889.0... 10	CO/BO: ESM status word / ESM ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7033
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display and BICO output for the status word of the essential service mode (ESM).		
Bit field:	Bit Signal name		0 signal \quad FP

Description:	Displays the commissioning steps that have been carried out.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Motor/control parameters calculated ($03340=1, \mathrm{p} 3900>0$)		No	-
	02	Motor data identification carried out at standstill (p1910=1)	Yes	No	-
	03	Rotating measurement carried out (p1960 = 1, 2)	Yes	No	-
	08	Identified motor data are automatically backed up	Yes	No	-
	11	Automatic parameterization as Standard Drive Control	Yes	No	-
	12	Automatic parameterization as Dynamic Drive Control	Yes	No	-
	14	First motor commissioning	Yes	No	-
	15	Equivalent circuit diagram parameters changed	Yes	No	-
	18	Circle identification executed	Yes	No	-
	The individual bits are only set if the appropriate action has been initiated and successfully completed. The identification final display is reset when changing the type plate parameters.				
r3926[0...n]	Voltage generation alternating base voltage amplitude / U_gen altern base				
	Access level: $4 \quad$ Calculated: -			Data type: FloatingPoint32	
	Can be changed: -			Dynamic index: DDS, p0180	
	Unit group: - Unit selection:			Function diagram: -	
	Min:			Factory setting:	
	-[V] - [V]			- [V]	
Description:	Displays the base voltage for the alternating voltage in the context of motor data identification. 0 :				
	No alternating voltages. The function is deactivated. <0:				
	Automatic determination of the base voltage and wobbulation / self-setting based on the converter and the connected motor.				
	Otherwise:				
	Base voltage for alternating current generation in volts (wobbulation active).				
r3927[0...n]	Motor data identification control word / MotID STW				
	Access level: 3		Calculated: CALC_MOD_ALL	Data type: Unsigned32	
	Can be changed: - Scaling: -			Dynamic index: DDS, p0180	
	$\begin{array}{ll}\text { Unit group: - } & \text { Unit selection: } \\ \text { Min: } & \text { Max: }\end{array}$			Function diagram: -	
				Factory setting:	
				- - -	
Description:	Successfully completed component of the last motor data identification carried out.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Stator inductance estimate no measurement	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measurement	Yes	No	-
	05	Determine Tr and Lsig evaluation in the time range	Yes	No	-
	06	Activate vibration damping	Yes	No	-
	07	Deactivate vibration detection	Yes	No	-
	11	Deactivate pulse measurement Lq Ld	Yes	No	-
	12	Deactivate rotor resistance Rr measurement	Yes	No	-
	14	Deactivate valve interlocking time measurement	Yes	No	-
	15	Determine only stator resistance, valve voltage fault, dead time	Yes	No	-

	16	Short motor identification (lower quality)	Yes	No
	17	Measurement without control parameter calculation	Yes	No

9.2 Parameter list

04	Wobble U_generation to determine dynamic leakage inductance	Yes	No
05	Wobble U_generation to determine magnetizing inductance	Yes	No
08	Alternating U_generate to determine dead-time correction	Yes	No
09	Alternating U_generate to determine stator resistance	Yes	No
10	Alternating U_generate to determine rotor time constant	Yes	No
11	Alternating U_generate to determine leakage inductance	Yes	No
12	Alternating U_generate to determine dyn. leakage inductance	Yes	Yes
13	Alternating U_generate to determine magnetizing		No

r3930[0...4]	Power unit EEPROM characteristics / PU characteristics		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	-	-	
	Displays the characteristics (A5E number and versions) of the power unit.		
	[0]: A5E number xxxx (A5Exxxxyyyy)		
	[1]: A5E number yyyy (A5Exxxxyyy)		
	[2]: File version (logistic)		
	[3]: File version (fixed data)		
	[4]: File version (calib data)		

p3931	Options for electrical cabinets / Opt elec cabinet			
	Access level: 3		Calculated: -	Data type: Unsigned32
	Can be changed: T, U		Scaling: -	Dynamic index:-
	Unit group: -		Unit selection: -	Function diagram:
	Min:		Max:	Factory setting:
	-		-	0000000000000000 bin
Description:	Sets the options for the Power Module 330 (PM330).			
Bit field:	Bit	Signal name	1 signal	0 signal \quad FP
	00	Line filter	Yes	No
	01	Line Harmonics Filter	Yes	No
	02	du/dt filter compact Voltage Peak Limiter	Yes	No
	03	Motor reactor	Yes	No
	04	du/dt filter plus Voltage Peak Limiter	Yes	No
	05	w/o line reactor	Yes	No
	07	EmergOff button	Yes	No
	08	Emergency Stop category 0	Yes	No
	09	Emergency Stop category 1	Yes	No
	10	Emergency Stop category 124 V	Yes	No
	11	Braking Module ($25 \mathrm{~kW} \mathrm{)}$	Yes	No
	12	Braking Module ($50 \mathrm{~kW} \mathrm{)}$	Yes	No

	$\begin{array}{lll}\text { Description: } & \text { Sets the mode to change over the master control / LOCAL mode. } \\ \text { Value: } & 0: & \text { Change master control for STW1.0 }=0 \\ & 1: & \text { Change master control in operation }\end{array}$	Change master control for STW1.0 $=0$		
		Change master control in operation		
	\} \ DANGER			
	When changing the master control in operation, the drive can manifest undesirable behavior-e.g. it can accelerate up to another setpoint.			
r3986	Number of parameters / Param count			
	Access level: 3		Calculated: -	Data type: Unsigned16
	Can be changed: -		Scaling: -	Dynamic index: -
	Unit group: -		Unit selection: -	Function diagram: -
	Min:		Max:	Factory setting:
	-		-	-
Description:	Displays the number of parameters for this drive unit.			
	The number comprises the device-specific and the drive-specific parameters.			
Dependency:	See also: r0980, r0981, r0989			
r3988[0...1]	Boot state / Boot_state			
	Access level: 4		Calculated: -	Data type: Integer16
	Can be changed: -		Scaling: -	Dynamic index: -
	Unit group: -		Unit selection: -	Function diagram: -
	Min:		Max:	Factory setting:
	0		800	-
Description:	Index 0:			
	Displays the boot state.			
	Index 1:			
	Displays the partial boot state			
Value:	0: Notactive			
	1: Fatal fault			
	10:	Fault		
	20:	Reset all parameters		
	30:	Drive object modified		
	40:	Download using commissioning software		
	50:	Parameter download using commissioning software		
	90:	Reset Control Unit		
	100:	Start initialization		
	101:	Only for internal Siemens use		
	110:	Instantiate Control Unit basis		
	111:	Only for internal Siemens use		
	112:	Only for internal Siemens use		
	113:	Only for internal Siemens use		
	114:	Only for internal Siemens use		
	115:	Parameter download using commissioning software		
	117:	Only for internal Siemens use		
	150:	Wait until Power Module is determined		
	160:	Evaluate Power Module		
	170:	Instantiate Control Unit reset		
	180:	Only for internal Siemens use		
	200:	200: First commissioning		

$210:$	Create drive packages	
$250:$	Wait for fault acknowledge	
$325:$	Wait for input of drive type	
$350:$	Determine drive type	
$360:$	Only for internal Siemens use	
$370:$	Wait until po010 is set to 0	
$380:$	Only for internal Siemens use	
$550:$	Call conversion functions for parameter	
$625:$	Wait for non-cyclic start	
$650:$	Start cyclic operation	
$660:$	Evaluate drive commissioning status	
$670:$	Only for internal Siemens use	
$680:$	Only for internal Siemens use	
$690:$	Wait for non-cyclic start	
$700:$	Save parameters	
$725:$	Wait for cyclic	
$740:$	Check the ability to operate	
$745:$	Start cyclic calculations	
$750:$	Interrupt enable	
$800:$	Initialization finished	
$[0]=$ System		
$[1]=$ Partial boot		
Index:		

r3996[0...1]	Parameter write inhibit status / Par_write inhib st		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Max:	Function diagram: -
	Min:	-	Factory setting:
Description:	Displays whether writing to parameters is inhibited.		
	r3996[0] = 0:		
	Parameter write not inhibited.		
	$0<r 3996[0]<100:$		
	Parameter write inhibited. The value shows how the calculations are progressing.		
	$[0]=$ Progress calculations		
	$[1]=$ Cause		

Note

For index [1]:
Only for internal Siemens troubleshooting.
r4022.0... 3
G120X_DP (PM330),
G120X_PN (PM330),
G120X_USS (PM330)

Description: Bit field:

CO/BO: PM330 digital inputs status / PM330 DI status

Access level: 3	Calculated: -	Data type: Unsigned32
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
-	-	-

Displays the status of the digital inputs of the PM330 power unit.
Bit Signal name 1 signal

00 DI 0 (X9.3, external alarm)

1 signal
High

0 signal Low

Dependency:	The setpoint for the input signals is specified using p4096. See also: p4096
	Note This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input
p4096	PM330 digital inputs simulation mode setpoint / PM330 DI sim setp
G120X_DP (PM330), G120X_PN (PM330), G120X_USS (PM330)	Access level: 3 Calculated:- Data type: Unsigned32 Can be changed: T, U Scaling: - Dynamic index:- Unit group:- Unit selection: - Function diagram: 2275 Min: Max: Factory setting: - - 0000 bin
Description: Bit field:	Sets the setpoint for the input signals in the digital input simulation mode of the PM330 power unit. Bit Signal name $\mathbf{1}$ signal $\mathbf{0}$ signal FP 00 DI $0($ X9.3, external alarm $)$ High Low - 01 DI 1 (X9.4, external fault) High Low - 02 DI $2($ X9.5, Emergency Off category 0) High Low - 03 DI $3($ X9.6, Emergency Off category 1) High Low -
Dependency:	The simulation of a digital input is selected using p4095. See also: p4095 Note This parameter is not saved when data is backed-up (p0971, p0977). DI: Digital Input
p5350[0...n]	Mot_temp_mod 1/3 boost factor at standstill / Standst boost_fact
Description:	Sets the boost factor for the copper losses at standstill for motor temperature models 1 and 3. The entered factor is active for speed $\mathrm{n}=0$ [rpm]. This factor is linearly reduced down to 1 between speeds $\mathrm{n}=0 \ldots 1$ [rpm]. The following values are required to calculate the boost factor: - stall current (I_0, p0318, catalog value) - thermal stall current (I_th0, catalog value) The boost factor is calculated as follows: - p5350 = (।_0 / I_th0)^2
Dependency:	See also: p0318, p0612, p5390, p5391 See also: F07011, A07012, F07013, A07014
	NOTICE When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
	Note Temperature model 1 (I2t): The following applies for firmware version <4.7 SP6 or p0612.8 $=0$: - parameter p5350 is not active. Internally, a fixed boost factor of 1.333 is used as basis for the calculation. The following applies from firmware version 4.7 SP6 and p0612.8 $=1$: - parameter p5350 becomes active as described above.

r5389.0... 8	CO/BO: Mot_temp status word faults/alarms / Mot_temp ZSW F/A					
	Access level: 2		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dynamic index:-	
	Unit group: -		Unit selection: -		Function diagram: 8016	
	Min:		Max:		Factory setting:	
	-		-		-	
Description:	Display and BICO output for faults and alarms of the motor temperature monitoring.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Motor temper		Yes	No	-
	01	Motor temper		Yes	No	-
	02	Encoder temp		Yes	No	-
	04	Motor temper		Yes	No	-
	05	Motor temper		Yes	No	-
		Current reduc		Yes	No	-
Dependency:	See also: r0034, p0612, r0632					
	See also: F07011, A07012, A07910					

Note

For bit 00, 04:
The motor temperature is measured using a temperature sensor (p0600, p0601). When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 01, 05 :
The motor temperature is monitored based on a temperature model (p0612). When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 02:
The encoder temperature is measured using a temperature sensor. When the bit is set, a high temperature is identified, and a corresponding signal is additionally output.
For bit 08:
When reaching the motor temperature alarm threshold, reduction of the maximum current is set as response ($\mathrm{p} 0610=$ 1). When the bit is set, reduction of the maximum current is active.

p5390[0...n]	Mot_temp_mod 1/3 alarm threshold / A thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 21_1	Unit selection: p0505	Function diagram: 8017
	Min:	Max:	Factory setting:
	$0.0\left[{ }^{\circ} \mathrm{C}\right]$	200.0 [$\left.{ }^{\circ} \mathrm{C}\right]$	110.0 [${ }^{\text {C }}$]
Description:	Sets the alarm threshold for monitoring the motor temperature for motor temperature models 1 and 3.		
	The stator winding temperature (r0632) is used to initiate the signal.		
	The following applies for temperature model 1 (I2t):		
	- only effective from firmware version 4.7 SP6 and p0612.8 $=1$.		
	- Alarm A07012 is output after the alarm threshold is exceeded.		
	- when commissioning a catalog motor for the first time, the threshold value is copied from p0605 to p5390.		
	The following applies for temperature model 3:		
	- after the alarm threshold is exceeded, alarm A07012 is output and a calculated delay time ($\mathrm{t}=\mathrm{p} 5371 / \mathrm{p} 5381$) is started.		
	- if the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output.		
Dependency:	See also: r0034, p0605, p0612, r0632, p5391		
	See also: F07011, A07012, F07013, A07014		

NOTICE

When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.

	[0] = Reserved				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Reserved	Yes	No	-
	Note				
	Pe: PROFlenergy profiles				
r5613.0... 1	CO/BO: Pe energy-saving active/inactive / Pe save act/inact				
G120x_PN	Access level: 3		Calculated: -	Data type: Unsigned8	
	Can be changed: -		Scaling: -	Dynamic index:-	
	Unit group:-		Unit selection:-	Function diagram: 2382	
	Min:		Max:	Factory setting:	
	-		-	-	
Description: Bit field:	Display and binector output for the state display PROFlenergy energy saving active or inactive.				
	Bit	Signal name	1 signal	0 signal	FP
	00	Pe active	Yes	No	-
	01	Pe inactive	Yes	No	-
	Note				
	Bit 0 and bit 1 are inverse of one another.				
	Pe: PROFlenergy profiles				
p5614	BI: Pe set switching on inhibited signal source / Pe sw-on_inh s_s				
G120X_PN	Access level: 3		Calculated: -	Data type: Unsigned32 / Binary	
	Can be changed: T		Scaling: -	Dynamic index: -	
	Unit group:-		Unit selection: -	Function diagram: 2382	
	Min:		Max:	Factory setting:	
	-		-	0	
Description: Dependency:	Sets the signal source to set in the PROFIdrive state S1 "switching on inhibited".				
	See also: r5613				
	Note				
	Pe: PROFlenergy profiles				
p7610[0...78]	Fieldbus interface BACnet device name / BACnet device name				
G120X_USS	Access level: 3		Calculated: -	Data type: Unsigned8	
	Can be changed: T, U		Scaling: -	Dynamic index: -	
	Unit group: -		Unit selection: -	Function diagram: 9310	
	Min:		Max:	Factory setting:	
	-		-	-	
Description:	Sets the object name for the BACnet device object.				
	This name must be unique within the complete BACnet network.				
	The object name is only preassigned with device name and serial number the first time that the system runs up, e.g. "SINAMICS G120 CU230P-2 HVAC - XAB812-005806"				
	Note				
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. $p 7610[x]=0$ defines the end of the name. All subsequent indices are ignored. The parameter is not influenced by setting the factory setting.				

r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the actual serial number of the Control Unit.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	For the commissioning software, the ASCII characters are displayed uncoded.		
Dependency:	See also: p7765, p7766, p7767, p7768		
	NOTICE		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		

Note

KHP: Know-How Protection

p7759[0...19]	KHP Control Unit reference serial number / KHP CU ref ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	-	-	
	Sets the reference serial number for the Control Unit.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt		
Dependency:	the project to the modified hardware.		

Note

KHP: Know-How Protection

- the OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".
- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.
r7760.0... 12 CO/BO: Write protection/know-how protection status/ Wr_prot/KHP stat

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
-	-	-

Description: Displays the status for the write protection and know-how protection.

Bit	Signal name	1 signal
00	Write protection active	Yes
01	Know-how protection active	Yes
02	Know-how protection temporarily withdrawn	Yes
03	Know-how protection cannot be deactivated	Yes
04	Extended copy protection is active	Yes
05	Basic copy protection is active	Yes
06	Trace and measuring functions for diagnostic purposes active	Yes
12	Reserved Siemens	Yes
See also: p7761, p7765, p7766, p7767, p7768		

0 signal	FP
No	-

14:
15:
16:
17ror when importing, memory card not available
$17:$

NOTICE	Error when importing, no NVRAM data available
For value $=2,3:$	
These actions are only possible when pulses are inhibited.	

Note
After the action has been successfully completed, the parameter is automatically set to zero.
The actions importing and deleting NVRAM data immediately initiate a warm restart.
If the procedure was not successfully completed, then an appropriate fault value is displayed (p7775 >= 10).

r7841[0...15]	Power Module serial number / PM serial no.		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Max:	Function diagram: -
	Min:	Factory setting:	
Description:	-	-	
	Displays the actual serial number of the Power Module.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	NOTICE		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		

r7843[0...20]	Memory card serial number / Mem_card ser.no		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	-	Factory setting:
Description:	-	Displays the actual serial number of the memory card.	
	The individual characters of the serial number are displayed in the ASCII code in the indices.		

NOTICE

An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.

```
Note
Example: displaying the serial number for a memory card:
r7843[0] = 49 dec --> ASCII characters = "1" --> serial number, character 1
r7843[1] = 49 dec --> ASCII characters = "1" --> serial number, character 2
r7843[2] = 49 dec --> ASCII characters = "1" --> serial number, character 3
r7843[3] = 57 dec --> ASCII characters = "9" --> serial number, character 4
r7843[4] = 50 dec --> ASCII characters = "2" --> serial number, character 5
r7843[5] = 51 dec --> ASCII characters = "3" --> serial number, character 6
r7843[6] = 69 dec --> ASCII characters = "E" --> serial number, character 7
r7843[7] = 0 dec --> ASCII characters = " " --> serial number, character 8
...
r7843[19] = 0 dec --> ASCII characters = " " --> serial number, character 20
r7843[20] = 0 dec
Serial number = 111923E
```


Note

For index [0]:
Displays the internal firmware version (e.g. 04402315).
This firmware version is the version of the memory card/device memory and not the CU firmware (r0018), however, normally they have the same versions.
For index [1]:
Displays the external firmware version (e.g. 04040000 -> 4.4).
For automation systems with SINAMICS Integrated this is the runtime version of the automation system.
For index [2]:
Displays the internal firmware version of the parameter backup.
With this CU firmware version, the parameter backup was saved, which was used when powering up.

r7901[0...81] Sampling times / t_sample

Access level: 4	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: -	Dynamic index: -
Unit group: -	Unit selection: -	Function diagram: -
Min:	$-[\mu s]$	Factory setting:
$-[\mu s]$	$-[\mu s]$	
Displays the sampling times currently present on the drive unit.		
$r 7901[0 \ldots 63]:$ sampling times of hardware time slices.		
$r 7901[64 \ldots 82]:$ sampling times of software time slices.		
$r 7901[\mathrm{x}]=0$, means the following:		
No methods have been registered in the time slice involved.		

	Note		
	The basis for the software time slices is T_NRK = p7901[13].		
r7903	Hardware sampling times still assignable / HW t_samp free		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the number of hardware sampling times that can still be assigned.		
	These free sampling times can be used by OA applications such as DCC or FBLOCKS.		
	Note		
	OA: Open Architecture		

p8402[0...8]	RTC daylight saving time setting / RTC DST		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	23	[0] 0
			[1] 3
			[2] 6
			[3] 7
			[4] 2
			[5] 10
			[6] 6
			[7] 7
			[8] 3
Description:	Setting the daylight saving time.		
	The factory setting corresponds to the time change for central european summer time (CEST). You only have to set p8402[0] = 1 to activate CEST.		
Index:	[0] = Difference (0 ... 3 hours)		
	[1] = Start of month (1 ... 12)		
	[2] = Start of the week of the month ($1 . .4$ 4, 6)		
	[3] = Start of weekday ($1 . .7$ 7)		
	[4] = Start of hour (0... 23)		
	[5] = End of month (1 ... 12)		
	[6] = End of the week of the month ($1 \ldots 4,6$)		
	[7] = End of weekday (1 ... 7)		
	[8] = End of hour (0 ... 23)		

Note

The switchover to daylight saving time only effects the RTC and DTC parameters (p8400 ... p8433).
When displaying the fault time and alarm time, the switchover to daylight saving time is not taken into account.
There must be at least two months between the start and end of daylight saving time.
For index 0 :
0 : daylight saving time switchover deactivated
1 ... 3: time difference
For indices 1 and 5:
1 = January, ... , 12 = December
For indices 2 and 6:
$1=$ from the 1 st to the 7 th of the month
$2=$ from the 8 th to the 14 th of the month
$3=$ from the 15 th to the 21 st of the month
$4=$ from the 22 nd to the 28 th of the month
$6=$ the last 7 days of the month
For indices 3 and 7:
1 = Monday, ... , $7=$ Sunday

RTC actual daylight saving time difference / RTC act DST

Access level: 3
Can be changed: -
Unit group: -
Min:

Calculated: -
Scaling: -
Unit selection: -
Max:

-

Description: Displays the actual time difference in hours for the daylight saving time

Data type: Unsigned16
Dynamic index: -
Function diagram: -
Factory setting:

Description:	Sets the activation/deactivation of the parameters for timers DTC1, DTC2, DTC3. For p8409 = 0, the following applies: DTC1 parameters p8410, p8411, p8412 are inactive and can be set. Binector output r8413.0 $=0$. DTC2 parameters p8420, p8421, p8422 are inactive and can be set. Binector output r8423.0 $=0$. DTC3 parameters p8430, p8431, p8432 are inactive and can be set. Binector output r8433.0 $=0$. For p8409 = 1, the following applies: DTC1 parameters p8410, p8411, p8412 are active and cannot be set. Binector outputs 88413 are active. DTC2 parameters p8420, p8421, p8422 are active and cannot be set. Binector outputs 88423 are active. DTC3 parameters p8430, p8431, p8432 are active and cannot be set. Binector outputs 88433 are active.
Value:	$0:$ DTC inactive and can be set 1: DTC active and cannot be set
Dependency:	See also: p8410, p8411, p8412, r8413, p8420, p8421, p8422, r8423, p8430, p8431, p8432, r8433 Note DTC: Digital Time Clock (timer) RTC: Real-time clock
p8410[0...6]	RTC DTC1 weekday of activation / RTC DTC1 day act
Description:	Sets the weekday on which timer 1 is activated (DTC1). The switch-on/off time is set in p8411/p8412 and the result displayed via binector output r8413.
Value:	$0:$ Weekday deactivated $1:$ Weekday activated
Index:	$\begin{aligned} & {[0]=\text { Monday }} \\ & {[1]=\text { Tuesday }} \\ & {[2]=\text { Wednesday }} \\ & {[3]=\text { Thursday }} \\ & {[4]=\text { Friday }} \\ & {[5]=\text { Saturday }} \\ & {[6]=\text { Sunday }} \end{aligned}$
Dependency:	See also: p8409, p8411, p8412, 88413
	NOTICE
	This parameter can only be changed when p8409 = 0 .
	Note DTC: Digital Time Clock (timer) RTC: Real-time clock
p8411[0...1]	RTC DTC1 switch-on time / RTC DTC1 t_ON
	Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: T Scaling: - Dynamic index: - Unit group: - Unit selection:- Function diagram: - Min: Max: Factory setting: 0 59 0
Description:	Sets the switch-on time in hours and minutes for time switch 1 (DTC1). BO: $\mathrm{r} 8413=1$ signal: The condition for the set weekday (p 8410) and switch-on time has been fulfilled.

Index:	[0] = Monday	
	[1] = Tuesday	
	[2] = Wednesday	
	[3] = Thursday	
	[4] = Friday	
	[5] = Saturday	
	[6] = Sunday	
Dependency:	See also: p8409, p8431, p8432, r8433	
	NOTICE	
	This parameter can only be changed when $\mathrm{p} 8409=0$.	
	Note	
	DTC: Digital Time Clock (timer)	
	RTC: Real-time clock	
p8431[0...1]	RTC DTC3 switch-on time / RTC DTC3 t_ON	
	Access level: 3 Calculated: -	Data type: Unsigned16
	Can be changed: T Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0 59	0
Description:	Sets the switch on time in hours and minutes for timer 3 (DTC3).	
	BO: $88433=1$ signal:	
	The condition for the set weekday (p8430) and switch-on time has been fulfilled.	
Index:	[0] = Hour (0 ... 23)	
	[1] = Minute (0... 59)	
Dependency:	See also: p8409, p8430, r8433	
	NOTICE	
	This parameter can only be changed when p8409 $=0$.	
	Note	
	DTC: Digital Time Clock (timer)	
	$\underline{\text { RTC: Real-time clock }}$	
p8432[0...1]	RTC DTC3 off time / RTC DTC3 t_OFF	
	Access level: 3 Calculated:-	Data type: Unsigned16
	Can be changed: T Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	0 59	0
Description:	Sets the switch off time in hours and minutes for timer 3 (DTC3).	
	BO: $88433=0$ signal:	
	The condition for the set weekday (p8430) and switch-off time has been fulfilled.	
Index:	[0] = Hour (0 ... 23)	
	$[1]=$ Minute (0 .. 59)	
Dependency:	See also: p8409, p8430, r8433	
	NOTICE	
	This parameter can only be changed when $\mathrm{p} 8409=0$.	

Access level: 3
Can be changed: -
Unit group: 3_1
Min:

- [rpm]

For the manual mode: the speed setpoint entered from the IOP is displayed
p8542[0...15] BI: Active STW1 in the BOP/IOP manual mode / STW1 act OP

Access level: 3
Can be changed: T
Unit group:
Min:

Calculated:
Scaling:
Unit selection:
Max:

Data type: Unsigned32 / Binary
Dynamic index: -
Function diagram: -
Factory setting:
[0] 8540.0
[1] 8540.1
[2] 8540.2
[3] 8540.3
[4] 8540.4
[5] 8540.5
[6] 8540.6
[7] 8540.7
[8] 8540.8
[9] 8540.9
[10] 8540.10
11] 8540.11
12] 8540.12
13] 8540.13
[14] 8540.14
[15] 8540.15

Description: Index:

For the manual mode: Setting of the signal sources for STW1 (control word 1).
[0] = ON/OFF1
[1] = OC / OFF2
[2] = OC / OFF3
[3] = Enable operation
[4] = Enable ramp-function generator
[5] = Continue ramp-function generator
[6] = Enable speed setpoint
[7] = Acknowledge fault
[8] = Jog bit 0
[9] = Jog bit 1
[10] = Master control by PLC
[11] = Direction reversal (setpoint)
[12] = Enable speed controller
[13] = Motorized potentiometer raise
[14] = Motorized potentiometer lower
[15] = CDS bit 0

p8543	CI: Active speed setpoint in the BOP/IOP manual mode / N_act act OP		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	8541[0]
Description:	For the manual mode: Sets the signal source for the speed setpoint.		
p8546	CI: Active technology setpoint in the IOP manual mode / T_set act IOP		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	8545[0]
Description:	Sets the signal source for the technology controller setpoint.		
p8552	IOP speed unit / IOP speed unit		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	1	2	1
Description:	Sets the unit for displaying and entering speeds.		
Value:	1: Hz		
	2: rpm		
p8558	BI: Select IOP manual mode / Sel IOP man mode		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
r8570[0...39]	Macro drive object / Macro DO		
	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the macro file saved in the appropriate directory on the memory card/device memory.		
Dependency:	See also: p0015		
	Note		

r8571[0...39]	Macro Binector Input (BI) / Macro BI		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
	Note		
	For a value $=9999999$, the following applies: The read operation is still running.		
r8572[0...39]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	See also: p1000		
	Note		
	For a value $=9999999$, the following applies: The read operation is still running.		
r8573[0...39]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
	Note		
r8585	Macro execution actual / Macro executed		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the macro currently being executed on the drive object. See also: p0015, p1000, r8570, r8571, r8572, r8573		
Dependency:			
p8805	Identification and maintenance 4 configuration / I\&M 4 config		
G120X_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the configuration for the content of identification and maintenance 4 (I\&M 4, p8809).		
Value:	0: \quad Standard value for I\&M 4 (p8809)		

Dependency:	1: User value for I\&M 4 (p8809)	
	For $\mathrm{p} 8805=0$, if the user writes at least one value in p8809[0...53], then p8805 is automatically set to $=1$	
	Note	
	For p8805 = 0:	
	PROFINET I\&M 4 (p8809) contains the information for the SI change tracking.	
	For $\mathrm{p} 8805=1$:	
	$\underline{\text { PROFINET I \& } 4 \text { (p8809) contains the values written by the user. }}$	
p8806[0...53]	Identification and Maintenance $1 / \mathrm{I} \& \mathrm{M} 1$	
G120X_PN	Access level: 3 Calculated: -	Data type: Unsigned8
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1).	
	This information is known as "System identifier" and "Location identifier".	
Dependency:	See also: p8807, p8808	
	NOTICE	
	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).	
	Note	
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.	
	For p8806[0...31]:	
	System identifier.	
	For p8806[32...53]:	
	Location identifier.	
p8807[0...15]	Identification and Maintenance 2 / I\&M 2	
G120X_PN	Access level: 3 Calculated: -	Data type: Unsigned8
	Can be changed: T, U Scaling: -	Dynamic index: -
	Unit group: - Unit selection: -	Function diagram: -
	Min: Max:	Factory setting:
	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 2" (I\&M 2).	
	This information is known as "Installation date".	
Dependency:	See also: p8806, p8808	
	Note	
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. For p8807[0...15]:	
	Dates of installation or first commissioning of the device with the following format options (ASCII): YYYY-MM-DD	
	or	
	YYYY-MM-DD hh:mm	
	- YYYY: year	
	- MM: month $01 \ldots 12$	
	- DD: day $01 . . .31$	
	- hh: hours $00 \ldots 23$	
	- mm: minutes $00 . .59$	
	Separators must be placed between the individual data, i.e. a hyphen '-', space ' ' and colon ' $:$ '.	

p8808[0...53]	Identification and Maintenance 3 / I\&M 3		
G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 3" (I\&M 3). This information is known as "Supplementary information".		
Dependency:	See also: p8806, p8807		
	NOTICE		
	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		
	Note		
	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
	For p8808[0...53]:		
	Any supplementary information and comments (ASCII).		
p8809[0...53]	Identification and Maintenance 4 / I\&M 4		
G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0000 bin	11111111 bin	0000 bin
Description:	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4). This information is known as "Signature".		
Dependency:	This parameter is preassigned as standard (see note). After writing information to p 8809 , p8805 is automatically set to $=1$. See also: p8805		
	Note		
	For p8805 = 0 (factory setting) the following applies:		
	Parameter p8809 contains the information described below.		
	For p8809[0...3]:		
	Contains the value from r9781[0] "SI change tracking checksum functional".		
	For p8809[4...7]:		
	Contains the value from r9782[0] "SI change tracking time stamp checksum functional". For p8809[8...53]:		
	Reserved.		
r8854	PROFINET state / PN state		
G120X_PN	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	-
Description:	State display for PROFINET.		
Value:	0 : No initialization		
	1: Fatal fault		
	2: Initialization		
	3: Send configuration		
	4: Receive configuration		


```
Note
List of the SINAMICS Device IDs:
0501 hex: S120/S150
0504 hex: G130/G150
050A hex: DC MASTER
050C hex: MV
050F hex: G120P
0510 hex: G120C
0 5 1 1 \text { hex: G120 CU240E-2}
0512 hex: G120D
0513 hex: G120 CU250S-2 Vector
0514 hex: G110M
0523 hex: G120X
0529 hex: G115D
```

p8920[0...239]	PN Name of Station / PN Name Stat		
G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Sets the station name for the onboard PROFINET interface on the Control Unit. The actual station name is displayed in r8930.		
Dependency:	See also: p8925, r8930		
	Note An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. PN: PROFINET		
p8921[0...3]	PN IP address / PN IP addr		
G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	0
Description:	Sets the IP address for the onboard PROFINET interface on the Control Unit. The actual IP address is displayed in r8931.		
Dependency:	See also: p8925, r8931		
	Note The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting.		
p8922[0...3]	PN Default Gateway / PN Def Gateway		
G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	255	0
Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit. The actual standard gateway is displayed in r8932.		

r9406[0...19]	PS file parameter number parameter not transferred / PS par_no n transf		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the parameters that were not able to be transferred when reading the parameter back-up files (PS files) from the non-volatile memory (e.g. memory card).		
	$\mathrm{r} 9406[0]=0$		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[0...x] > 0		
	--> indicates the parameter number in the following cases:		
	- parameter, whose value was not able to be completely accepted.		
	- indexed parameter, where at least 1 index was not able to be accepted. The first index that is not transferred is displayed in r9407.		
Dependency:	See also: r9407, r9408		
	Note		
	All indices from r9406 to r9408 designate the same parameter.		
	r9406[x] parameter number, parameter not accepted		
	r9407[x] parameter index, parameter not accepted		
	r9408[x] fault code, parameter not accepted		
r9407[0...19]	PS file parameter index parameter not transferred / PS parameter index		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card).		
	If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in r9406[n] and the first index that was not transferred is displayed in r9407[n].		
	$\mathrm{r} 9406[0]=0$		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[n] > 0		
	--> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred.		
Dependency:	See also: r9406, r9408		
	Note		
	All indices from r9406 to r9408 designate the same parameter.		
	r9406[x] parameter number, parameter not accepted		
	r9407[x] parameter index, parameter not accepted		
	r9408[x] fault code, parameter not accepted		
r9408[0...19]	PS file fault code parameter not transferred / PS fault code		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Only for internal Siemens service purposes.		
Dependency:	See also: r9406, r9407		

9.2 Parameter list

p11026	Free tec_ctrl 0 unit selection / Ftec0 unit sel			
	Acce	l: 1	Calculated: -	Data type: Integer16
	Can	nged: C2(5)	Scaling: -	Dynamic index: -
	Unit		Unit selection: -	Function diagram: -
	Min:		Max:	Factory setting:
	1		48	1
Description:	Sets the unit for the parameters of the free technology controller 0.			
Value:	1:	\%		
	2:	1 referred no		
	3:	bar		
	4:	${ }^{\circ} \mathrm{C}$		
	5:	Pa		
	6:	\|tr/s		
	7:	$\mathrm{m}^{3} / \mathrm{s}$		
	8 :	Itr/min		
	9:	$\mathrm{m}^{3} / \mathrm{min}$		
	10:	ltr/h		
	11:	$\mathrm{m}^{3} / \mathrm{h}$		
	12:	kg / s		
	13:	kg/min		
	14:	kg / h		
	15:	t/min		
	16:	t/h		
	17:	N		
	18:	kN		
	19:	Nm		
	20:	psi		
	21:	${ }^{\circ} \mathrm{F}$		
	22:	gallon/s		
	23:	inch ${ }^{3} / \mathrm{s}$		
	24:	gallon/min		
	25:	inch ${ }^{3} / \mathrm{min}$		
	26:	gallon/h		
	27:	inch ${ }^{3} / \mathrm{h}$		
	28:	lb / s		
	29:	$\mathrm{lb} / \mathrm{min}$		
	30:	lb / h		
	31:	Ibf		
	32:	lbf ft		
	33:	K		
	34:	rpm		
	35:	parts/min		
	36:	m / s		
	37:	$\mathrm{ft}^{3} / \mathrm{s}$		
	38:	$\mathrm{ft}^{3} / \mathrm{min}$		
	39:	BTU/min		
	40:	BTU/h		
	41:	mbar		
	42:	inch wg		

p11053	CI: Free tec_ctrl 0 setpoint signal source / Ftec0 setp s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoint of the free technology controller 0.		
p11057	Free tec_ctrl 0 setpoint ramp-up time / Ftec0 setp t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time f	troller 0.	
Dependency:	See also: p11058		
	Note		
	The ramp-up time is referred to 100%.		
p11058	Free tec_ctrl 0 setpoint ramp-down time / Ftec0 setp t_r-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time for the free technology controller 0. See also: p11057		
Dependency:			
	Note		
	The ramp-down time is referred to 100%.		
r11060	CO: Free tec_ctrl 0 setpoint after ramp-function generator / Ftec0 setp aft RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]		
Description:	Display and connector o	the ramp-function genera	the free technology controller 0 .
p11063	Free tec_ctrl 0 system deviation inversion / Ftec0 sys_dev inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0		0
Description:	Sets the inversion of the system deviation of the free technology controller 0 . The setting depends on the type of control loop.		
Value:	0: No inversion		

1:
Inversion

1 CAUTION
If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!

Note

The correct setting can be determined as follows:

- inhibit free technology controller (p11200 = 0).
- increase the motor speed and in so doing, measure the actual value signal (of the free technology controller).
- if the actual value increases with increasing motor speed, then deactivate inversion.
- if the actual value decreases with increasing motor speed, then activate inversion.

If value $=0$:
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).
For value = 1:
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).

p11064	CI: Free tec_ctrl 0 actual value signal source / Ftec0 act v s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the actual value of the free technology controller 0.		
p11065	Free tec_ctrl 0 actual value smoothing time constant / Ftec0 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 0 .		
p11067	Free tec_ctrl 0 actual value upper limit / Ftec0 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 0.		
Dependency:	See also: p11064		
p11068	Free tec_ctrl 0 actual value lower limit / Ftec0 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description: Dependency:	Sets the lower limit for the actual value signal of the free technology controller 0 .		

p11071	Free tec_ctrl 0 actual value inversion / Ftec0 act v inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 0 .		
Value:	0: No inversion		
	1: Inversion		
r11072	CO: Free tec_ctrl 0 actual value after limiter / Ftec0 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 0.		
r11073	CO: Free tec_ctrl 0 system deviation / Ftec0 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_2	Unit selection: p11026	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 0 .		
p11074	Free tec_ctrl 0 differentiation time constant / Ftec0 D comp T		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 0.		
	Note		
	Value $=0$: Differentiation is deactivated.		
p11080	Free tec_ctrl 0 proportional gain / Ftec0 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 0 .		
	Note		
	$\underline{\text { Value }=0}$: The proportional gain is deactivated.		

p11085	Free tec_ctrl 0 integral time / Ftec0 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 0.		
	Note		
	Value $=0$: The integral time is disabled.		
p11091	CO: Free tec_ctrl 0 limit maximum / Ftec0 lim max		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology contron	troller 0.	
Dependency:	See also: p11092		
	Note		
	The maximum limit must always be greater than the minimum limit (p11091 > p11092).		
p11092	CO: Free tec_ctrl 0 limit minimum / Ftec0 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description: Dependency:	Sets the minimum limit of the free technology controller 0 .		
	See also: p11091		
	Note		
	The maximum limit must always be greater than the minimum limit (p11091 > p11092).		
p11093	Free tec_ctrl 0 limit ramp-up/ramp-down time / Ftec0 lim RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $T, ~ U$	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p11091, p11092) of the free technology controller 0 .		
Dependency:	See also: p11091, p11092		
	Note		
	The ramp-up/ramp-down times are referred to 100\%.		

r11094	CO: Free tec_ctrl 0 output signal / Ftec0 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 0.		
p11097	Cl : Free tec_ctrl 0 limit maximum signal source / Ftec0 lim max s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11091[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 0 .		
Dependency:	See also: p11091		
p11098	CI: Free tec_ctrl 0 limit minimum signal source / Ftec0 lim min s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11092[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 0 .		
Dependency:	See also: p11092		
p11099	CI: Free tec_ctrl 0 limit offset signal source / Ftec0 lim offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the limit offset of the free technology controller 0.		
p11100	BI: Free tec_ctrl 1 enable / Ftec1 enab		
	Access level: 2	Calculated:-	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to switch in/switch out the free technology controller 1. 1 signal: The technology controller is switched in. 0 signal: The technology controller is switched out.		

p11126	Free tec_ctrl 1 unit selection / Ftec1 unit sel			
	Acce	l: 1	Calculated: -	Data type: Integer16
	Can	nged: C2(5)	Scaling: -	Dynamic index: -
	Unit		Unit selection: -	Function diagram: 7030
	Min:		Max:	Factory setting:
	1		48	1
Description:	Sets the unit for the parameters of the free technology controller 1.			
Value:	1:	\%		
	2:	1 referred no		
	3:	bar		
	4:	${ }^{\circ} \mathrm{C}$		
	5:	Pa		
	6:	\|tr/s		
	7:	$\mathrm{m}^{3} / \mathrm{s}$		
	8:	Itr/min		
	9:	$\mathrm{m}^{3} / \mathrm{min}$		
	10:	ltr/h		
	11:	$\mathrm{m}^{3} / \mathrm{h}$		
	12:	kg/s		
	13:	kg/min		
	14:	kg / h		
	15:	t/min		
	16:	t/h		
	17:	N		
	18:	kN		
	19:	Nm		
	20:	psi		
	21:	${ }^{\circ} \mathrm{F}$		
	22:	gallon/s		
	23:	inch ${ }^{3} / \mathrm{s}$		
	24:	gallon/min		
	25:	inch ${ }^{3} / \mathrm{min}$		
	26:	gallon/h		
	27:	inch ${ }^{3} / \mathrm{h}$		
	28:	lb / s		
	29:	$\mathrm{lb} / \mathrm{min}$		
	30:	lb / h		
	31:	lbf		
	32:	lbf ft		
	33:	K		
	34:	rpm		
	35:	parts/min		
	36:	m / s		
	37:	$\mathrm{ft}^{3} / \mathrm{s}$		
	38:	$\mathrm{ft}^{3} / \mathrm{min}$		
	39:	BTU/min		
	40:	BTU/h		
	41:	mbar		
	42:	inch wg		

	43:	ft wg
	44:	m wg
	45:	\% r.h.
	46:	g/kg
	47:	ppm
	48:	$\mathrm{kg} / \mathrm{cm}^{2}$
Dependency:		$\begin{aligned} & \text { of param } \\ & 11127 \end{aligned}$

p11127	Free tec_ctrl 1 unit reference quantity / Ftec1 unit ref		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.01	340.28235E36	1.00
Description:	Sets the reference quantity for the unit of the parameters of the free technology controller 1.		
	When changing over using changeover parameter p11126 to absolute units, all of the parameters involved refer to the reference quantity.		
Dependency:	See also: p11126		

p11128	Free	tec_ctrl 1 s	samp			
	Acce	s level: 3	Calculate		Data type: In	
	Can	be changed: T	Scaling: -		Dynamic ind	
	Unit	group: -	Unit selectio		Function dia	
	Min:		Max:		Factory setti	
	0		4		2	
Description:	Sets	he sampling tim	troller 1.			
Value:		Reserve				
	1:	128 ms				
	2:	256 ms				
		512 ms				
	4:	1024 m				
r11149.0... 11	CO/	O: Free tec	c1 stat			
	Acce	s level: 3	Calculate		Data type: U	
	Can	e changed: -	Scaling: -		Dynamic ind	
	Unit	group: -	Unit selectio		Function dia	
	Min:		Max:		Factory setti	
	-		,			
Description:	Displ	ays the status w	troller 1.			
Bit field:		Signal name		1 signal	0 signal	FP
	00	Deactivated		Yes	No	-
	01	Limited		Yes	No	-
	08	Actual value a		Yes	No	-
	09	Actual value a		Yes	No	-
	10	Output at the		Yes	No	-
	11	Output at the		Yes	No	-

p11153	CI: Free tec_ctrl 1 setpoint signal source / Ftec1 setp s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoint of the free technology controller 1.		
p11157	Free tec_ctrl 1 setpoint ramp-up time / Ftec1 setp t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time for the free technology controller 1.		
Dependency:	See also: p11158		
	Note		
	The ramp-up time is referred to 100%.		
p11158	Free tec_ctrl 1 setpoint ramp-down time / Ftec1 setp t_r-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description: Dependency:	Sets the ramp-down time of the free technology controller 1.		
	See also: p11157		
	Note		
	The ramp-down time is referred to 100%.		
r11160	CO: Free tec_ctrl 1 setpoint after ramp-function generator / Ftec1 setp aft RFG		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint after the ramp-function generator of the free technology controller 1.		
p11163	Free tec_ctrl 1 system deviation inversion / Ftec1 sys_dev inv		
	Access level: 3	Calculated:-	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the system deviation of the free technology controller 1. The setting depends on the type of control loop.		
Value:	0 : No inversion		

Inversion

1 CAUTION
If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can
become unstable and can oscillate!

Note

The correct setting can be determined as follows:

- inhibit free technology controller (p11200 = 0).
- increase the motor speed and in so doing, measure the actual value signal (of the free technology controller).
- if the actual value increases with increasing motor speed, then deactivate inversion.
- if the actual value decreases with increasing motor speed, then activate inversion.

If value $=0$:
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).
For value = 1:
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).

p11164	CI: Free tec_ctrl 1 actual value signal source / Ftec1 act v s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the actual value of the free technology controller 1.		
p11165	Free tec_ctrl 1 actual value smoothing time constant / Ftec1 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 1.		
p11167	Free tec_ctrl 1 actual value upper limit / Ftec1 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 1.		
Dependency:	See also: p11164		
p11168	Free tec_ctrl 1 actual value lower limit / Ftec1 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 1.		
Dependency:	See also: p11164		

p11171	Free tec_ctrl 1 actual value inversion / Ftec1 act v inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 1.		
Value:	0: No inversion		
	1: Inversion		
r11172	CO: Free tec_ctrl 1 actual value after limiter / Ftec1 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 1.		
r11173	CO: Free tec_ctrl 1 system deviation / Ftec1 sys dev		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_3	Unit selection: p11126	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 1.		
p11174	Free tec_ctrl 1 differentiation time constant / Ftec1 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 1.		
	Note		
	Value $=0$: Differentiation is deactivated.		
p11180	Free tec_ctrl 1 proportional gain / Ftec1 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 1.		
	Note		
	$\underline{\text { Value }=0}$: The proportional gain is deactivated		

p11185	Free tec_ctrl 1 integral time / Ftec1 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 1.		
	Note		
	Value $=0$: The integral time is disabled.		
p11191	CO: Free tec_ctrl 1 limit maximum / Ftec1 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection:-	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology contr	troller 1.	
Dependency:	See also: p11192		
	Note		
	The maximum limit must always be greater than the minimum limit (p11191 > p11192).		
p11192	CO: Free tec_ctrl 1 limit minimum / Ftec1 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the free technology controller 1.		
Dependency:	See also: p11191		
	Note		
	The maximum limit must always be greater than the minimum limit (p11191 > p11192).		
p11193	Free tec_ctrl 1 limit ramp-up/ramp-down time / Ftec1 lim RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p 11191 , p11192) of the free technology controller 1.		
Dependency:	See also: p11191, p11192		
	Note		
	The ramp-up/ramp-down times are referred to 100\%.		

r11194	CO: Free tec_ctrl 1 output signal / Ftec1 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 1.		
p11197	Cl: Free tec_ctrl 1 limit maximum signal source / Ftec1 lim max s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11191[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 1.		
Dependency:	See also: p11191		
p11198	Cl : Free tec_ctrl 1 limit minimum signal source / Ftec1 lim min s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
		-	11192[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 1.		
Dependency:	See also: p11192		
p11199	CI: Free tec_ctrl 1 limit offset signal source / Ftec1 lim offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the limit offset of the free technology controller 1.		
p11200	BI: Free tec_ctrl 2 enable / Ftec2 enab		
	Access level: 2	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to switch in/switch out the free technology controller 2. 1 signal: The technology controller is switched in. 0 signal: The technology controller is switched out.		

9.2 Parameter list

p11253	CI: Free tec_ctrl 2 setpoint signal source / Ftec2 setp s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the setpoint of the free technology controller 2.		
p11257	Free tec_ctrl 2 setpoint ramp-up time / Ftec2 setp t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	$1.00 \text { [s] }$
Description:	Sets the ramp-up time for the free technology controller 2.		
Dependency:	See also: p11258		
	Note		
	The ramp-up time is referred to 100%.		
p11258	Free tec_ctrl 2 setpoint ramp-down time / Ftec2 setp t_r-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:-	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	650.00 [s]	1.00 [s]
Description: Dependency:	Sets the ramp-down time of the free technology controller 2.		
	See also: p11257		
	Note		
	The ramp-down time is referred to 100%.		
r11260	CO: Free tec_ctrl 2 setpoint after ramp-function generator / Ftec2 setp aft RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the setpoint after the ramp-function generator of the free technology controller 2.		
p11263	Free tec_ctrl 2 system deviation inversion / Ftec2 sys_dev inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the system deviation of the free technology controller 2. The setting depends on the type of control loop.		
Value:	0 : No inversion		

1:
Inversion

1 CAUTION
If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!

Note

The correct setting can be determined as follows:

- inhibit free technology controller (p11200 = 0).
- increase the motor speed and in so doing, measure the actual value signal (of the free technology controller).
- if the actual value increases with increasing motor speed, then deactivate inversion.
- if the actual value decreases with increasing motor speed, then activate inversion.

If value $=0$:
The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor).
For value = 1:
The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).

p11264	Cl: Free tec_ctrl 2 actual value signal source / Ftec2 act v s_s		
	Access level: 2	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the actual value of the free technology controller 2.		
p11265	Free tec_ctrl 2 actual value smoothing time constant / Ftec2 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 2.		
p11267	Free tec_ctrl 2 actual value upper limit / Ftec2 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 2.		
Dependency:	See also: p11264		
p11268	Free tec_ctrl 2 actual value lower limit / Ftec2 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 2.		
Dependency:	See also: p11264		

p11271	Free tec_ctrl 2 actual value inversion / Ftec2 act v inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 2.		
Value:	0: No inversion		
	1: Inversion		
r11272	CO: Free tec_ctrl 2 actual value after limiter / Ftec2 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 2.		
r11273	CO: Free tec_ctrl 2 system deviation / Ftec2 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_4	Unit selection: p11226	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 2.		
p11274	Free tec_ctrl 2 differentiation time constant / Ftec2 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 2.		
	Note		
	Value $=0$: Differentiation is deactivated.		
p11280	Free tec_ctrl 2 proportional gain / Ftec2 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 2.		
	Note		
	$\underline{\text { Value }=0}$: The proportional gain is deactivated.		

p11285	Free tec_ctrl 2 integral time / Ftec2 Tn		
	Access level: 2	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 2.		
	Note		
	Value $=0$: The integral time is disabled.		
p11291	CO: Free tec_ctrl 2 limit maximum / Ftec2 lim max		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology controller 2.		
Dependency:	See also: p11292		
	Note		
	The maximum limit must always be greater than the minimum limit (p11291 > p11292).		
p11292	CO: Free tec_ctrl 2 limit minimum / Ftec2 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the free technology controller 2.		
Dependency:	See also: p11291		
	Note		
	The maximum limit must always be greater than the minimum limit (p11291 > p11292).		
p11293	Free tec_ctrl 2 limit ramp-up/ramp-down time / Ftec2 lim RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p 11291 , p11292) of the free technology controller 2.		
Dependency:	See also: p11291, p11292		
	Note		
	The ramp-up/ramp-down times are referred to 100\%.		

r11294	CO: Free tec_ctrl 2 output signal / Ftec2 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 2.		
p11297	CI: Free tec_ctrl 2 limit maximum signal source / Ftec2 lim max s_s		
	Access level: 3	Calculated:-	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11291[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 2.		
Dependency:	See also: p11291		
p11298	CI: Free tec_ctrl 2 limit minimum signal source / Ftec2 lim min s_s		
	Access level: 3	Calculated: -	Data type: Unsigned32 1 FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	11292[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 2.		
Dependency:	See also: p11292		
p11299	CI: Free tec_ctrl 2 limit offset signal source / Ftec2 lim offs		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7030
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the limit offset of the free technology controller 2.		
r20001[0...9]	Runtime group sampling time / RTG sampling time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [ms]		
Description:	Displays the current sampling time of the runtime group 0 to 9 .		

p20038[0...3]	BI: AND 2 inputs / AND 2 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7210
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance AND 2 of the AND function block.		
Index:			
	[1] = Input I1		
	[2] = Input 12		
	[3] = Input 33		
r20039	BO: AND 2 output Q / AND 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7210
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& I of instance AND 2 of the AND function block.		
p20040	AND 2 runtime group / AND 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7210
	Min:	Max:	Factory setting:
	4	9999	9999
Description: Value:	Setting parameter for the runtime group in which the instance AND 2 of the AND function block is to be called.		
	4: \quad Runtime group 4		
	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20041	AND 2 run sequence / AND 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2710
	Min:	Max:	Factory setting:
	0	32000	30
Description:	Setting parameter for the run sequence of instance AND 2 within the runtime group set in p20040.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20046[0...3]	BI: OR 0 inputs / OR 0 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	-		

Description:	Sets the signal source of input quantities $I O, I 1, I 2, I 3$ of instance OR 0 of the OR function block.
Index:	$[0]=$ Input $I 0$
	$[1]=$ Input $I 1$
	$[2]=$ Input $I 2$
	$[3]=$ Input 13

r20047	BO: OR 0 output Q / OR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 0 of the OR function block.		
p20048	OR 0 runtime group / OR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which the instance OR 0 of the OR function block is to be called.		
Value:	4: Runtime group 4		
	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20049	OR 0 run sequence / OR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	0	32000	60
Description:	Setting parameter for the run sequence of instance OR 0 within the runtime group set in p20048.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20050[0...3]	BI: OR 1 inputs / OR 1 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance OR 1 of the OR function block.		
Index:	[0] = Input 10		
	[1] = Input 11		
	[2] = Input 12		
	[3] = Input I3		

r20051	BO: OR 1 output Q / OR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 1 of the OR function block.		
p20052	OR 1 runtime group / OR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which the instance OR 1 of the OR function block is to be called.		
Value:	4: Runtime group 4		
	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20053	OR 1 run sequence / OR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	0	32000	70
Description:	Setting parameter for the run sequence of instance OR 1 within the runtime group set in p20052.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20054[0...3]	BI: OR 2 inputs / OR 2 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance OR 2 of the OR function block.		
Index:	[0] = Input 10		
	[1] = Input 11		
	[2] = Input 12		
	[3] = Input I3		
r20055	BO: OR 2 output Q / OR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7212
	Min:	Max:	Factory setting:
	-	-	-

Description: Display parameter for binary quantity $\mathrm{Q}=10|11| 12 \mid 13$ of instance OR 2 of the OR function block.

p20064	XOR 0 runtime group / XOR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7214
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which the instance XOR 0 of the XOR function block is to be called.		
Value:	4: Runtime group 4		
	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20065	XOR 0 run sequence / XOR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7214
	Min:	Max:	Factory setting:
	0	32000	110
Description:	Setting parameter for the run sequence of instance XOR 0 within the runtime group set in p20064.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20066[0...3]	BI: XOR 1 inputs / XOR 1 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7214
	Min:	Max:	Factory setting:
	-	-	
Description: Index:	Sets the signal source of input quantities $10,11,12,13$ of instance XOR 1 of the XOR function block.		
	[1] = Input 11		
	[2] = Input 12		
	[3] = Input I3		
r20067	BO: XOR 1 output Q / XOR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7214
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 1 of the XOR function block.		
p20068	XOR 1 runtime group / XOR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7214
	Min:	Max:	Factory setting:
	4	9999	9999

p20073	XOR 2 run sequence / XOR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7214
	Min:	Max:	Factory setting:
	0	32000	130
Description:	Setting parameter for the run sequence of instance XOR 2 within the runtime group set in p20072.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20078	BI: NOT 0 input I / NOT 0 input I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 0 of the inverter.		
r20079	BO: NOT 0 inverted output / NOT 0 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 0 of the inverter.		
p20080	NOT 0 runtime group / NOT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which the instance NOT 0 of the inverter is to be called.		
Value:	4: Runtime group 4		
	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20081	NOT 0 run sequence / NOT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	0	32000	160
Description:	Setting parameter for the run sequence of instance NOT 0 within the runtime group set in p20080.		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20082	BI: NOT 1 input I / NOT 1 input I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantity I o	NOT 1 of the inve	
r20083	BO: NOT 1 inverted output / NOT 1 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for the inverted output	ce NOT 1 of the inv	
p20084	NOT 1 runtime group / NOT 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which the instance NOT 1 of the inverter is to be called.		
Value:	4: Runtime group 4		
	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20085	NOT 1 run sequence / NOT 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	0	32000	170
Description:	Setting parameter for the run sequence of instance NOT 1 within the runtime group set in p20084.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20086	BI: NOT 2 input I / NOT 2 input I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7216
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 2 of the inverter.		

r20095	CO: ADD 0 output Y / ADD 0 output Y		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{XO}+$	$\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of inst	of the adder.
p20096	ADD 0 runtime group / ADD 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which the instance ADD 0 of the adder is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20097	ADD 0 run sequence / ADD 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	0	32000	210
Description:	Setting parameter for the run sequence of instance ADD 0 within the runtime group set in p20096.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20098[0...3]	CI: ADD 1 inputs / ADD 1 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	-	-	0
Description: Index:	Sets the signal source of input quantities $\mathrm{X0}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance ADD 1 of the adder.		
	[1] = Input X1		
	[2] = Input X2		
	[3] = Input X3		
r20099	CO: ADD 1 output Y / ADD 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	,	-	

Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 1 of the adder.		
p20100	ADD 1 runtime group / ADD 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which the instance ADD 1 of the adder is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20101	ADD 1 run sequence / ADD 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	0	32000	220
Description:	Setting parameter for the run sequence of instance ADD 1 within the runtime group set in p20100.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20102[0...1]	CI: SUB 0 inputs / SUB 0 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
		-	0
Description: Index:	Sets the signal source of minuend X1 and subtrahend X2 of instance SUB 0 of the subtractor. [0] = Minuend X1		
r20103	CO: SUB 0 difference Y / SUB 0 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	-		
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 0 of the subtractor.		
p20104	SUB 0 runtime group / SUB 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	5	9999	9999

p20109	SUB 1 run sequence / SUB 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7220
	Min:	Max:	Factory setting:
	0	32000	250
Description:	Setting parameter for the run sequence of instance SUB 1 within the runtime group set in p20108.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7222
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of the factors $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance MUL 0 of the multiplier.		
Index:	[0] = Factor XO		
	[1] = Factor X1		
	[2] = Factor X2		
	[3] = Factor X3		
r20111	CO: MUL 0 product Y / MUL 0 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7222
	Min:	Max:	Factory setting:
	-	*3	龶
Description:	Display parameter for the product $\mathrm{Y}=\mathrm{X0}$ * X 1 *	* X3 of instance MU	multiplier.
p20112	MUL 0 runtime group / MUL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7222
	Min:	Max:	Factory setting:
	5		
Description:	Setting parameter for the runtime group in which instance MUL 0 of the multiplier is to be called.		
Value:	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20113	MUL 0 run sequence / MUL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7222
	Min:	Max:	Factory setting:
	0	32000	270

Description:	Setting parameter for the run sequence of instance MUL 0 within the runtime group set in p20112.	
	Note	
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence	
value.		

Note

The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.

Description:	p
	Note The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.
p20123[0...1]	CI: DIV 1 inputs / DIV 1 inputs
	Access level: 3 Calculated: - Data type: Unsigned32
	Can be changed: T Scaling: PERCENT Dynamic index: -
	Unit group: - Unit selection:- Function diagram: 7222
	Min: Max: Factory setting:
	0
Description: Index:	Sets the signal source of dividend X1 and divisor X2 of instance DIV 1 of the divider. $\begin{aligned} & \text { [0] }=\text { Dividend X0 } \\ & \text { [1] }=\text { Divisor X1 } \end{aligned}$
r20124[0...2]	CO: DIV 1 quotient / DIV 1 quotient
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: PERCENT Dynamic index: -
	Unit group: - Unit selection:- Function diagram: 7222
	Min: Max: Factory setting:
	- -
Description:	Display parameter for quotients $\mathrm{Y}=\mathrm{X} 1 / \mathrm{X} 2$, the integer number quotients YIN , and division remainder MOD $=(\mathrm{Y}-\mathrm{YIN})$ x X2 of instance DIV 1 of the divider.
Index:	[0] = Quotient Y
	[1] = Integer number quotient YIN
	[2] = Div remainder MOD
r20125	BO: DIV 1 divisor is zero QF / DIV 1 divisor=0 QF
	Access level: 3 Calculated: - Data type: Unsigned32
	Can be changed: - Scaling: - Dynamic index: -
	Unit group: - Unit selection:- Function diagram: 7222
	Min: Max: Factory setting:
	- -
Description:	Display parameter for the signal QF that the divisor X2 of instance DIV 1 of the divider is zero. $\mathrm{X} 2=0.0 \Rightarrow \mathrm{QF}=1$
p20126	DIV 1 runtime group / DIV 1 RTG
	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: T Scaling: - Dynamic index: -
	Unit group: - Unit selection: - Function diagram: 7222
	Min: Max: Factory setting:
	59999999
Description:	Setting parameter for the runtime group in which instance DIV 1 of the divider is to be called.
Value:	5: Runtime group 5
	$\begin{array}{ll}\text { 6: } & \text { Runtime group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$

p20142	MFP 0 run sequence / MFP 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	0	32000	370
Description:	Setting parameter for the run sequence of instance MFP 0 within the runtime group set in p20141.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20143	BI: MFP 1 input pulse I/ MFP 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	-	,	0
Description:	Sets the signal source for the input pulse I of instance MFP 1 of the pulse generator.		
p20144	MFP 1 pulse duration in ms / MFP 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 1 of the pulse generator.		
r20145	BO: MFP 1 output Q / MFP 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	-		-
Description:	Display parameter for output pulse Q of instance	FP 1 of the pulse g	
p20146	MFP 1 runtime group / MFP 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	5	9999	
Description:	Setting parameter for the runtime group in which the instance MFP 1 of the pulse generator is to be called.		
Value:	Runtime group 5 Runtime group 6		
	9999: Do not calculate		

p20147	MFP 1 run sequence / MFP 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	0	32000	380
Description:	Setting parameter for the run sequence of instance MFP 1 within the runtime group set in p20146.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20158	BI: PDE 0 input pulse I / PDE 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 0 of the closing delay device.		
p20159	PDE 0 pulse delay time in ms / PDE 0 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 0 of the closing delay device.		
r20160	BO: PDE 0 output Q / PDE 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling:	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 0 of the closing delay device.		
p20161	PDE 0 runtime group / PDE 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which instance PDE 0 of the closing delay device is to be called.		
Value:	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20162	PDE 0 run sequence / PDE 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	0	32000	430
Description:	Setting parameter for the run sequence of instance PDE 0 within the runtime group set in p20161.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20163	BI: PDE 1 input pulse I/ PDE 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 1 of the closing delay device.		
p20164	PDE 1 pulse delay time in ms/ PDE 1 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 1 of the closing delay device.		
r20165	BO: PDE 1 output Q / PDE 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection:-	Function diagram: 7232
	Min:	Max:	Factory setting:
	-		
Description:	Display parameter for output pulse Q of instanc	DE 1 of the closing	
p20166	PDE 1 runtime group / PDE 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which instance PDE 1 of the closing delay device is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20167	PDE 1 run sequence / PDE 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	0	32000	440
Description:	Setting parameter for the run sequence of instance PDE 1 within the runtime group set in p20166.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20168	BI: PDF 0 input pulse I / PDF 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 0 of the breaking delay device.		
p20169	PDF 0 pulse extension time in ms / PDF 0 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 0 of the breaking delay device.		
r20170	BO: PDF 0 output Q / PDF 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling:	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for output pulse Q of instance PDF 0 of the breaking delay device.		
p20171	PDF 0 runtime group / PDF 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which the instance PDF 0 of the breaking delay device is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20172	PDF 0 run sequence / PDF 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	0	32000	460
Description:	Setting parameter for the run sequence of instance PDF 0 within the runtime group set in p20171.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20173	BI: PDF 1 input pulse I / PDF 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for the input pulse I of instance PDF 1 of the breaking delay device.		
p20174	PDF 1 pulse extension time in ms / PDF 1 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling:	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 1 of the breaking delay device.		
r20175	BO: PDF 1 output Q / PDF 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	para	仡	
Description:	Display parameter for output pulse Q of instanc	FF 1 of the breaking	
p20176	PDF 1 runtime group / PDF 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
Description:	Setting parameter for the runtime group in which the instance PDF 1 of the breaking delay device is to be called.		
Value:	5: \quad Runtime group 5		
	$\begin{array}{ll}\text { 6: } & \text { Runtime group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$		

p20177	PDF 1 run sequence / PDF 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	0	32000	470
Description:	Setting parameter for the run sequence of instance PDF 1 within the runtime group set in p20176.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20188[0...1]	BI: RSR 0 inputs / RSR 0 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for set input S and reset input R of instance RSR 0 of the RS flipflop. $[0]=$ Set S		
Index:			
	[1] = Reset R		
r20189	BO: RSR 0 output Q / RSR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for output Q of instance RSR	f the RS flipflop	
r20190	BO: RSR 0 inverted output QN / RSR 0 inv outp QN		
	Access level: 3	Calculated:-	Data type: Unsigned32
	Can be changed:	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
Description:	Display parameter for inverted output QN of instance RSR 0 of the RS flipflop.		
p20191	RSR 0 runtime group / RSR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling:	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which instance RSR 0 of the RS flipflop is to be called.		
Value:	4: Runtime group 4		
	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20192	RSR 0 run sequence / RSR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	0	7999	520
Description:	Setting parameter for the run sequence of instance RSR 0 within the runtime group set in p20191.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20193[0...1]	BI: RSR 1 inputs / RSR 1 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	-		0
Description: Index:	Sets the signal source for set input S and reset input R of instance RSR 1 of the RS flipflop.$[0]=\text { Set S }$		
	[1] = Reset R		
r20194	BO: RSR 1 output Q / RSR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for output Q of instance RSR 1 of the RS flipflop		
r20195	BO: RSR 1 inverted output QN / RSR 1 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling:-	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	-		
Description:	Display parameter for inverted output QN of instance RSR 1 of the RS flipflop.		
p20196	RSR 1 runtime group / RSR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which instance RSR 1 of the RS flipflop is to be called.		
Value:	4: Runtime group 4		
	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20197	RSR 1 run sequence / RSR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	0	7999	530
Description:	Setting parameter for the run sequence of instance RSR 1 within the runtime group set in p20196.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection:	Function diagram: 7250
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantities XO and X 1 of instance NSW 0 of the numeric changeover switch.[0] = Input X0		
Index:			
	[1] = Input X1		
p20219	BI: NSW 0 switch setting I / NSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling:	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of the switch setting I of instance NSW 0 of the numeric changeover switch.		
r20220	CO: NSW 0 output Y / NSW 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
Description:	Display parameter for output quantity Y of insta	NSW 0 of the nume	ver switch.
p20221	NSW 0 runtime group / NSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling:	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which the instance NSW 0 of the numeric changeover switch is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20222	NSW 0 run sequence / NSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	0	32000	610
Description:	Setting parameter for the run sequence of instance NSW 0 within the runtime group set in p20221.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantities XO and X 1 of instance NSW 1 of the numeric changeover switch. [0] = Input X0		
Index:	[1] = Input X1		
p20224	BI: NSW 1 switch setting I / NSW 1 sw_setting		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of the switch setting I of instance NSW 1 of the numeric changeover switch.		
r20225	CO: NSW 1 output Y / NSW 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	-		
Description:	Display parameter for output quantity Y of instance NSW 1 of the numeric changeover switch.		
p20226	NSW 1 runtime group / NSW 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7250
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which the instance NSW 1 of the numeric changeover switch is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

r20232	BO: LIM 0 input quantity at the upper limit QU / LIM 0 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter of instance LIM 0 of limiter QU (upper limit reached), i.e. QU $=1$ for $\mathrm{X}>=\mathrm{LU}$.		
r20233	BO: LIM 0 input quantity at the lower limit QL / LIM 0 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-	-	F
Description:	Display parameter of instance LIM 0 of limiter QL (lower limit reached), i.e. QL $=1$ for $\mathrm{X}<=\mathrm{LL}$.		
p20234	LIM 0 runtime group / LIM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which instance LIM 0 of the limiter is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20235	LIM 0 run sequence / LIM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	0	32000	640
Description:	Setting parameter for the run sequence of instance LIM 0 within the runtime group set in p20234.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20236	CI: LIM 1 input X / LIM 1 input X		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-		0
Description:	Sets the signal source of input quantity X of instance LIM 1 of the limiter.		

p20237	LIM 1 upper limit value LU / LIM 1 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 1 of the limiter.		
p20238	LIM 1 lower limit value LL / LIM 1 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the lower limit value LL of instance LIM 1 of the limiter.		
r20239	CO: LIM 1 output Y / LIM 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for the limited output quantity Y of instance LIM 1 of the limiter.		
r20240	BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter of instance LIM 1 of limiter QU (upper limit reached), i.e. QU $=1$ for $\mathrm{X}>=$ LU.		
r20241	BO: LIM 1 input quantity at the lower limit QL / LIM 1 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
			-
Description:	Display parameter of instance LIM 1 of limiter QL (lower limit reached), i.e. QL= 1 for $\mathrm{X}<=\mathrm{LL}$.		
p20242	LIM 1 runtime group / LIM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which instance LIM 1 of the limiter is to be called.		
Value:	5: Runtime group 5		

	$\begin{array}{ll}\text { 6: } & \text { Runtime group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20243	LIM 1 run sequence / LIM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7260
	Min:	Max:	Factory setting:
	0	32000	650
Description:	Setting parameter for the run sequence of instance LIM 1 within the runtime group set in p20242.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run seque value.		
p20266	CI: LVM 0 input X / LVM 0 input X		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input	ce LVM 0 of the dou	iter.
p20267	LVM 0 interval average value M / LVM 0 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the inter	tance LVM 0 of the d	limiter.
p20268	LVM 0 interval limit L / LVM 0 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the inter	LVM 0 of the doub	
p20269	LVM 0 hyst HY / LVM 0 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for hysteresis HY of instance LVM 0 of the double-sided limiter.		

r20270	BO: LVM 0 input quantity above interval QU / LVM $0 \times$ X above QU		
	Access level: 3	Calculated:-	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter of instance LVM 0 of the double-sided limiter that input quantity X was at least once $X>M+L$ and X is $>=M+L-H Y$.		
r20271	BO: LVM 0 input quantity within interval QM / LVM $0 \times$ x within QM		
	Access level: 3	Calculated:-	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter of instance LVM 0 of the double-sided limiter that the input quantity X lies within the interval.		
r20272	BO: LVM 0 input quantity below interval QL / LVM $0 \times$ below QL		
	Access level: 3	Calculated:-	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
		-	-
Description:	Display parameter of instance LVM 0 of the double-sided limiter that input quantity X was at least once $\mathrm{X}<\mathrm{M}-\mathrm{L}$ and X is $<=M-L+H Y$.		
p20273	LVM 0 runtime group / LVM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which instance LVM 0 of the double-sided limiter is to be called.		
Value:	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		
p20274	LVM 0 run sequence / LVM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	0	7999	720
Description:	Setting parameter for the run sequence of instance LVM 0 within the runtime group set in p20273.		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20275	CI: LVM 1 input X / LVM 1 input X		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantity X of instance LVM 1 of the double-sided limiter.		
p20276	LVM 1 interval average value M / LVM 1 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the interval average M of instance LVM 1 of the double-sided limiter.		
p20277	LVM 1 interval limit L / LVM 1 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the interval limit L of in	LVM 1 of the doub	
p20278	LVM 1 hyst HY / LVM 1 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
	$-340.28235 \mathrm{E} 36$	340.28235 E 36	0.0000
Description:	Setting parameter for hysteresis HY of instan	1 of the double-sid	
r20279	BO: LVM 1 input quantity above interval QU / LVM $1 \times$ above QU		
	Access level: 3	Calculated:-	Data type: Unsigned32
	Can be changed: -	Scaling:	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7270
	Min:	Max:	Factory setting:
Description:	Display parameter of instance LVM 1 of the double-sided limiter that input quantity X was at least once $\mathrm{X}>\mathrm{M}+\mathrm{L}$ and X is $>=M+L-H Y$.		
r20280	BO: LVM 1 input quantity within interval QM / LVM $1 \times$ within QM		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling:	Dynamic index: -
	Unit group: -	Unit selection:-	Function diagram: 7270
	Min:	Max:	Factory setting:
	-		
Description:	Display parameter of instance LVM 1 of the double-sided limiter that the input quantity X lies within the interval.		

p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 I FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection:	Function diagram: 7225
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X0}$ and X 1 of instance NCM 1 of the numeric comparator.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
Index:			
r20319	BO: NCM 1 output QU / NCM 1 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7225
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for binary quantity QU QU is only set if X0 > X1.	ce NCM 1 of the	rator.
r20320	BO: NCM 1 output QE / NCM 1 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7225
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for binary quantity QE of QE is only set if $\mathrm{X0}=\mathrm{X} 1$.	NCM 1 of the	ator.
r20321	BO: NCM 1 output QL / NCM 1 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed:	Scaling:	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: 7225
	Min:	Max:	Factory setting:
	-	-	
Description:	Display parameter for binary quantity QL o QL is only set if $\mathrm{X0}<\mathrm{X1}$.	NCM 1 of the num	
p20322	NCM 1 runtime group / NCM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling:	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: 7225
	Min:	Max:	Factory setting:
	5		9999
Description:	Setting parameter for the runtime group in which the instance NCM 1 of the numeric comparator is to be called		
	5: Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20323	NCM 1 run sequence / NCM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7225
	Min:	Max:	Factory setting:
	0	32000	830
Description:	Setting parameter for the run sequence of instance NCM 1 within the runtime group set in p20322.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20324[0...1]	BI: RSR 2 inputs / RSR 2 inputs		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	-		0
Description: Index:	Sets the signal source for set input S and reset input R of instance RSR 2 of the RS flipflop. [0] = Set S		
	[1] = Reset R		
r20325	BO: RSR 2 output Q / RSR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for output Q of instance RSR 2 of the RS flipflop		
r20326	BO: RSR 2 inverted output QN / RSR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -		Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	促		
Description:	Display parameter for inverted output QN of instan	ce RSR 2 of the RS	
p20327	RSR 2 runtime group / RSR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	4	9999	9999
Description:	Setting parameter for the runtime group in which instance RSR 2 of the RS flipflop is to be called.		
Value:	4: Runtime group 4		
	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20328	RSR 2 run sequence / RSR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7240
	Min:	Max:	Factory setting:
	0	7999	850
Description:	Setting parameter for the run sequence of instance RSR 2 within the runtime group set in p20327.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20334	BI: PDE 2 input pulse I / PDE 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 2 of the closing delay device.		
p20335	PDE 2 pulse delay time in ms / PDE 2 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection:	Function diagram: 7232
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 2 of the closing delay device.		
r20336	BO: PDE 2 output Q / PDE 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling:	Dynamic index:-
	Unit group: -	Unit selection:	Function diagram: 7232
	Min:	Max:	Factory setting:
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 2 of the closing delay device.		
p20337	PDE 2 runtime group / PDE 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which instance PDE 2 of the closing delay device is to be called.		
Value:	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20338	PDE 2 run sequence / PDE 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7232
	Min:	Max:	Factory setting:
	0	32000	890
Description:	Setting parameter for the run sequence of instance PDE 2 within the runtime group set in p20337.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20344	BI: PDF 2 input pulse I / PDF 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
		-	0
Description:	Sets the signal source for the input pulse I of instance PDF 2 of the breaking delay device.		
p20345	PDF 2 pulse extension time in ms / PDF 2 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling:	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 2 of the breaking delay device.		
r20346	BO: PDF 2 output Q / PDF 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	-		-
Description:	Display parameter for output pulse Q of instanc	FF 2 of the breaking	
p20347	PDF 2 runtime group / PDF 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	5		
Description:	Setting parameter for the runtime group in which the instance PDF 2 of the breaking delay device is to be called.		
Value:	5: \quad Runtime group 5		
	$\begin{array}{ll}\text { 6: } & \text { Runtime group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$		

p20348	PDF 2 run sequence / PDF 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7233
	Min:	Max:	Factory setting:
	0	32000	920
Description:	Setting parameter for the run sequence of instance PDE 2 within the runtime group set in p20347.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20354	BI: MFP 2 input pulse I / MFP 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 2 of the pulse generator.		
p20355	MFP 2 pulse duration in ms / MFP 2 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection:	Function diagram: 7230
	Min:	Max:	Factory setting:
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 2 of the pulse generator.		
r20356	BO: MFP 2 output Q / MFP 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	-		
Description:	Display parameter for output pulse Q of instance MFP 2 of the pulse generator.		
p20357	MFP 2 runtime group / MFP 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	5	9999	9999
Description:	Setting parameter for the runtime group in which the instance MFP 2 of the pulse generator is to be called.		
Value:	5: \quad Runtime group 5		
	6: Runtime group 6		
	9999: Do not calculate		

p20358	MFP 2 run sequence / MFP 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 7230
	Min:	Max:	Factory setting:
	0	32000	950
Description:	Setting parameter for the run sequence of instance MFP 2 within the runtime group set in p20357.		
	Note		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
r29018[0...1]	Application firmware version / APP FW version		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the application firmware version.		
Index:	[0] = Firmware version		
	[1] = Build increment number		
p29520	Multi-pump control enable / Mpc enab		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Enables the multi-pump control function.		
	0: Multi-pump control inhibited		
	1: Multi-pump control enabled		
Value:	0: Disable MPC		
	1: Enable MPC		
Dependency:	The "Multi-pump control" function is only available for induction motors.		
	The "Multi-pump control" function is not supported on G120X converter variants of power rating 30kW or above		
	Note when P29520=0, P29521 can not set to a ! 0 value. when P29520 value change from 1 to 0, P29521 value will change to 0 automatically		
p29521	Multi-pump control motor configuration / Mpc mtr num config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	6	0
Description:	Selects the number of motors that will be used as multi-pump control.		
Value:	0: NONE		
	1: $\quad \mathrm{M} 1=1 \mathrm{X}$		
	2: $\quad M 1=1 \mathrm{X}, \mathrm{M} 2=1 \mathrm{X}$		
	3: $\quad M 1=1 \mathrm{X}, \mathrm{M} 2=1 \mathrm{X}, \mathrm{M} 3=1 \mathrm{X}$		

	4: $\quad M 1=1 X, M 2=1 X, M 3=1 X, M 4=1 X$		
	5: $\quad M 1=1 \times, M$		
	6: $\quad M 1=1 X, M 2=1 X, M 3=1 X, M 4=1 X, M 5=1 X, M 6=1 X$		
	Note		
	1X means motor power that configured in p307.		
	Currently multi-pump control only support that all motors should have the same power.		
	The maximum value depends on the number of DOs in this drive.		
p29522	Multi-pump control motor selection mode / Mpc mtr sel mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Parameter for selecting the control mode for swtiching-in and switching-out motors		
Value:	0: Fixed sequence		
	1: Absolute operating hours		
	Note		
	For p29522=0:		
	Motor selection for switching-in/switching-out follows a fixed sequence and is dependent on the multi-pump control configuratin(p29521).		
	For p29522=1:		
	Motor selection for switching-in/switching-out is derived from the operating hours counter p29530.When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is		
p29523	Multi-pump control switch-in threshold / Mpc sw_in thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram:
	Min:	Max:	Factory setting:
	0.0 [\%]	200.0 [\%]	20.0 [\%]
Description:	Threshold value for the delayed switching-in or switching-out of motors.		
	Motor switching-in is activated if the maximum speed is reached and the wait time in p29524 has expired. refer to p29524		
p29524	Multi-pump control switch-in delay / Mpc_ctrl t_in_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0 [s]	650 [s]	30 [s]
Description:	Additional delay time for staging motors after the the technology controller system deviation has exceeded the threshold value p29523 and the motor has reached the maximum speed.		
Dependency:	refer to p29523		
	Note If the technology cont	the overcontrol thres	9526 , the delay time is bypas

p29525	Multi-pump control switch-out delay / Mpc sw_out del		
	Access level: 3	Calculated: -	Sata type: Unsigned16

Note

If the technology controller system deviation rises above the multi-pump control overcontrol threshold p29526, the converter skips the switch-in delay time and performs the switch-in operation immediately.
If the technology controller system deviation drops below the multi-pump control overcontrol threshold -p29526, the converter skips the switch-out delay and performs the switch-out operation immediately.

p29527	Multi-pump control interlocking time / Mpc t_interl		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0[s]$	$050[s]$	$0[s]$

p29528	Multi-pump control switch-out speed offset / Mpc sw_out offset		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [rpm]	21000.0 [rpm]	100.0 [rpm]
Description:	Sets the speed offset which pluses p1080 as the speed threshold. If the technology controller deviation has exceeded the threshold p29523 for p29525 (or exceeded the threshold p29526) and the motor has reached the speed threshold p1080+p29528, a motor will be switched out.		

p29531	Multi-pump control maximum time for continuous operation / Mpc t_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling:	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.01 [h]	100000.00 [h]	24.00 [h]
Description:	Time limit for the continuous operation of motors.		
	Continuous operation is measured starting from when a motor is ON and It ends when a motor is OFF.		
p29532	Multi-pump control switch-over speed threshold / Mpc sw sp thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	90.0 [\%]
Description:	Threshold value for the delayed switching-in or switching-out of motors.		
	Motor switching-in is activated if the maximum speed is reached and the wait time in p29524 has expired.		
p29533	Multi-pump control switch-off sequence / Mpc sw_off seq		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Selection of the response used to stop the motors when the OFF command is sent.		
	For p29533 = 1:		
	In this mode the motors connecting with the mains stop one at a time separated by one ramp down delay in the reverse order in which they were switched on. The converter controlled motor stops with a normal ramp down (OFF1) which commences when the first motor connecting with the mains is switched off.		
	The time set in p29537 is applied as a delay time between the disconnection of each line motor.		
	Then speed-regulated motor is ramp down following OFF1 behavior.		
	In the case of OFF2 and OFF3, the motors connecting to the line are switched off immediately with the OFF command(same behavior as with p29533=0). Then the converter controlled motor is ramp down following OFF2 or OFF3 behavior.		
Value:	0: Halt normal		
	1: Halt sequential		
p29534	Multi-pump control Switch-over lockout time / Mpc Sw_lock_time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [h]	100000.0 [h]	0.5 [h]
Description:	To prevent another switch-over occurring within this time.		

p29537	Multi-pump control disconnection lockout time / Mpc t_disc_lockout		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [s]	999.0 [s]	0.0 [s]
Description:	Multi-pump control-holding time switch-out: The time set in p29537 is applied as a delay time between the disconnection of each motor.		
r29538	Multi-pump control variable-speed motor / Mpc driven mtr		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dynamic index:
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the No. of the motor which is driven by drive.		
	Range:		
	MIn: 1		
	Max: the number of DOs in this drive		
p29539	Multi-pump control pump switchover enable / Mpc sw-over enab		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Enables the multi-pump control pump switchover function.		
	0 : Pump switchover function inhibited		
	1: Pump switchover function enabled		
Value:	$0: \quad$ Disable switchover		
	1: Enable switchover		
	Note		
	With pump switchover enabled, the converter monitors the operation status of all running pumps. If the continuous operating hours of the pump in converter operation exceed the threshold, the converter switches of the pump and then switches in an idle pump to keep constant output power.		
p29540	Multi-pump control service mode enable / Mpc SerMode enab		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	1	0
Description:	Enables the multi-pump control service mode.		
	0 : Service mode inhibited		
	1: Service mode enabled		
Value:	$\begin{array}{ll}\text { 0: } & \text { Disable MPC } \\ \text { 1: } & \text { Enable MPC }\end{array}$		

Note

When a pump is in service mode, the converter locks the corresponding relay. Then you can perform troubleshooting of this pump without interrupting the operation of other pumps.

p29542.0... 5	CO/BO: Multi-pump control service mode interlock manually / Mpc ser_interl			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: T, U	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:		Factory setting:	
	-	-	00000000 bin	
Description:	Sets the service mode manually.			
	When a motor fault is activated or a motor is not to run, user can set the corresponding bit to 1 to lock it.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Motor 1 locked	Yes	No	-
	01 Motor 2 locked	Yes	No	-
	02 Motor 3 locked	Yes	No	-
	03 Motor 4 locked	Yes	No	-
	04 motor 5 locked	Yes	No	-
	05 motor 6 locked	Yes	No	-
	Note			
	The number of motors depends on the number of DOs in this drive.			
p29543[0...5]	BI: Multi-pump control motor under repair / Mpc mtr_und_ser			
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary	
	Can be changed: T, U	Scaling:	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:		Factory setting:	
	-		[0] 29542.0	
			$\text { [1] } 29542.1$	
			$\text { [2] } 29542.2$	
			[3] 29542.3	
			[4] 29542.4	
			[5] 29542.5	
Description:	Sets the signal source(digital input or p29542) for service mode.			
	The signal indicates the motor/motors which is/are under repair or locked manually.			
Index:	[0] = Motor 1 under repair			
	[1] = Motor 2 under repair			
	[2] = Motor 3 under repair			
	[3] = Motor 4 under repair			
	[4] = Motor 5 under repair			
	[5] = Motor 6 under repair			

Note

The maximum value depends on the number of DOs in this drive.

r29544[0...5]	Multi-pump control index of motors under repair / Mpc mtr und repair		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays the motors which are interlocked/under repair.		
	Value:		
	r29544.0 = 1: Motor 1 is interlocked / under repair		
	r29544.1 = 1: Motor 2 is interlocked / under repair		
	r29544.2 = 1: Motor 3 is interlocked/ under repair		
	r29544.3 = 1: Motor 4 is interlocked/ under repair		
	r29544.4 = 1: Motor 5 is interlocked/ under repair		
	r29544.5 = 1: Motor 6 is interlocked/ under repair		
Index:	[0] = Motor 1 under repair		
	[1] = Motor 2 under repair		
	[2] = Motor 3 under repair		
	[3] = Motor 4 under repair		
	[4] = Motor 5 under repair		
	[5] = Motor 6 under repair		
	Note		
	The number of motors depends on the number of DOs in this drive.		
r29545	CO/BO: Multi-pump control bypass command / Mpc bypass cmd		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the signal source for the control command to the bypass.lt is BiCo to p 1266 .		
	Note		
	The "Bypass" function switches the motor between converter and line operation.		
p29546	Multi-pump control deviation threshold / Mpc devia thres		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection:-	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	20.0 [\%]
Description:	If the technology controller system deviation (r2273) exceeds the threshold (p29546) and no more motor is available, alarm A52963 occurs.		
p29547[0...5]	Multi-pump control continuous operating hours / Mpc Conti_oper_hrs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00[\mathrm{~h}]$	1000000.00 [h]	0.00 [h]

Description:	Displays the continuous operating hours for the motors. The display can only be reset to zero.
Index:	$[0]=$ Motor 1 operating hours
$[1]=$ Motor 2 operating hours	
$[2]=$ Motor 3 operating hours	
$[3]=$ Motor 4 operating hours	
$[4]=$ Motor 5 operating hours	
$[5]=$ Motor 6 operating hours	

Note

Continuous operation is measured starting from when a motor is ON. It ends when a motor is OFF.
The number of motors depends on the number of DOs in this drive.

p29550	Multi-pump control time for motor stopping / Mpc t_mtr_stop		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [s]	999.0 [s]	3.0 [s]
Description:	Waiting time for motor which is connected with lines to stop when flying restart is disable in service mode.		
	NOTICE		
	p29550 >= p1274[0].		

Note

if (p1262+p1274[0]) < p29550:
The drive will be operation enabled in about ($\mathrm{p} 1262+\mathrm{p} 1274[1]+\mathrm{p} 0346$) s ;
if (p1262+p1274[0]) > p29550:
The drive will be operation enabled in about (p0346) s.

p29551	CO: Multi-pump control switch in/out speed / Mpc sw-in/out spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [\%]	100.0 [\%]	90.0 [\%]
Description:	Additional holding ratio for switching motors during stage in and out. refer to p2000		
Dependency:			
p29552[0...3]	Multi-pump control holding time for boost / Mpc t_hld_boost		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.0 [s]	999.0 [s]	0.0 [s]
Description:	Additional holding time for switching motors during stage in and out.		
Index:	[0] = stage-in holding time		
	[1] = stage-out holding time		
	[2] = switch-over holding time		
	[3] = service holding time		

p29570[0...n]	Ramp-up scaling 1 / RmpUpScaling1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	9999999.00 [\%]	100.00 [\%]
Description:	Sets the ramp-up scaling 1 for the dual ramp function [\%].		
	Note		
	The linear acceleration time from speed 0 to speed p29571 can be calculated via formula (p29571/p1082)*p1120*p29570.		
	If p 1130 is not equal to 0 , the time will be adapted.		
p29571[0...n]	Threshold speed 2 / Thresh_2_Ramp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	30.00 [rpm]
Description:	Defines the threshold 2 for comparing the speed actual value with the speed threshold.		
p29572[0...n]	Ramp-up scaling 2 / RmpUpScaling2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	9999999.00 [\%]	100.00 [\%]
Description:	Sets the ramp-up scaling 2 for the dual ramp function [\%].		
	Note		
	The linear acceleration time from speed p29571 to constant speed V can be calculated via formula ((V-p29571)/p1082)*p1120*p29572.		
	If p1130 is not equal to 0 , the time will be adapted.		
p29573[0...n]	Ramp-down scaling 1 / RmpDnScaling1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	9999999.00 [\%]	100.00 [\%]
Description:	Defines the ramp-down scaling 1 for the dual ramp function [\%].		
	Note		
	The linear deceleration time from constant speed V to speed p29574 can be calculated via formula ((V-p29574)) p1082)*p1121*p29573.		
	If p1131 is not equal to 0 , the time will be adapted.		

p29574[0...n]	Threshold speed 3 / Thresh_3_Ramp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [rpm]	210000.00 [rpm]	30.00 [rpm]
Description:	Defines the threshold 3 for comparing the speed actual value to the speed threshold.		
p29575[0...n]	Ramp-down scaling 2 / RmpDnScaling2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram:
	Min:	Max:	Factory setting:
	0.00 [\%]	9999999.00 [\%]	100.00 [\%]
Description:	Sets the ramp-down scaling 2 for dual ramp function [\%].		
	Note		
	The linear deceleration time from speed p29574 to speed 0 can be calculated via formula (p29574/ p1082)*p1121*p29575.		
	If p1131 is not equal to 0 , the time will be adapted.		
r29576	CO: Ramp-up scaling output / RmpUpScale output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual output of the ramp-up scaling		
r29577	CO: Ramp-down scaling output/ RmpDnScale output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dynamic index:-
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual output of the ramp-down sca		
p29578[0...n]	CI: Ramp-up scaling input / RmpUp scale input		
	Access level: 3	Calculated: -	Data type: Unsigned32 $/$ FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator when p1138 is BICO to r29576. When the dual ramp functionality is not enabled, p29578 will function.		

p29592[0...n]	Deragging forward speed / Derag fw spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	-210000.00 [rpm]	210000.00 [rpm]	500.00 [rpm]
Description:	Defines forward speed setpoint for deragging.		
	Note		
	The actual speed setpoint is limited by minimal(p 1080) and maximum (p 1082) value. If both forward speed(p29592) and the time of duration(p29596) are 0 , forward rotation will not perform in each		
p29593[0...n]	Deragging reverse speed / Derag rev spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	-210000.00 [rpm]	210000.00 [rpm]	500.00 [rpm]
Description:	Defines reverse speed setpoint for deragging.		
	Note		
	The actual speed setpoint is limited by minimal(p1080) and maximum(p1082) value.		
p29594[0...n]	Deragging ramp up time / Derag rup		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	1000.00 [s]	5.00 [s]
Description:	Defines ramp time from 0 to forward/reverse speed setpoint for deragging.		
	Note		
	Too short ramp up time for deragging may trigger F7902, and speed jump may occur. The minimal time is upon the inertia of motor and power stage.		
	The minimal time is upon the inertia of motor and power stage.		
p29595[0...n]	Deragging ramp down time / Derag rdn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	1000.00 [s]	$5.00 \text { [s] }$
Description:	Defines ramp time from forward/reverse speed setpoint to 0 for deragging.		
	Speed jump may occur if ramp down time is too short, and that may trigger the fault of DC-link overvoltage. The minimal time is upon the inertia of motor and power stage.		

	Display and clear the counter of deragging operation after power up. It count at each deragging operate, will reset to 0 at the end of count period or clear by manually(set p29605=0). Refer to p29606, p29607
p29606	Deragging count time / T derag count
Description: Dependency:	Set the deragging count time. Deragging counter will reset to 0 at each timeout. Refer to p29605, p29607
p29607[0...n]	Deragging maximum count / Derag max. ct.
Description:	Set the maximum deragging counter in specified time(p29606). If deragging counter(r29605) is equal or greater than the set value in p29607, that means deragging too frequently, the state will a set to 1 in bit12 of r29599, and the invert state display at bit 13 of r29599.
Dependency:	Refer to p29605, p29606
p29609[0...n]	BI: Pipe filling activate / PF act
Description:	Sets the signal source to activate the pipe filling function. Note Don't assign the same input to this signal with ON/OFF signal, otherwise pipe filling may not be activated successfully. If this signal is trigged (rising edge) during operation, it can only be activated after next switch on.
p29610	BO: Pipe filling enable / PF en
Description: Value:	Enable the pipe filling function. $\begin{array}{ll}0: & \text { The pipe filling function is disabled } \\ 1: & \text { The pipe filling function is enabled }\end{array}$
	Note The pipe filling function allows the converter to fill an empty pipe slowly when the converter works according to the mode selected in p29611.

p29611[0...n]	Pipe filling mode / PF mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0	3	0
Description:	Selects the mode for pipe filling.		
Value:	0: The pipe is filled based	e each power on	
	1: The pipe is filled bas	ressure each power on	
	2: The pipe is filled based o	e each servo on	
	3: The pipe is filled based	ressure each servo on	
p29612[0...n]	Pipe filling speed / PF spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	-210000.00 [rpm]	210000.00 [rpm]	900.00 [rpm]
Description:	Sets the speed applied to the motor for the pipe filling.		
p29613[0...n]	Pipe filling time / PF time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.50 [s]	10000.00 [s]	50.00 [s]
Description:	Sets the duration time for the pipe filling.		
p29614[0...n]	Pipe filling threshold / PF thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: 9_1	Unit selection: p0595	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [\%]	100.00 [\%]	10.00 [\%]
Description:	Defines the threshold for stopping th used when p29611 equal to 1 or 3 .	he filling stops if the actua	eedback reaches the threshold. It's
p29615[0...n]	Pipe filling monitoring time / PF mon time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [s]	100.00 [s]	0.00 [s]
Description:	Monitors the duration time for actual pressure (r2272) >= the threshold (p29614). The pipe filling stops if the duration time is reached.		

p29622[0...n]	BI: Frost protection enable / Fro en		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T, U	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source to enable frost protection. If the binary input is equal to 1 , then protection will be initiated. If the converter is stopped and the protection signal becomes active, protection measure is applied as follows: - If p29623!=0, frost protection is activated by applying the specified speed to the motor; - If p29623 = 0, and p29624 != 0, condensation protection is activated by applying the specified current to the motor.		
	Note		
	The protection function may be overridden un - If the converter is running and the protection - If the converter is turning a motor due to active overrides the frost protection signal. - Issuing an OFF command while protection is	he following conditions: nal becomes active, the s rotection signal and a RUN e will stop the motor.	ignored. mand is received, RUN command
p29623[0...n]	Frost protection speed / Fro spd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: p2000	Dynamic index: DDS, p0180
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Specifies the speed applied to the motor when frost protection is active.		
	And this parameter can't be changed when the frost or condensation function is active.		
Dependency:	See also p29622.		
p29624[0...n]	Condensation protection current / Cond current		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.000 [\%]	100.000 [\%]	30.000 [\%]
Description:	Specifies the DC current (as a percentage of rated current) applied to the motor when condensation protection is active.		
Dependency:	See also p29622.		
	Note		
	The change to the current becomes effective the next time condensation protection is active.		
p29625[0...n]	Cavitation protection enable / Cavi en		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0		
Description:	Enables the cavitation protection function. A faus present.	alarm is generated when	ion conditions are deemed to be
Value:	0: The cavitation protection function	eactivated	
	1: The cavitation protection function	gers fault F52960	
	2: The cavitation protection function	gers warning A52961	

p29626[0...n]	Cavitation protection threshold / Cavi thresh			
	Access level: 3	Calculated: -	Data type: Flo	t32
	Can be changed: T, U	Scaling: -	Dynamic ind	0180
	Unit group: 9_1	Unit selection: p0595	Function dia	
	Min:	Max:	Factory sett	
	0.00 [\%]	200.00 [\%]	40.00 [\%]	
Description:	Defines the feedback threshold (as a percentage) for triggering a fault/alarm.			
p29627[0...n]	Cavitation protection time / Cavi time			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: T, U	Scaling: -	Dynamic index: DDS, p0180	
	Unit group:-	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	1 [s]	65000 [s]	30 [s]	
Description:	Sets the time for which cavitation conditions have to be present before a fault/alarm is triggered.			
r29629.0... 2	CO/BO: Status word: application / App status word			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	-			
Description:	Displays the status word for application:			
	$=1$, pipe filling is active;			
	$=0$, pipe filling is not active.			
	bit 2/1:			
	$=0 / 1$, condesation protection is active;			
	$=1 / 1$, frost protection is active;			
	$=0 / 0$, frost and condensation protections are not active; $=1 / 0$, not used.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Pipe filling	Active	Inactive	-
	01 Condensation protection	Active	Inactive	-
	02 Frost protection	Active	Inactive	-
p29630	Keep-running operation enable / KeepRun			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: T	Scaling: -	Dynamic index: -	
	Unit group: -	Unit selection: -	Function diagram: -	
	Min:	Max:	Factory setting:	
	0	1	0	
Description:	Sets the signal source to enable converter keep-running operation. This attempts to prevent the converter from tripping by enabling all possible existing de-rating features and the automatic restart function.			

```
Note
p29630 = 1
Sets the following parameter values to minimize likelihood of a trip:
p0290 = 2 (power unit overload reaction: reduce pulse frequency, output current and output frequency)
p1210 = 4 (restart after line supply failure without additional start attempts)
p1211 = 10 (number of times converter will attempt to restart)
p1240 = 2 and p1280 = 2 (configuration of Vdc controller: Vdc_max controller and kinetic buffering (KIB) enabled)
p29630 = 0
Resets the parameters to their default values:
p0290 = 2 (power unit overload reaction: reduce pulse frequency, output current and output frequency)
p1210 = 0 (automatic restart function: trip reset after power on, p1211 disabled)
p1211 = 3 (number of times converter will attempt to restart)
p1240 = 1 and p1280 = 1(configuration of Vdc controller: Vdc_max controller enabled)
```

p29631[0...4]	Flow meter pump power / FlowM_power		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	0.00 [kW]	$340.28235 \mathrm{E} 36[\mathrm{~kW}]$	0.00 [kW]
Description:	Determines the power points for flow estimation.		
	Five power values are put into the indexes of this parameter. These values should be spread across the full power range of the converter.		
	User should guarantee values in all indexes is increasing in sequence (p29631[0] <= p29631 [1] <= p29631[2] <= ...). Otherwise the calculated flow value will be 0 .		

p29632[0...4]	Flow meter pump flow / FlowM_flow		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T, U	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	$0.00\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	$340.28235 \mathrm{E} 36\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	$0.00\left[\mathrm{~m}^{3} / \mathrm{h}\right]$
Description:	Determines the flow for the corresponding pump power point used for flow estimation.		
	Five correcponding flow values should be entered derived from the manufacturer's pump characteristic curve.		

r29633	Flow meter calculated flow / FlowM_calc flow		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	- [m³/h]	- [m³/h]	- [m³/h]
Description:	The calculation result of flow meter.		
r29640.0... 18	CO/BO: Extented setpoint channel selection output / Setp selection		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	
Description:	Displays the actual output of the extended setpoint channel selection.		
Bit field:	Bit Signal name	1	0 signal \quad FP

00	Extend speed setpoint selected	1	0
01	Frost or condensation executing	1	0
03	Deragging executing	1	0
04	Pipe filling executing	1	0
05	Total executing	1	0
06	Normal executing	1	0
16	Ramp up status	1	0
17	Ramp down status	1	0
18	Target setpoint reached flag	1	0

r29641	CO: Extented setpoint channel setpoint output / Setp output		
	Access level: 3	Calculated:-	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dynamic index: -
	Unit group: 3_1	Unit selection: p0505	Function diagram: -
	Min:	Max:	Factory setting:
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual output of the extended setpoint channel setpoint.		
p29642	BI: Ramp-function generator, accept setpoint / Total setp sel		
	Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
	Can be changed: T	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for accepting the setpoint of the ramp-function generator.		
p29643	CI: Ramp-function generator setpoint input / Total Setpoint		
	Access level: 3	Calculated: -	Data type: Unsigned32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dynamic index: -
	Unit group:-	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-	-	0
Description:	Sets the signal source for inputting the setpoint of the ramp-function generator.		
p29650[0...n]	DI selection for ON/OFF2 / DI sel ON/OFF2		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
	Unit group: -	Unit selection: -	Function diagram: -
	Min:	Max:	Factory setting:
	-1		
Description:	Defines the DI selection for ON/OFF2. After setting, configuration will be done internally(Except DP/PN variants), p0840[0...n] = r29659.0		
	p0844[0...n] = r29659.1		
	p29652[0...n] = 722.n		
	You can also configure p29651[0...n] and p29652[0...n] after setting p29650[0...n].		
	Similar to p0840[0...n] and p0844[0...n], p29651[0...n] and p29652[0...n] are for ON/OFF1 input and OFF2 input respectively.		
Value:	-1: NONE		

$0:$	DIO
$1:$	DI1
$2:$	DI2
$3:$	DI3
$4:$	DI4
$5:$	DI5

Note

On variants with PN/DP interface, ON/OFF2 is disabled as default(p29650=-1), when enabled(p29650>=0), the configuration of p840 and p844 will not be updated internally. ON/OFF2 is only effective if both are configured as r29659 bit0 and bit1 respectively.

p29651[0...n] BI: ON/OFF1 (OFF1)/ON/OFF1 (OFF1)

Access level: 3	Calculated: -
Can be changed: T	Scaling: -
Unit group: -	Unit selection: -
Min:	Max:
-	-

Data type: Unsigned32 / Binary
Dynamic index: CDS, p0170
Function diagram: -
Factory setting: 0

Description: Sets the signal source for the command "ON/OFF1 (OFF1)".
p29652[0...n] BI: ON/OFF2 (OFF2) / ON/OFF2 (OFF2)

Access level: 3	Calculated: -	Data type: Unsigned32 / Binary
Can be changed: T	Scaling: -	Dynamic index: CDS, p0170
Unit group: -	Unit selection: -	Function diagram: -
Min:	Max:	Factory setting:
-	-	0

Description: Sets the signal source for the command "ON/OFF2 (OFF2)".

NOTICE

An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.

r61001[0...3]	PROFINET IP of Station / PN IP of Station		
G120X_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dynamic index: -
	Unit group: -	Unit selection: -	Function diagram: 2410
	Min:	Max:	Factory setting:
	-	-	-
Description:	Displays PROFINET IP of Station.		

9.3 ASCII table

Function description

The following table contains the characters that can be used for certain parameters, e.g. serial number, password or device name on a fieldbus.

Table 9-1 Permissible characters

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
(40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2F	Slash, slant
0	48	30	Digit 0
\ldots
9	57	39	Digit 9
:	58	3 A	Colon
;	59	3B	Semicolon
<	60	3 C	Less than
$=$	61	3D	Equals
>	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At
A	65	41	Capital Letter A
\ldots
Z	90	5A	Capital letter Z
[91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
\wedge	94	5E	Circumflex
-	95	5F	Underline

Character	Decimal	Hexadecimal	Meaning
$_$	96	60	Opening single quotation mark
a	97	61	Small letter a
\ldots	\ldots	\ldots	\ldots
z	122	$7 A$	Small Letter z
$\{$	123	$7 B$	Opening brace
\boldsymbol{l}	124	$7 C$	Vertical line
$\}$	125	$7 D$	Closing brace
\sim	126	$7 E$	Tilde

Warnings, faults and system messages

The converter has the following diagnostic types:

- LED

The LEDs at the front of the converter immediately inform you about the most important converter states.

- Alarms and faults

Every alarm and every fault has a unique number.
The converter signals alarms and faults via the following interfaces:

- Fieldbus
- Terminal strip with the appropriate setting
- Interface to the BOP-2 or IOP-2 operator panel
- Interface to SINAMICS G120 Smart Access
- Identification \& maintenance data (I\&M)

If requested, the converter sends data to the higher-level control via PROFINET:

- Converter-specific data
- Plant-specific data

10.1 Operating states indicated via LEDs

Table 10-1 Explanation of symbols for the following tables

$=\square_{1}^{\prime \prime}$	LED is ON
\square	LED is OFF
	LED flashes slowly
	LED flashes quickly
	LED flashes with variable frequency

Please contact Technical Support for LED states that are not described in the following.

Table 10-2 Basic states

RDY	Explanation
	Temporary state after the supply voltage is switched on.
\square^{\prime}	The converter is free of faults

Table 10-3 PROFINET fieldbus

LNK	Explanation
$=\square_{1}^{\prime \prime}$	Communication via PROFINET is error-free
\square	Device naming is active
\square	

Table 10-4 Fieldbuses via RS 485 interface

BF	Explanation	
\square	Data exchange between the converter and control system is active	
$=\ddot{1}_{11}^{\prime \prime}$	The fieldbus is active, however, the converter is not receiving any process data	
	消兑	When LED RDY flas Converter waits firmware update
	No fieldbus connection available	
		When LED RDY flas Incorrect memo
$=$	Firmware update failed	
	Firmware update is active	

Communication via Modbus or USS:

If the fieldbus monitoring is deactivated with p2040 $=0$, the BF-LED remains dark, independent of the communication state.

Table 10-5 PROFINET fieldbus

BF	Explanation	
\square	Data exchange between the converter and control system is active	
		RDY

Table 10－6 PROFIBUS fieldbus

BF	Explanation	
消咟	Data exchange between the converter and control system is active	
\square	Fieldbus interface is not being used	
	The fieldbus is improperly configured．	
念	$\begin{aligned} & \text { RDY } \\ & \text { 渻 } \end{aligned}$	In conjunction with a synchronously flashing LED RDY： Converter waits until the power supply is switched off and switched on again after a firmware update
	No communication with higher－level controller	
	$$	In conjunction with an asynchronously flashing LED RDY： Incorrect memory card
消年	Firmware update failed	
	Firmware update is active	

10.2 System runtime

Overview

By evaluating the system runtime of the converter, you can decide when you should replace components subject to wear in time before they fail - such as fans, motors and gear units.

Function description

The system runtime is started once the power supply of the converter is switched on. The system runtime stops when the power supply is switched off.
The system runtime comprises r2114[0] (milliseconds) and r2114[1] (days):
System runtime $=r 2114[1] \times$ days $+r 2114[0] \times$ milliseconds
If $r 2114[0]$ has reached a value of $86,400,000 \mathrm{~ms}$ (24 hours), $2114[0]$ is set to the value 0 and the value of $r 2114[1]$ is increased by 1.

Example

Parameter	Description
$r 2114[0]$	System runtime (ms)
$r 2114[1]$	System runtime (days)

You cannot reset the system runtime.

Parameters

Parameter	Description	Factory setting
$r 2114[0 \ldots 1]$	Total system runtime	-

10.3 Identification \& maintenance data (I\&M)

I\&M data

The converter supports the following identification and maintenance (I\&M) data.

I\&M data	Format	Explanation	Associated param- eters	Example for the content
\&M0	u8[64] PROFIBUS u8[54] PROFINET	Converter-specific data, read only	-	See below
	Visible String [32]	Plant/system identifier	p8806[0 ... 31]	"ak12-ne.bo2=fu1"
	Visible String [22]	Location code	$\mathrm{p} 8806[32 \ldots 53]$	"sc2+or45"
I\&M2	Visible String [16]	Date	p8807[0 ... 15]	"2013-01-21 16:15"
I\&M3	Visible String [54]	Any comment	p8808[0 ...53]	-
I\&M4	Octet String[54]	Check signature to track changes for Safe- ty Integrated. This value can be changed by the user. The test signature is reset to the value generated by the machine if $p 8805=0$ is used.	p8809[0 ...53]	Values of r9781[0] and r9782[0]

When requested, the converter transfers its I\&M data to a higher-level control or to a PC/PG with installed STEP 7 or TIA Portal.

I\&MO

Designation	Format	Example for the con- tent	Valid for PROFI- NET	Valid for PROFI- BUS
Manufacturer-specific	u8[10]	00 ... 00 hex	---	\checkmark
MANUFACTURER_ID	u16	42d hex (=Siemens)	\checkmark	\checkmark
ORDER_ID	Visible String [20]	"6SL3246-0BA22-1FA0"	\checkmark	\checkmark
SERIAL_NUMBER	Visible String [16]	"T-R32015957"	\checkmark	\checkmark
HARDWARE_REVISION	u16	0001 hex	\checkmark	\checkmark
SOFTWARE_REVISION	char, u8[3]	"V" 04.70.19	\checkmark	\checkmark
REVISION_COUNTER	u16	0000 hex	\checkmark	\checkmark
PROFILE_ID	u16	3 A00 hex	\checkmark	\checkmark
PROFILE_SPECIFIC_TYPE	u16	0000 hex	\checkmark	\checkmark
IM_VERSION	u8[2]	01.02	\checkmark	\checkmark
IM_SUPPORTED	bit[16]	$001 E$ hex	\checkmark	\checkmark

10.4 Alarms, alarm buffer, and alarm history

Overview

An alarm generally indicates that the converter may no longer be able to maintain the operation of the motor in future.

The extended diagnostics have an alarm buffer and an alarm history, in which the converter stores the most recent alarms.

Function description

Alarms have the following properties:

- Incoming alarms have no direct influence on the converter.
- A warning disappears as soon as its cause is eliminated.
- Alarms do not have to be acknowledged.
- Alarms are displayed as follows:
- Display via the fieldbus
- Display on the operator panel with Axxxxx
- Display via SINAMICS G120 Smart Access

Alarm code or alarm value describe the cause of the alarm.

Alarm buffer

Alarm code	Alarm value		Alarm time received			Alarm time removed	
	132	float	Days	ms		Days	ms
r2122[0]	r2124[0]	r2134[0]	r2145[0]	r2123[0]	old	r2146[0]	r2125[0]
[1]	[1]	[1]	[1]	[1]		[1]	[1]
[2]	[2]	[2]	[2]	[2]		[2]	[2]
[3]	[3]	[3]	[3]	[3]		[3]	[3]
[4]	[4]	[4]	[4]	[4]		[4]	[4]
[5]	[5]	[5]	[5]	[5]		[5]	[5]
[6]	[6]	[6]	[6]	[6]	∇	[6]	[6]
[7]	[7]	[7]	[7]	[7]	new	[7]	[7]

Figure 10-1 Alarm buffer
The converter saves incoming alarms in the alarm buffer. An alarm includes an alarm code, an alarm value, and two alarm times:

- Alarm code: r2122
- Alarm value: r2124 in fixed-point format "I32", r2134 in floating-point format "Float"
- Alarm time received $=r 2145+r 2123$
- Alarm time removed $=r 2146+r 2125$

The converter takes its internal time calculation to save the alarm times.
System runtime (Page 1183)
Up to 8 alarms can be saved in the alarm buffer.

In the alarm buffer, the alarms are sorted according to "Alarm time received". If the alarm buffer is completely filled and an additional alarm occurs, then the converter overwrites the values with Index [7].

Alarm history

Figure 10-2 Shifting removed alarms into the alarm history
If the alarm buffer is completely filled and an additional alarm occurs, the converter shifts all removed alarms into the alarm history. The following occurs in detail:

1. To create space after position [8] in the alarm history, the converter shifts the alarms already stored in the alarm history "down" by one or more positions.
If the alarm history is completely full, the converter will delete the oldest alarms.
2. The converter moves the removed alarms from the alarm buffer to the now freed up positions of the alarm history.
Alarms that have not been removed remain in the alarm buffer.
3. The converter closes gaps in the alarm buffer that occurred when the removed alarms were shifted in the alarm history by shifting the alarms that have not been removed "up".
4. The converter saves the received alarm as the latest alarm in the alarm buffer.

The alarm history saves up to 56 alarms.
In the alarm history, alarms are sorted according to the "alarm time received". The latest alarm has Index [8].

Parameters

Table 10-7 Parameters of the alarm buffer and the alarm history

Parameter	Description	Factory setting
p2111	Alarm counter	0
r2122[0 ... 63]	Alarm code	-

Parameter	Description	Factory setting
$r 2123[0 \ldots 63]$	Alarm time received in milliseconds	-ms
$r 2124[0 \ldots 63]$	Alarm value	-
$r 2125[0 \ldots 63]$	Alarm time removed in milliseconds	-ms
$r 2132$	CO: Actual alarm code	-
$r 2134[0 \ldots 63]$	Alarm value for float values	-
$r 2145[0 \ldots 63]$	Alarm time received in days	-
$r 2146[0 \ldots 63]$	Alarm time removed in days	-

Table 10-8 Extended settings for alarms

Parameter	Description	Factory setting
You can change up to 20 different alarms into a fault or suppress alarms:		
p2118[0 .. 19]	Change message type, message number	0
p2119[0 ... 19]	Change message type, type	1

10.5 Faults, alarm buffer and alarm history

Overview

A fault generally indicates that the converter can no longer maintain the operation of the motor.
The extended diagnostics have a fault buffer and a fault history, in which the converter stores the most recent faults.

Function description

Faults have the following properties:

- In general, a fault leads to the motor being switched off.
- A fault must be acknowledged.
- Faults are displayed as follows:
- Display via the fieldbus
- Display on the operator panel with Fxxxxx
- Display on the converter via the LED RDY
- Display via SINAMICS G120 Smart Access

Fault buffer

Fault code	Fault value		Fault time received			Fault time removed	
	132	float	Days	ms		Days	ms
r0945[0]	r0949[0]	r2133[0]	r2130[0]	r0948[0]	Old	r2136[0]	r2109[0]
[1]	[1]	[1]	[1]	[1]		[1]	[1]
[2]	[2]	[2]	[2]	[2]		[2]	[2]
[3]	[3]	[3]	[3]	[3]		[3]	[3]
[4]	[4]	[4]	[4]	[4]		[4]	[4]
[5]	[5]	[5]	[5]	[5]		[5]	[5]
[6]	[6]	[6]	[6]	[6]	,	[6]	[6]
[7]	[7]	[7]	[7]	[7]	New	[7]	[7]

Figure 10-3 Fault buffer
The converter saves incoming faults in the fault buffer. A fault includes a fault code, a fault value, and two fault times:

- Fault code: r0945

The fault code and fault value describe the cause of the fault.

- Fault value: r0949 in fixed-point format "I32", r2133 in floating-point format "Float"
- Fault time received $=$ r2130 + r0948
- Fault time removed $=$ r2136 + r2109

The converter takes its internal time calculation to save the fault times.
System runtime (Page 1183)
Up to 8 faults can be saved in the fault buffer.

In the fault buffer, the faults are sorted according to "Fault time received". If the fault buffer is completely filled and an additional fault occurs, then the converter overwrites the values with Index [7].

Acknowledging a fault

To acknowledge a fault, you have the following options:

- Acknowledge via the fieldbus
- Acknowledge via a digital input
- Acknowledge via the operator panel
- Switch off the converter power supply and switch on again

Faults detected during the converter-internal monitoring of hardware and firmware can be acknowledged only by switching the supply voltage off and on again. The list of fault codes and alarm codes includes the note on the limitations on the acknowledgment for the corresponding fault codes.

Fault history

Figure 10-4 Fault history after acknowledging the faults
If at least one of the fault causes in the fault buffer has been removed and you acknowledge the faults, the following takes place:

1. The converter shifts the values previously saved in the fault history by eight indexes. The converter deletes the faults that were saved in the indexes [$56 \ldots 63$] before the acknowledgement.
2. The converter copies the contents of the fault buffer to the memory locations [8 ... 15] in the fault history.
3. The converter deletes the faults that have been removed from the fault buffer.

The faults that have not been removed are now saved both in the fault buffer and in the fault history.
4. The converter writes the time of acknowledgement of the removed faults to "Fault time removed".
The "Fault time removed" of the faults that have not been removed retains the value $=0$.
The fault history can contain up to 56 faults.

Deleting the fault history

To delete all faults from the fault history, set parameter p0952 $=0$.

Parameters

Table 10-9 Parameters of the fault buffer and the fault history

Parameter	Description	Factory setting
r0945[0 ... 63]	Fault code	-
r0948[0 ... 63]	Fault time received in milliseconds	-ms
r0949[0 ... 63]	Fault value	-
p0952	Fault cases counter	0
r2109[0 ... 63]	Fault time removed in milliseconds	-ms
r2130[0 ... 63]	Fault time received in days	-
r2131	CO: Actual fault code	-
r2133[0 ... 63]	Fault value for float values	-
$r 2136[0 \ldots 63]$	Fault time removed in days	-

Extended settings for faults

Parameter	Description	Factory setting
$p 2100[0 \ldots 19]$	Changing the fault reaction, fault number	0
$p 2101[0 \ldots 19]$	Changing the fault reaction, reaction	0
$p 2118[0 \ldots 19]$	Change message type, message number	0
$p 2119[0 \ldots 19]$	Change message type, type	1
$p 2126[0 \ldots 19]$	Changing the acknowledge mode, fault number	0
$p 2127[0 \ldots 19]$	Changing the acknowledge mode	1

10.6 List of fault codes and alarm codes

10.6.1 Overview of faults and alarms

Overview

A message comprises a letter followed by the relevant number.
The letters have the following meaning:
A....
Alarm code....
F....
Fault code....
N....
No report or internal message

10.6.2 Fault codes and alarm codes

All objects: G120X_DP, G120X_PN, G120X_USS

F01000	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- Evaluate fault buffer (r0945).
	- Carry out a POWER ON (switch-off/switch-on) for all components.
	- If required, check the data on the non-volatile memory (e.g. memory card).
	- Upgrade firmware to later version.
	- Contact Technical Support.
	- Replace the Control Unit.

F01001 FloatingPoint exception
Reaction: OFF2

Acknowledge: POWER ON
Cause:
An exception occurred for an operation with the FloatingPoint data type.
The error may be caused by the basic system or an OA application (e.g. FBLOCKS, DCC).
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Note:
Refer to r9999 for further information about this fault.
r9999[0]: Fault number.
r9999[1]: Program counter at the time when the exception occurred.
r9999[2]: Cause of the FloatingPoint exception.
Bit 0=1: Operation invalid
Bit $1=1:$ Division by zero
Bit $2=1:$ Overflow
Bit $3=1:$ Underflow
Bit $4=1$: Inaccurate result

- Carry out a POWER ON (switch-off/switch-on) for all components.
- Check configuration and signals of the blocks in FBLOCKS.
- Check configuration and signals of DCC charts.
- Upgrade firmware to later version.

F01002	Internal software error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- Carry out a POWER ON (switch-off/switch-on) for all components.
	- Upgrade firmware to later version.
	- Contact Technical Support.

F01003	Acknowledgment delay when accessing the memory
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A memory area was accessed that does not return a "READY". Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. Remedy:- Carry out a POWER ON (switch-off/switch-on) for all components. - Contact Technical Support.

N01004 (F, A)	Internal software error
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- Read out diagnostics parameter (r9999).
	- Contact Technical Support.
	See also: r9999 (Software error internal supplementary diagnostics)

F01005	File upload/download error
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The upload or download of EEPROM data was unsuccessful.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $y \mathrm{y}=$ component number, $x x x x=$ fault cause
	xxxx = 000B hex = 11 dec :
	Power unit component has detected a checksum error.
	$x x x x=000 F$ hex $=15 \mathrm{dec}$:
	The selected power unit will not accept the content of the EEPROM file.
	xxxx = 0011 hex = 17 dec :
	Power unit component has detected an internal access error.
	$x \mathrm{xxx}=0012$ hex $=18 \mathrm{dec}$:
	After several communication attempts, no response from the power unit component.
	$x x x x=008 \mathrm{~B}$ hex $=140 \mathrm{dec}$:
	EEPROM file for the power unit component not available on the memory card.
	$x x x x=008 \mathrm{D}$ hex $=141 \mathrm{dec}$:
	An inconsistent length of the firmware file was signaled. It is possible that the download/upload has been interrupted. $x x x x=0090$ hex $=144 \mathrm{dec}$:
	When checking the file that was loaded, the component detected a fault (checksum). It is possible that the file on the memory card is defective.
	$x x x x=0092$ hex = 146 dec :
	This SW or HW does not support the selected function.
	xxxx $=009$ C hex $=156 \mathrm{dec}$:
	Component with the specified component number is not available (p7828).
	xxxx = Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Save a suitable firmware file or EEPROM file for upload or download in folder "lee_sac/" on the memory card.
A01009 (N)	CU: Control module overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit.
	- check the Control Unit fan.
	Note:
	The alarm is automatically withdrawn once the limit value has been fallen below.
F01010	Drive type unknown
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
Remedy:	- replace Power Module.
	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.
F01015	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON

Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.	
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

A01016 (F)	Firmware changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0 : Checksum of one file is incorrect.
	1: File missing.
	2: Too many files.
	3: Incorrect firmware version.
	4: Incorrect checksum of the back-up file.
Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
	Note:
	The file involved can be read out using parameter r9925.
	The status of the firmware check is displayed using r9926.
	See also: r9925, r9926
A01017	Component lists changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.
	Alarm value (r2124, interpret decimal):
	zyx dec: $\mathrm{x}=$ Problem, $\mathrm{y}=$ Directory, $\mathrm{z}=$ File name
	$x=1$: File does not exist.
	$x=2$: Firmware version of the file does not match the software version.
	$x=3$: File checksum is incorrect.
	$y=0$: Directory /SIEMENS/SINAMICS/DATA/
	$y=1$: Directory /ADDON/SINAMICS/DATA/
	$\mathrm{z}=0$: File MOTARM.ACX
	$\mathrm{z}=1$: File MOTSRM.ACX
	$\mathrm{z}=2$: File MOTSLM.ACX
	$\mathrm{z}=3$: File ENCDATA.ACX
	$\mathrm{z}=4$: File FILTDATA.ACX
	$\mathrm{z}=5$: File BRKDATA.ACX
	$\mathrm{z}=6$: File DAT_BEAR.ACX
	$\mathrm{z}=7$: File CFG_BEAR.ACX
Remedy:	For the file on the memory card involved, restore the status originally supplied from the factory.
F01018	Booting has been interrupted several times
Reaction:	NONE
Acknowledge:	POWER ON

Cause:	Module booting was interrupted several times. As a consequence, the module boots with the factory setting. Possible reasons for booting being interrupted: - power supply interrupted. - CPU crashed. - parameterization invalid.
Remedy:	- carry out a POWER ON (switch-off/switch-on). After switching on, the module reboots from the valid parameterization (if available). - restore the valid parameterization. Examples: a) Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch-on). b) Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-off/switch-on). Note: If the fault situation is repeated, then this fault is again output after several interrupted boots.
A01019	Writing to the removable data medium unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause: Remedy:	The write access to the removable data medium was unsuccessful. - Check the removable data medium and if required replace. - Disconnect any existing USB connection. - Repeat the data backup.
A01020	Writing to RAM disk unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930). See also: p9930 (System logbook activation)
A01021	Removable data medium as USB data storage medium from the PC used
Reaction:	NONE
Acknowledge:	NONE
Cause:	The removable data medium is used as USB data storage medium from a PC As a consequence, the drive cannot access the removable data medium. When backing up, the configuration data cannot be saved on the removable data medium. Alarm value (r2124, interpret decimal): 1: The know-how protection as well as the copy protection for the removable data medium is active. Backup is inhibited. 2: The configuration data are only backed up in the Control Unit. See also: r7760, r9401
Remedy:	Deactivate the USB connection to the PC and back up the configuration data. Note: The alarm is automatically canceled when disconnecting the USB connection or when removing the removable data medium.
F01023	Software timeout (internal)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.

Remedy: | - carry out a POWER ON (switch-off/switch-on) for all components. | |
| ---: | :--- |
| | - upgrade firmware to later version. |
| | - contact Technical Support. |

A01028 (F)	Configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterization that was downloaded was generated with a different module type (Order No., MLFB). Remedy: Save parameters in a non-volatile fashion (p0971 = 1).
F01030	Sign-of-life failure for master control
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For active PC master control, no sign-of-life was received within the monitoring time. The master control was returned to the active BICO interconnection.
Remedy:	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function. For the commissioning software, the monitoring time is set as follows: <Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the monitoring time in milliseconds.
Notice: The monitoring time should be set as short as possible. A long monitoring time means a late response when the communication fails!	

F01033	Units changeover: Reference parameter value invalid Reaction: AONE
Cause:	IMMEDIATELY When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0 Fault value (r0949, parameter): Reference parameter whose value is 0.0. See also: p0505, p0595
Set the value of the reference parameter to a number different than 0.0.	
See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004	

A01035 (F)	ACX: Parameter back-up file corrupted
Reaction:	NONE
Acknowledge:	NONE

Cause:	When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out.
	It is possible that the backup was interrupted by switching off or withdrawing the memory card.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	$\mathrm{aa}=01$ hex:
	Power up was realized without data backup. The drive is in the factory setting.
	aa $=02$ hex:
	The last available internal backup data record was loaded. The parameterization must be checked. It is recommended that the parameterization is downloaded again.
	aa $=03$ hex:
	The last available data record from the memory card was loaded. The parameterization must be checked.
	aa $=04$ hex: \quad
	An invalid data backup was loaded from the memory card into the drive. The drive is in the factory setting.
	dd, cc, bb:
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save parameters)
Remedy:	- Download the project again with the commissioning software.
	- Save all parameters (p0971 = 1 or "copy RAM to ROM").
	See also: p0971 (Save parameters)
F01036 (A)	ACX: Parameter back-up file missing
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = $001 \ldots 062$--> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2, 3, 4:
	Only for internal Siemens troubleshooting.
Remedy:	If you have saved the project data using the commissioning software, carry out a new download for your project.
	Save using the function "Copy RAM to ROM" or with p0971 = 1.
	This means that the parameter files are again completely written into the non-volatile memory.
	Note:
	If the project data have not been backed up, then a new first commissioning is required.

F01038 (A) ACX: Loading the parameter back-up file unsuccessful
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy $=001$... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2:
	255: Incorrect drive object type.
	254: Topology comparison unsuccessful -> drive object type was not able to be identified.
	Reasons could be:
	- Incorrect component type in the actual topology
	- Component does not exist in the actual topology.
	- Component not active.
	Additional values:
	Only for internal Siemens troubleshooting.
	Byte 4, 3:
	Only for internal Siemens troubleshooting.
Remedy:	- If you have saved the project data using the commissioning software, download the project again. Save using the function "Copy RAM to ROM" or with p0971 $=1$. This means that the parameter files are again completely written to the non-volatile memory.
	- Replace the memory card or Control Unit.

F01039 (A) ACX: Writing to the parameter back-up file was unsuccessful

Reaction: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY
Cause: Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful.

- in the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten.
- there is not sufficient free memory space available.
- the non-volatile memory is defective and cannot be written to.

Fault value (r0949, interpret hexadecimal):
dcba hex
a = yyy in the file names PSxxxyyy.***
a $=000$--> consistency back-up file
a = 001 ... 062 --> drive object number
a $=099$--> PROFIBUS parameter back-up file
$b=x x x$ in the file names PSxxxyyy.***
$b=000$--> data save started with p0971 = 1
$b=010-->$ data save started with p0971 = 10
b = 011 --> data save started with p0971 = 11
$b=012$--> data save started with p0971 $=12$
d, c:
Only for internal Siemens troubleshooting.
Remedy: - check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable".

- check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system.
- replace the memory card or Control Unit.

F01040 Save parameter settings and carry out a POWER ON

Reaction: OFF2
Acknowledge: POWER ON

Cause:	A parameter has been changed that requires the parameters to be backed up and the Control Unit to be switched OFF and ON again.
Remedy:	- Save parameters (p0971).
	- carry out a POWER ON (switch-off/switch-on) for the Control Unit.
F01042	Parameter error during project download
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
	For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
	Fault value (r0949, interpret hexadecimal):
	ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	$c c=$ fault cause
	0: Parameter number illegal.
	1: Parameter value cannot be changed.
	2: Lower or upper value limit exceeded.
	3: Sub-index incorrect.
	4: No array, no sub-index.
	5: Data type incorrect.
	6: Setting not permitted (only resetting).
	7: Descriptive element cannot be changed.
	9: Descriptive data not available.
	11: No master control.
	15: No text array available.
	17: Task cannot be executed due to operating state.
	20: Illegal value.
	21: Response too long.
	22: Parameter address illegal.
	23: Format illegal.
	24: Number of values not consistent.
	108: Unit unknown.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- enter the correct value in the specified parameter.
	- identify the parameter that restricts the limits of the specified parameter.
F01043	Fatal error at project download
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY

10.6 List of fault codes and alarm codes

Cause:	A fatal error was detected when downloading a project using the commissioning software.
	Fault value (r0949, interpret decimal):
	1: Device status cannot be changed to Device Download (drive object ON?).
	2: Incorrect drive object number.
	8: Maximum number of drive objects that can be generated exceeded.
	11: Error while generating a drive object (global component).
	12: Error while generating a drive object (drive component).
	13: Unknown drive object type.
	14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
	15: Drive status cannot be changed to drive download.
	16: Device status cannot be changed to "ready for operation".
	18: A new download is only possible if the factory settings are restored for the drive unit.
	20: The configuration is inconsistent.
	21: Error when accepting the download parameters.
	22: SW-internal download error.
	100: The download was canceled, because no write requests were received from the commissioning client (e.g. for communication error).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- use the current version of the commissioning software.
	- modify the offline project and download again (e.g. compare the motor and Power Module in the offline project and on the drive).
	- change the drive state (is a drive rotating or is there a message/signal?).
	- carefully note any other messages/signals and remove their cause.
	- boot from previously saved files (switch-off/switch-on or p0970).
F01044	CU: Descriptive data error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy:	Replace the memory card or Control Unit.
A01045	Configuring data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the parameters displayed in r9406 up to r9408.
	- Restore the factory setting using (p0970 = 1) and re-load the project into the drive unit.
	Then save again with p0971 = 1.
	See also: r9406, r9407, r9408
A01049	It is not possible to write to file
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted.
	Alarm value (r2124, interpret decimal):
	Drive object number.

Remedy: Check whether the "write protected" attribute has been set for the files in the non-volatile memory under .../USER/SINAMICS/
DATA/... When required, remove write protection and save again (e.g. set p0971 to 1). DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

F01054	CU: System limit exceeded
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one system overload has been identified.
	Fault value (r0949, interpret decimal):
	1: Computing time load too high (r9976[1]).
	5: Peak load too high (r9976[5]).
	Note:
	As long as this fault is present, it is not possible to save the parameters (p0971).
	See also: r9976 (System utilization)
Remedy:	For fault value =1, 5:
	- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100 \%.
	- check the sampling times and adjust if necessary (p0115, p0799, p4099).
	- deactivate function modules.
	- deactivate drive objects.
	- remove drive objects from the target topology.
	- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.
	When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies:
	- the computing time load of the individual runtime groups on a drive object can be read out in r21005 (DCC) or r20005
	(FBLOCKS).
	- if necessary, the assignment of the runtime group (p21000, p20000) can be changed in order to increase the sampling
time (r21001, r20001).	
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).	

A01066	Buffer memory: 70\% fill level reached or exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to at least 70% This can also occur if the buffer memory is active (p0014 $=1$) and parameters are continually changed via a fieldbus system.
Remedy:	If required, deactivate and clear the buffer memory ($p 0014=0$). If required, clear the buffer memory (p0014 $=2$). In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: - p0971 = 1 - switch-off/switch-on Control Unit See also: p0014 (Buffer memory mode)

A01067 Buffer memory: 100 \% fill level reached
Reaction: NONE
Acknowledge: NONE
Cause: \quad The non-volatile buffer memory for parameter changes is filled to 100%. All additional parameter changes will no longer be taken into account in the non-volatile buffer memory. However, parameter changes can still be made in the volatile memory (RAM).
This can also occur if the buffer memory is active ($\mathrm{p} 0014=1$) and parameters are continually changed via a fieldbus system.

10.6 List of fault codes and alarm codes

Remedy: If required, deactivate and clear the buffer memory $(p 0014=0)$.
If required, clear the buffer memory ($\mathrm{p} 0014=2$).
In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared:

- p0971 = 1
- switch-off/switch-on Control Unit
See also: p0014 (Buffer memory mode)

F01068	CU: Data memory memory overflow
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The utilization for a data memory area is too large.
	Fault value (r0949, interpret binary):
	Bit 0 = 1: High-speed data memory 1 overloaded
	Bit $1=1:$ High-speed data memory 2 overloaded
	Bit $2=1:$ High-speed data memory 3 overloaded
	Bit $3=1:$ High-speed data memory 4 overloaded
	- deactivate the function module.
Remedy:	- deactivate drive object.
	- remove the drive object from the target topology.

A01069	Parameter backup and device incompatible
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON. - insert a memory card without parameter backup and carry out a POWER ON. - if required, withdraw the memory card and carry out POWER ON. - save the parameters (p0971 = 1).

F01072	Memory card restored from the backup copy
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective. After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.
Remedy:	Check that the firmware and parameterization is up-to-date.

A01073 (N) POWER ON required for backup copy on memory card

Reaction: NONE
Acknowledge: NONE

Cause:	The parameter assignment on the visible partition of the memory card has changed.
In order that the backup copy on the memory card is updated on the non-visible partition, it is ne	
POWER ON or hardware reset (p0972) of the Control Unit.	
Note:	
It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).	
Remedy: \quad - carry out a POWER ON (power off/on) for the Control Unit.	
- carry out a hardware reset (RESET button, p0972).	

A01098	RTC: Date and time setting required
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power supply for the Control Unit was interrupted for an extended period. The date and time displayed on the real-time clock are no longer accurate. Note: This alarm is only output when p8405 = 1 (factory setting). See also: p8405 (Activate/deactivate RTC alarm A01098)
Remedy:	Set the date and time on the real-time clock. Note: RTC: Real-time clock See also: p8400, p8401
N01101 (A)	CU: memory card not available
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory card is not available for the drive.
Remedy:	Insert a memory card.
F01105 (A)	CU: Insufficient memory
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many data sets are configured on this Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- reduce the number of data sets.
F01107	Save to memory card unsuccessful
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save to the memory card was not able to be successfully carried out. - Memory card defective - Insufficient space on memory card. Fault value (r0949, interpret decimal): 1: The file on the RAM was not able to be opened. 2: The file on the RAM was not able to be read. 3: A new directory could not be created on the memory card. 4: A new file could not be created on the memory card. 5: A new file could not be written on the memory card.
Remedy:	- Try to save again. - Replace the memory card or Control Unit.
F01112	CU: Power unit not permissible
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit. Fault value (r0949, interpret decimal): 1: Power unit is not supported (e.g. PM340).
Remedy:	Replace the power unit that is not permissible by a component that is permissible.

F01120 (A)	Terminal initialization has failed
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.
	- replace the Control Unit.

F01152	CU: Invalid constellation of drive object types
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA. A maximum of 2 of these drive object types can be operated on a Control Unit.
Remedy:	- switch off the unit. - restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2. - re-commission the unit.

F01205	CU: Time slice overflow
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	Insufficient computation time. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. Remedy:

F01250 CU: CU-EEPROM incorrect read-only data

Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON. - replace the Control Unit.

A01251	CU: CU-EEPROM incorrect read-write data
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Control Unit. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	For alarm value r2124<256, the following applies: - carry out a POWER ON. - replace the Control Unit. For alarm value $\mathrm{r} 2124>=256$, the following applies: - clear the fault memory (p0952 = 0). - replace the Control Unit.

F01257	CU: Firmware version out of date
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The Control Unit firmware is too old.
	Fault value (r0949, interpret hexadecimal):
	bbbbbbaa hex: aa = unsupported component
	$\mathrm{aa}=01 \mathrm{hex}=1 \mathrm{dec}$:
	The firmware being used does not support the Control Unit.
	aa $=02$ hex $=2$ dec:
	The firmware being used does not support the Control Unit.
	$\mathrm{aa}=03 \mathrm{hex}=3 \mathrm{dec}$:
	The firmware being used does not support the Power Module.
	$\mathrm{aa}=04 \mathrm{hex}=4 \mathrm{dec}$:
	The firmware being used does not support the Control Unit.
Remedy:	For fault value $=1,2,4$:
	- Upgrade the firmware of the Control Unit.
	For fault value = 3:
	- Upgrade the firmware of the Control Unit.
	- Replace the Power Module by a component that is supported.
F01340	Topology: Too many components on one line
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	xyy hex: $\mathrm{x}=$ fault cause, $\mathrm{y} y=$ component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers.
	3yy:
	Cyclic communication is fully utilized.
	4yy:
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of 31.25 s have not been maintained.
	$5 y \mathrm{y}$:
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	$6 y y$:
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7 yy :
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8yy:
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware.

Remedy: | - check the DRIVE-CLiQ wiring. |
| :--- |
| - reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets of the |
| Control Unit. This means that communication is uniformly distributed over several lines. |
| For fault value = 1yy - 4yy in addition: |
| - increase the sampling times (p0112, p0115, p4099). If necessary, for DCC or FBLOCKS, change the assignment of the |
| runtime group (p21000, p20000) so that the sampling time (r21001, r20001) is increased. |
| - if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS). |
| - reduce the function modules (r0108). |
| - establish the conditions for operation with a current controller sampling time of 31.25 us (at the DRIVE-CLiQ line, only |
| operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, |
| this means a 3 at the last position of the order number)). |
| - For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to a |
| free DRIVE-CLiQ socket of the NX. |
| For fault value = 8yy in addition: |
| - check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples |
| of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, |
| which have components on the line involved. |
| For fault value =9yy in addition: |
| - check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, |
| the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical |
| values of the clock cycles. |

F01505 (A)	BICO: Interconnection cannot be established
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A PROFIdrive telegram has been set (p0922).
	An interconnection contained in the telegram was not able to be established. Fault value (r0949, interpret decimal): Parameter receiver that should be changed. Remedy:

F01510 BICO: Signal source is not float type
Reaction: NONE

Acknowledge: IMMEDIATELY

Cause:	The requested connector output does not have the correct data type. This interconnection is not established.
	Fault value (r0949, interpret decimal):
	Parameter number to which an interconnection should be made (connector output).
Remedy:	Interconnect this connector input with a connector output having a float data type.

F01511 (A) BICO: Interconnection with different scalings
Reaction: NONE
Acknowledge: IMMEDIATELY

Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO
input using the reference values.	
	- the BICO output has different normalized units than the BICO input.
	- message only for interconnections within a drive object.
Example:	
	The BICO output has, as normalized unit, voltage and the BICO input has current.
This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.	
p2002: contains the reference value for current	
p2001: contains the reference value for voltage	

10.6 List of fault codes and alarm codes

Remedy:	Not necessary.
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.
Remedy:	If required, return the master control and repeat the operation.
A01590 (F)	Drive: Motor maintenance interval expired
Reaction:	none
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached.
	Alarm value (r2124, interpret decimal):
	Motor data set number.
	See also: p0650, p0651
Remedy:	carry out service/maintenance and reset the service/maintenance interval (p0651).
F01662	Error internal communications
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- check the electrical cabinet design and cable routing for EMC compliance
	- check whether an impermissible voltage is connected at one of the digital outputs.
	- check whether a digital output is loaded with an impermissible current.
	- upgrade firmware to later version.
	- contact Technical Support.
A01900 (F)	PROFIBUS: Configuration telegram error
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram.
	Alarm value (r2124, interpret decimal):
	2: Too many PZD data words for input or output. The number of possible PZD is specified by the number of indices in r2050/ p2051.
	3: Uneven number of bytes for input or output.
	211: Unknown parameterizing block.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the bus configuration on the master and the slave sides.
	For alarm value $=2$:
	Check the number of data words for input and output.
	For alarm value = 211:
	Ensure offline version <= online version.

F01910 (N, A)	Fieldbus interface setpoint timeout
Reaction:	OFF3 (IASCIDCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY

Cause:	The reception of setpoints from the fieldbus interface has been interrupted.
- bus connection interrupted.	
- communication partner switched off.	
	CU230P-2 DP:
- PROFIBUS master set into the STOP state.	
See also: p2040, p2047	
Remedy:	Ensure bus connection has been established and switch on communication partner.
	CU230P-2 BT, CU230P-2 HVAC:
- if required, adapt p2040.	
	CU230P-2 DP:
	- set the PROFIBUS master to the RUN state.
- if the error is repeated, check the set response monitoring in the bus configuration (HW Config).	
- slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave	
parameterization.	

A01920 (F)	PROFIBUS: Interruption cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
	Note:
	If there is no communication to a higher-level control system, then p2030 should be set = 0 to suppress this message. See also: p2030 (Field bus interface protocol selection)

A01945	PROFIBUS: Connection to the Publisher failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed.
	Alarm value (r2124, interpret binary):
	Bit $0=1:$ Publisher with address in r2077[0], connection failed.
	\ldots
	Bit $15=1:$ Publisher with address in r2077[15], connection failed.
Remedy:	Check the PROFIBUS cables. See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

F01946 (A) PROFIBUS: Connection to the Publisher aborted
$\begin{array}{ll}\text { Reaction: } & \text { OFF1 (NONE, OFF2, OFF3) } \\ \text { Acknowledge: } & \text { IMMEDIATELY (POWER ON) }\end{array}$

Cause:	The connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
Fault value (r0949, interpret binary):	
Bit $0=1:$ Publisher with address in r2077[0], connection aborted.	
...	
Bit $15=1:$ Publisher with address in r2077[15], connection aborted.	
Remedy:	- check the PROFIBUS cables.
- check the state of the Publisher that has the aborted connection.	
See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)	

A02050	Trace: Start not possible
Reaction:	NONE
Acknowledge:	NONE

10.6 List of fault codes and alarm codes

Cause:	The trace has already been started. See also: p4700 (Trace control)
Remedy:	Stop the trace and, if necessary, start again.
A02051	Trace: recording not possible as a result of know-how protection
Reaction:	NONE
Acknowledge:	NONE
Cause:	TRACE recording is not possible as at least one signal or trigger signal being used is under know-how protection.
	Alarm value (r2124, interpret decimal):
	1: Recorder 0
	2: Recorder 1
	3: Recorders 0 and 1
	See also: p4700, p4711, p4730, p4731, p4732, p4733, p4734, p4735, p4736, p4737
Remedy:	- Temporarily activate or deactivate know-how protection (p7766).
	- include the signal in the OEM exception list (p7763, p7764).
	- Where relevant do not record the signal.
	See also: p7763, p7764

A02055	Trace: Recording time too short
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short. The minimum is twice the value of the trace clock cycle. See also: p4721 (Trace recording time) Remedy:
	Check the selected recording time and, if necessary, adjust.

A02056	Trace: Recording cycle too short
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected recording clock cycle is lower than the basic clock cycle 500 $\mu \mathrm{s}$. See also: p4720 (Trace recording cycle)
Remedy:	Increase the value for the trace cycle.

A02057	Trace: Time slice clock cycle invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices. See also: p4723 (Trace time slice cycle)
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901. See also: r7901 (Sampling times)

A02058	Trace: Time slice clock cycle for endless trace not valid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
	See also: p4723 (Trace time slice cycle)

Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=2 \mathrm{~ms}$ for up to 4 recording channels or $>=4 \mathrm{~ms}$ from 5 recording channels per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02059	Trace: Time slice clock cycle for 2×8 recording channels not valid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for more than 4 recording channels. See also: p4723 (Trace time slice cycle)
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=4$ ms or reduce the number of recording channels to 4 per trace. The existing time slices can be read out via p7901.
	See also: p4702, r7901

A02060 Trace: Signal to be traced missing
Reaction: NONE
Acknowledge: NONE
\(\left.\begin{array}{ll}Cause: \& - a signal to be traced was not specified.

\& - the specified signals are not valid.

See also: p4730, p4731, p4732, p4733\end{array}\right\}\)| - specify the signal to be traced. |
| :--- |
| Remedy: \quad check whether the relevant signal can be traced. |

A02061	Trace: Invalid signal
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist. - the specified signal can no longer be traced (recorded). See also: p4730, p4731, p4732, p4733
Remedy:	- specify the signal to be traced. - check whether the relevant signal can be traced.

A02062	Trace: Invalid trigger signal
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a trigger signal was not specified. - the specified signal does not exist. - the specified signal is not a fixed-point signal cannot be used as a trigger signal for the trace. See also: p4711 (Trace trigger signal) Remedy:Specify a valid trigger signal.

A02063	Trace: Invalid data type
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid. Remedy:
See also: p4711, p4730, p4731, p4732, p4733	
	Use a valid data type.

A02070	Trace: Parameter cannot be changed Reaction: Acknowledge: NONE Cause:
NONE The trace parameter settings cannot be changed when the trace is active. See also: p4700, p4710, p4711, p4712, p4713, p4714, p4715, p4716, p4720, p4721, p4722, p4730, p4731, p4732, p4733, p4780, p4781, p4782, p4783, p4789, p4795 - stop the trace before parameterization. - if required, start the trace.	
Remedy:	Trace: Pretrigger time too long
A02075	NONE
Reaction:	
Acknowledge:	NONE
Cause:	The selected pretrigger time must be shorter than the trace time. See also: p4721, p4722 Check the pretrigger time setting and change if necessary.

F02080	Trace: Parameterization deleted due to unit changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference parameters.
Remedy:	Restart trace.

A02095	MTrace 0: multiple trace cannot be activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 0):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
Remedy:	- if required, deactivate the multiple trace (p4840[0] = 0).
	- deactivate function or setting that is not permissible
	See also: p4840 (MTrace cycle number setting)

A02096	MTrace 0: cannot be saved
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 0).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.
	3: data save operation to slow.
	- a second trace has been completed before the measurement results of the first trace were able to be saved.
	- writing the measurement result files to the card is blocked by the parameter save.
	4: Data save operation canceled.
	- for instance, the file required for the data save operation was not able to be found.
	See also: p4840 (MTrace cycle number setting)

Remedy: \quad - insert or remove the memory card. \quad - use a larger memory card. \quad - configure a longer trace time or use an endless trace. \quad - avoid saving parameters while a multiple trace is running. \quad - check whether other functions are presently accessing measurement result files.

A02097	MTrace 1: multiple trace cannot be activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 1):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
Remedy:	- trigger condition "start with function generator" (FG_START)
	- if required, deactivate the multiple trace (p4840[1] = 0).
	- deactivate function or setting that is not permissible
	See also: p4840 (MTrace cycle number setting)

A02098	MTrace 1: cannot be saved
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 1).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.
	3: data save operation to slow.
	- a second trace has been completed before the measurement results of the first trace were able to be saved.
	- writing the measurement result files to the card is blocked by the parameter save.
	4: Data save operation canceled.
	- for instance, the file required for the data save operation was not able to be found.
Remedy:	- insert or remove the memory card.
	- use a larger memory card.
	- configure a longer trace time or use an endless trace.
	- avoid saving parameters while a multiple trace is running.
	- check whether other functions are presently accessing measurement result files.

A02099	Trace: Insufficient Control Unit memory
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy:	Reduce the memory required, e.g. as follows:
	- reduce the trace time.
	- increase the trace clock cycle.
	- reduce the number of signals to be traced.
	See also: r4708, r4799

A02150 OA: Application cannot be loaded
Reaction:

10.6 List of fault codes and alarm codes

Acknowledge:	NONE
Cause:	The system was not able to load an OA application. Alarm value (r2124, interpret hexadecimal): 16: The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded. Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - contact Technical Support. For alarm value $=16$: Load a compatible DCB user library (compatible to the interface of the DCC standard library). Note: OA: Open Architecture DCB: Drive Control Block DCC: Drive Control Chart See also: r4950, r4955, p4956, r4957
F02151 (A)	OA: Internal software error
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - contact Technical Support. - replace the Control Unit. Note: OA: Open Architecture See also: r4950, r4955, p4956, r4957
F02152 (A)	OA: Insufficient memory
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc.). Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc.). - use an additional Control Unit. Note: OA: Open Architecture
F03000	NVRAM fault on action
Reaction:	NONE
Acknowledge:	IMMEDIATELY

Remedy: \quad - switch-off/switch-on the power supply for the Control Unit.
Note:
If it reoccurs, then replace the module.
In principle, operation could continue.
The analog channel involved possibly does not achieve the specified accuracy.

A03520 (F, N)	Temperature sensor fault
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	It is expected that one of the following temperature sensors is connected via an analog input:
	- LG-Ni1000 (p0756[2...3] = 6)
	- PT1000 (p0756[2...3] = 7)
	- DIN Ni 1 k (p0756[2...3] = 10)
	Alarm value (r2124, interpret decimal):
	33: Analog input $2($ Al2 $)$ wire breakage or sensor not connected.
	34: Analog input 2 (Al2) measured resistance too low (short circuit).
	49: Analog input 3 (AI3) wire breakage or sensor not connected.
	50: Analog input 3 (AI3) measured resistance too low (short circuit).
	See also: p0756 (CU analog inputs type)
Remedy:	- make sure that the sensor is connected correctly.
	- check the sensor for correct function and if required, replace.
	- change over the analog input to type "no sensor connected" (p0756 = 8).

A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. If the heat sink temperature exceeds the value set in p0292[0], then fault F30004 is output. Remedy:\quadCheck the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed?

A05001 (N)	Power unit: Overtemperature depletion layer chip
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached.
	Note:
	- the response is set using p0290.
	- if the temperature of the barrier layer increases by the value set in p0292[1], then fault F30025 is initiated.
	Check the following:
	- is the ambient temperature within the defined limit values?
	- have the load conditions and the load duty cycle been appropriately dimensioned?
	- has the cooling failed?
	- pulse frequency too high?
	See also: r0037, p0290

A05002 (N) Power unit: Air intake overtemperature
Reaction: NONE

Acknowledge:	NONE
Cause:	For chassis power units, the following applies: The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is $42^{\circ} \mathrm{C}$ (hysteresis 2 K). The response is set using p0290. If the air intake temperature increases by an additional 13 K , then fault F30035 is output.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - has the fan failed? Check the direction of rotation.
A05003 (N)	Power unit: Internal overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies: The alarm threshold for internal overtemperature has been reached. If the temperature inside the power unit increases by an additional 5 K, then fault F30036 is triggered.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - has the fan failed? Check the direction of rotation.
A05004 (N)	Power unit: Rectifier overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K , then fault F30037 is triggered.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the fan failed? Check the direction of rotation. - has a phase of the line supply failed? - is an arm of the supply (incoming) rectifier defective?
A05006 (N)	Power unit: Overtemperature thermal model
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize power units only). Depending on p0290, an appropriate overload response is initiated. See also: r0037
Remedy:	Not necessary. The alarm disappears automatically once the limit value is undershot. Note: If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024. See also: p0290

A05065 (F, N)	Voltage measured values not plausible
Reaction:	NONE
Acknowledge:	NONE

10.6 List of fault codes and alarm codes

Cause:	The voltage measurement does not supply any plausible values and is not used.
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U
	Bit 2: Phase V
	Bit 3: Phase W
Remedy:	The following parameterization must be made in order to deactivate the alarm:
	- Deactivate voltage measurement (p0247.0 = 0).
	- Deactivate flying restart with voltage measurement (p0247.5 = 0) and deactivate fast flying restart (p1780.11 = 0) .

F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The measured $D C$ voltage lies outside the tolerance range after precharging has been completed. Permissible range: $1.16 \text { * p0210 < r0070 < } 1.6 \text { * p0210 }$ Note: The fault can only be acknowledged when the drive is switched off. See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210). - check the line supply voltage. See also: p0210 (Drive unit line supply voltage)

A06921 (N)	Braking resistor phase asymmetry
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the three resistors of the braking chopper are not symmetrical.
Remedy:	- DC link voltage oscillations caused by fluctuating loads of the connected drives.
	- check the feeder cables to the braking resistors. - if required, increase the value for detecting asymmetry (p1364). See also: p1360, p1362, r1363, p1364

F06922	Braking resistor phase failure
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A phase failure for the brake resistor was detected.
	Fault value (r0949, interpret decimal):
	11: Phase U
	12: Phase V
	13: Phase W
	See also: p3235 (Phase failure signal motor monitoring time)
Remedy:	Check the feeder cables to the braking resistors.
	See also: p1360, p1362, r1363, p1364

F07011 Drive: Motor overtemperature
Reaction: OFF2 (NONE, OFF1, OFF3, STOP2)

Acknowledge: IMMEDIATELY

Cause:	KTY84/PT1000/PT100:
	The motor temperature has exceeded the fault threshold (p0605) or a timer after the alar has expired. The response parameterized in p0610 becomes active. With KTY84/PT100 response threshold for wire breakage or sensor not connected is exceeded ($R>21200$
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened and a ti parameterized in p0610 becomes active.
	Possible causes:
	- motor is overloaded.
	- motor ambient temperature too high.
	- wire breakage or sensor not connected.
	Fault value (r0949, interpret decimal):
	200:
	Motor temperature model 1 (12t): temperature too high.
	See also: p0351, p0604, p0605, p0606, p0612, p0613, p0617, p0618, p0619, p0625
Remedy:	- reduce the motor load.
	- check the ambient temperature and the motor ventilation.
	- check the wiring and the connection of the PTC or bimetallic NC contact.
	See also: p0351, p0604, p0605, p0606, p0612, p0617, p0618, p0619, p0625, p0626,
A07012 (N)	Drive: Motor temperature model 1/3 overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor temperature model 1/3 identified that the alarm threshold was exceeded.
	Hysteresis:2K.
	Alarm value (r2124, interpret decimal):
	200:
	Motor temperature model 1 (12t): temperature too high.
	300:
	Motor temperature model 3: temperature too high.
	See also: r0034, p0351, p0605, p0611, p0612, p0613
Remedy:	- check the motor load and if required, reduce.
	- check the motor ambient temperature.
	- check activation of the motor temperature model (p0612).
	Motor temperature model 1 (12t):
	- check the thermal time constant (p0611).
	- check alarm threshold.
	Motor temperature model 3:
	- check the motor type.
	- check alarm threshold.
	- check the model parameters.
	See also: r0034, p0351, p0605, p0611, p0612, r5397

A07014 (N) Drive: Motor temperature model configuration alarm

Reaction: NONE

Acknowledge: NONE
Cause: A fault has occurred in the configuration of the motor temperature model. Alarm value (r2124, interpret decimal):
1:
All motor temperature models: It is not possible to save the model temperature See also: p0610 (Motor overtemperature response)

Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I _max" (p0610 = 2).
See also: p0610 (Motor overtemperature response)	

A07015	Drive: Motor temperature sensor alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	Possible causes:
	- wire breakage or sensor not connected (KTY: R > 2120 Ohm, PT1000: R > 2120 Ohm).
	- measured resistance too low (PTC: $R<20$ Ohm, KTY : $R<50$ Ohm, PT1000: $\mathrm{R}<603 \mathrm{Ohm}$).
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	See also: r0035, p0601, p0607

F07016	Drive: Motor temperature sensor fault
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	Possible causes:
	- wire breakage or sensor not connected (KTY: $R>2120$ Ohm, PT1000: $R>2120$ Ohm).
	- measured resistance too low (PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT1000: $R<603$ Ohm).
	Note:
	If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault
	F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	See also: p0607 (Temperature sensor fault timer)
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	- induction motors: Deactivate temperature sensor fault (p0607 = 0).
	See also: r0035, p0601, p0607

F07080	Drive: Incorrect control parameter
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0).
	Fault value (r0949, interpret decimal):
	The fault value includes the parameter number involved.
	See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0400, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0). See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0400, p0640, p1082

F07082	Macro: Execution not possible
Reaction:	NONE
Acknowledge:	IMMEDIATELY

Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal):
	ccccbbaa hex:
	cccc $=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.
	22: Called file is not valid for parameter 1000.
	23: Called file is not valid for parameter 1500.
	24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
	Fault causes for the parameters to be set:
	25: Error level has an undefined value.
	26: Mode has an undefined value.
	27: A value was entered as string in the tag value that is not "DEFAULT".
	31: Entered drive object type unknown.
	32: A device was not able to be found for the determined drive object number.
	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved.
	- check the macro file and BICO interconnection.
	See also: p0015, p0700, p1000, p1500
F07083	Macro: ACX file not found
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, interpret decimal):
	Parameter number with which the execution was started.
	See also: p0015, p0700, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.
F07084	Macro: Condition for WaitUntil not fulfilled
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal):
	Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.

10.6 List of fault codes and alarm codes

F07086	Units changeover: Parameter limit violation due to reference value change
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting.
	Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.
	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
	See also: r9450 (Reference value change parameter with unsuccessful calculation)
F07088	Units changeover: Parameter limit violation due to units changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".
	In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum limited is violated the parameter value is rounded down.
	Fault value (r0949, interpret decimal):
	Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
	See also: p0100, p0505, p0595
Remedy:	Check the adapted parameter values and if required correct.
	See also: r9451 (Units changeover adapted parameters)
A07089	Changing over units: Function module activation is blocked because the units have been changed over
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to activate a function module. This is not permissible if the units have already been changed over. See also: p0100, p0505
Remedy:	Restore units that have been changed over to the factory setting.
A07094	General parameter limit violation
Reaction:	NONE
Acknowledge:	NONE
Cause:	As a result of the violation of a parameter limit, the parameter value was automatically corrected.
	Minimum limit violated --> parameter is set to the minimum value.
	Maximum limit violated --> parameter is set to the maximum value.
	Alarm value (r2124, interpret decimal):
	Parameter number, whose value had to be adapted.
Remedy:	Check the adapted parameter values and if required correct.
A07200	Drive: Master control ON command present
Reaction:	NONE

Acknowledge:	NONE
Cause:	The ON/OFF1 command is present (no 0 signal).
	The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control.
Remedy:	Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0.
F07220 (N, A	Drive: Master control by PLC missing
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
	If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

F07300 (A)	Drive: Line contactor feedback signal missing
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	- the line contactor was not able to be closed within the time in p0861.
	- the line contactor was not able to be opened within the time in p0861.
	- the line contactor dropped out during operation
- the line contactor has closed although the drive converter is switched off.	
Remedy:	- check the setting of p0860.
	- check the feedback circuit from the line contactor.
	- increase the monitoring time in p0861.
	See also: p0860, p0861

F07311	Bypass motor switch
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Fault value (r0949, interpret bitwise binary):
	Bit 1: Switch "Closed" feedback signal missing.
	Bit 2: Switch "Open" feedback signal missing.
	Bit 3: Switch feedback signal too slow.
	After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued.
	Bit 6: Drive switch feedback signal not consistent with the bypass state.
	The drive switch is closed when switching-on or when switching-in the motor.
	See also: p1260, r1261, p1266, p1267, p1269, p1274
Remedy:	- check the transfer of the feedback signals.
	- check the switch.

F07312	Bypass Line Side Switch
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

10.6 List of fault codes and alarm codes

Cause:
Fault value (r0949, interpret bitwise binary):
Bit $1:$ Switch "Closed" feedback signal missing.
Bit $2:$ Switch "Open" feedback signal missing.
Bit 3: Switch feedback signal too slow.
After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified
time, then a fault trip (shutdown) is issued.
Bit 6: Line Side Switch feedback signal not consistent with the bypass state.
When switching-on or when switching-in the motor, the line side switch is closed without this having been requested from
the bypass.
See also: p1260, r1261, p1266, p1267, p1269, p1274

- check the transfer of the feedback signals.
- check the switch.

F07320	Drive: Automatic restart interrupted
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- the specified number of restart attempts (p 1211) has been completely used up because within the monitoring time (p1213) the faults were not able to be acknowledged. The number of restart attempts (p 1211) is decremented at each new start attempt. - the monitoring time for the power unit has expired (p0857). - when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically switched on again. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r 1214. - increase the delay time in p1212 and/or the monitoring time in p1213. - either increase or disable the monitoring time of the power unit (p0857). - reduce the delay time to reset the start counter (p1213[1]) so that fewer faults are registered in the time interval.

A07321	Drive: Automatic restart active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate. For p1210 $=26$, restarting is realized with the delayed setting of the ON command.
Remedy:	- the automatic restart (AR) should, if required, be inhibited (p1210 = 0). - an automatic restart can be directly interrupted by withdrawing the switch-on command (BI: p0840). - for p1210 = 26: by withdrawing the OFF2- $/$ OFF3 command.

A07325	Drive: Hibernation mode active - drive automatically switched-on again
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "hibernation" function is active (p2398). The drive automatically powers itself up again as soon as the restart conditions are present. See also: p2398, r2399
Remedy:	Not necessary. The alarm is automatically withdrawn when the motor is restarted or when the motor is manually switched off.
F07330	Flying restart: Measured search current too low
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY

Cause:	During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.
Remedy:	Check the motor feeder cables.
F07331	Flying restart: Function not supported
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart).
	In the following cases, the "flying restart" function is not supported:
	PMSM: operation with U/f characteristic and sensorless vector control.
	Note:
	PMSM: permanent-magnet synchronous motor
Remedy:	Deactivate the "flying restart" function (p1200 = 0).
F07332	Flying restart: maximum speed reduced
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The maximum speed that can be reached is reduced; at very high speeds problems associated with the flying restart can be encountered.
	Possible causes:
	- power ratio, power unit/motor too high
Remedy:	Parameter changes are not required.
	Note:
	A flying restart at speeds above 3000 rpm should be avoided.
A07352	Drive: Limit switch signals not plausible
Reaction:	NONE
Acknowledge:	NONE
Cause:	Limit switch signals are not plausible.
	Possible causes:
	- BICO interconnections are not OK (p3342, p3343).
	- sensors are not supplying a valid signal (both supply a 0 signal).
Remedy:	- check the BICO interconnections for the limit switch signals.
	- check the sensors.
	See also: p3342, p3343
A07353	Drive: DC quantity control deactivated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC quantity control has deactivated itself.
	The manipulated variable of the DC quantity control was at its limit.
Remedy:	Optimize the DC quantity controller (Kp, Tn, bandwidth, PT2 filter).
	Note:
	After changing the corresponding parameters, the DC quantity control is re-enabled and the alarm is automatically withdrawn.
	See also: p3857, p3858
F07390	Drive: DC link capacitor forming fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Cause:	The "DC link capacitor forming" function was canceled with fault $(r 3382.3=1)$. The expected $D C$ link voltage is out of
tolerance.	
See also: $\mathrm{p} 3380, \mathrm{r} 3382$	
Remedy:	- check drive device (supply voltage, terminals, \ldots).
	- set activation/duration again $(\mathrm{p} 3380>0)$.
	- restart forming ($\mathrm{p} 0840=0 / 1$ signal).

A07391	Drive: DC link capacitor forming active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "DC link capacitor forming" function is active. The remaining time of the operation is displayed in parameter r3381. Semedy:
	Sot necessary. The alarm is automatically withdrawn after forming has been completed (r3382.2 = 1). See also: r3382 (Forming status word)

A07400 (N)	Drive: DC link voltage maximum controller active
Reaction:	NONE
Acknowledge:	NONE

Cause: The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282). The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds.
When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
See also: r0056, p1240, p1280
Remedy: If the controller is not to intervene:

- increase the ramp-down times.
- switch off the Vdc_max controller (p1240 $=0$ for vector control, p1280 $=0$ for U/f control).

If the ramp-down times are not to be changed:

- use a chopper or regenerative feedback unit.

A07401 (N)	Drive: DC link voltage maximum controller deactivated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and was therefore switched out (disabled). - the line supply voltage is permanently higher than specified for the power unit.
	- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.
Remedy:	- check whether the input voltage is within the permissible range (if required, increase the value in p0210). - check whether the load duty cycle and load limits are within the permissible limits.

A07402 (N) Drive: DC link voltage minimum controller active

Reaction: NONE
Acknowledge: NONE
Cause: The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246, r1286). The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked.
See also: r0056, p1240, p1280
Remedy: The alarm disappears when power supply returns.

F07404	Drive: DC link voltage monitoring Vdc_max
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring of the DC link voltage p1284 has responded (only U/f control).
Remedy:	- check the line supply voltage. - - adapt the device supply voltage (p0210). - adapt the DC link voltage monitoring (p1284).

F07405 (N, A) Drive: Kinetic buffering minimum speed fallen below

Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy:	Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297). See also: p1257, p1297

F07406 (N, A) Drive: Kinetic buffering maximum time exceeded
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY

Cause:	The maximum buffer time (p 1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned. Remedy:
	Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).
	See also: p1255, p1295

A07409 (N)	Drive: U/f control, current limiting controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the Ulf control was activated because the current limit was exceeded.
Remedy:	The alarm is automatically withdrawn after one of the following measures: - increase current limit (p0640). - reduce the load. - slow down the ramp up to the setpoint speed.

F07410	Drive: Current controller output limited
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:
	- motor not conected or motor contactor open.
	- motor data and motor configuration (star-delta) do not match.
	- no DC link voltage present.
	- power unit defective.
	- the "flying restart" function is not activated.
Remedy:	- connect the motor or check the motor contactor.
	- check the motor parameterization and the connection type (star-delta).
	- check the DC link voltage (roo70).
	- check the power unit.
	- activate the "flying restart" function (p1200).

F07411	Drive: Flux setpoint not reached when building up excitation
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When quick magnetizing is configured ($\mathrm{p} 1401.6=1$) the specified flux setpoint is not reached although 90% of the maximum current is specified. - incorrect motor data. - motor data and motor configuration (star-delta) do not match. - the current limit has been set too low for the motor. - induction motor (encoderless, open-loop controlled) in I2t limiting. - power unit is too small. - the magnetizing time is too short.
Remedy:	- correct the motor data. Perform motor data identification and rotating measurement. - check the motor configuration. - correct the current limits (p0640). - reduce the induction motor load. - if necessary, use a larger power unit. - check motor supply cable. - check power unit. - increase p0346.

A07416 Drive: Flux controller configuration

Reaction:	NONE
Acknowledge:	NONE

Cause: The configuration of the flux control (p1401) is contradictory.
Alarm value (r2124, interpret hexadecimal):
ccbbaaaa hex
aaaa $=$ Parameter
bb = Index
cc = fault cause
1: Quick magnetizing (p1401.6) for soft starting (p1401.0).
2: Quick magnetizing for flux build-up control (p1401.2).
3: Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2).
Remedy: For fault cause =1:

- Shut down soft start (p1401.0 = 0).
- Shut down quick magnetizing (p1401.6 = 0).

For fault cause $=2$:

- switch-on flux build-up control (p1401.2 = 1).
- Shut down quick magnetizing (p1401.6 = 0).

For fault cause = 3:

- Re-parameterize Rs identification (p0621=0,1)
- Shut down quick magnetizing (p1401.6=0).

F07426 (A)	Technology controller actual value limited
Reaction:	OFF1 (IASCIDCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit.
	Fault value (r0949, interpret decimal):
	1: upper limit reached.
	$2:$ lower limit reached.

Remedy:	- adapt the limits to the signal level (p2267, p2268). - check the actual value normalization (p0595, p0596). See also: p0595, p0596, p2264, p2267, p2268
A07427	Motor switch-in alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm value (r2124, interpret decimal): 1: The technology controller is not active or is not being used to control the main setpoint (see p2251). 2: The operating time limits have been exceeded in at least one external motor.
Remedy:	For alarm value $=1$: - enable technology controller (p2200). - set technology controller mode p2251 = 0 (main setpoint). For alarm value $=2$: - increase p2381, p2382 or set p2380 $=0$.

A07428 (N)	Technology controller parameterizing error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	For alarm value $=1:$
	Set the output limit in p2291 higher than in p2292.
	See also: p2291, p2292

F07435 (N) Drive: Setting the ramp-function generator for sensorless vector control
Reaction: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY

Cause:	During operation with sensorless vector control (r 1407.1) the ramp-function generator was stopped (p 1141). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen.
Remedy:	- deactivate the holding command for the ramp-function generator (p 1141).
	- suppress the fault ($\mathrm{p} 2101, \mathrm{p} 2119$). This is necessary if the ramp-function generator is held using jogging and the speed
setpoint is simultaneously inhibited (r0898.6).	

F07436 (A) Free tec_ctrl 0 actual value limited
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The actual value for the free technology controller 0 has reached the limit.
The signal source for the actual value is set via connector input p11064.
Fault value (r0949, interpret decimal):
1: The actual value has reached the upper limit.
2: The actual value has reached the lower limit.
Remedy: - adapt the limit settings to the actual value signal (p11067, p11068).

- check the scaling of the actual value signal.
- check the signal source setting for the actual value (p11064).

See also: p11064, p11067, p11068

F07437 (A)	Free tec_ctrl 1 actual value limited
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the free technology controller 1 has reached the limit. The signal source for the actual value is set via connector input p11164.
	Fault value (r0949, interpret decimal): 1: The actual value has reached the upper limit. 2: The actual value has reached the lower limit.
Remedy:	- adapt the limit settings to the actual value signal (p11167, p11168). - check the scaling of the actual value signal.
	- check the signal source setting for the actual value (p11164).
	See also: p11164, p11167, p11168

F07438 (A)	Free tec_ctrl 2 actual value limited
Reaction:	OFF1 (IASCIDCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the free technology controller 2 has reached the limit. The signal source for the actual value is set via connector input p11264.
	Fault value (r0949, interpret decimal):
	1: The actual value has reached the upper limit.
	2: The actual value has reached the lower limit.
Remedy:	- adapt the limit settings to the actual value signal (p11267, p11268).
	- check the scaling of the actual value signal.
	- check the signal source setting for the actual value (p11264).
	See also: p11264, p11267, p11268

A07444 PID autotuning is activated

| Reaction: | NONE |
| :--- | :--- | :--- |
| Acknowledge: | NONE |
| Cause: | Automatic setting of the PID controller parameters (PID autotuning) was activated (p2350). |
| Remedy: | See also: p2350 (Enable PID autotuning) |
| | Not necessary. |
| | This alarm is automatically withdrawn after the PID autotuning has been completed. |

F07445	PID autotuning canceled
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The PID autotuning was canceled as a result of an error.
Remedy:	- increase the offset.
	- check system configuration.

A07530	Drive: Drive Data Set DDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available (p0837 >p0180). The drive data set was not changed over.
Remedy:	See also: p0180, p0820, p0821, p0822, p0823, p0824, r0837
	- select the existing drive data set.
	- set up additional drive data sets.

A07531	Drive: Command Data Set CDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available (p0836 > p0170). The command data set was not changed over. See also: p0810, p0811, p0812, p0813, r0836
Remedy:	- select the existing command data set. \quad - set up additional command data sets.

F07800	Drive: No power unit present
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit.
	Note:
	This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit.
	See also: r0200 (Power unit code number actual)
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- check the power unit and replace if necessary.
	- check the Control Unit, and if required replace it.
	- after correcting the topology, the parameters must be again downloaded using the commissioning software.

F07801 Drive: Motor overcurrent
Reaction: OFF2 (NONE, OFF1, OFF3)

Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.

- effective current limit set too low.
- current controller not correctly set.
- U/f operation: Up ramp was set too short or the load is too high.
- Ulf operation: Short-circuit in the motor cable or ground fault.
- U/f operation: Motor current does not match current of power unit.
- Switch to rotating motor without flying restart function (p1200).

Note:
Limit current $=2 \times$ minimum (p0640, $4 \times p 0305 \times p 0306)>=2 \times p 0305 \times p 0306$
Remedy: - check the current limits (p0640).

- vector control: Check the current controller (p1715, p1717).
- U/f control: Check the current limiting controller (p1340 ... p1346).
- increase the up ramp (p1120) or reduce the load.
- check the motor and motor cables for short-circuit and ground fault.
- check the motor for the star-delta configuration and rating plate parameterization.
- check the power unit and motor combination.
- Choose "flying restart" function (p1200) if switched to rotating motor.

F07802	Drive: Infeed or power unit not ready
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal switch-on command, the infeed or drive does not signal ready. - monitoring time is too short. - DC link voltage is not present. - associated infeed or drive of the signaling component is defective. - supply voltage incorrectly set.

Remedy:	- increase the monitoring time (p0857).
- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.	
- replace the associated infeed or drive of the signaling component.	
- check the line supply voltage setting (p0210).	
See also: p0857 (Power unit monitoring time)	

A07805 (N)	Drive: Power unit overload I2t
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for 12 t overload (p0294) of the power unit exceeded. The response parameterized in p0290 becomes active.
Remedy:	See also: p0290 - reduce the continuous load.
	- adapt the load duty cycle. - check the assignment of the motor and power unit rated currents.

F07806	Drive: Regenerative power limit exceeded (F3E)
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	For blocksize power units, types PM250 and PM260, the regenerative rated power r0206[2] was exceeded for more than 10 s.
Remedy:	See also: r0206, p1531 - increase the down ramp. - reduce the driving load. - use a power unit with a higher regenerative feedback capability. - for vector control, the regenerative power limit in p1531 can be reduced so that the fault is no longer triggered.

F07807 Drive: Short-circuit/ground fault detected

Reaction: OFF2 (NONE)

Acknowledge:
 IMMEDIATELY

Cause: A phase-phase short-circuit or ground fault was detected at the motor-side output terminals of the converter.
Fault value (r0949, interpret decimal):
1: Short-circuit, phase UV.
2: Short-circuit, phase UW.
3: Short-circuit, phase VW.
4: Ground fault with overcurrent.
5: Motor cable phase U interrupted
6: Motor cable phase V interrupted
7: Motor cable phase W interrupted
8: Short-circuit with hardware shutdown
1 yxxx : Ground fault with current in phase U detected ($\mathrm{y}=$ pulse number, $\mathrm{xxxx}=$ component of the current in phase V in per mille).
$2 y x x x$: Ground fault with current in phase V detected ($\mathrm{y}=$ pulse number, $\mathrm{xxxx}=$ component of the current in phase U in per mille).
Note:
Also when interchanging the line and motor cables is identified as a motor-side short circuit.
The ground fault test only functions when the motor is stationary.
Connecting to a motor that is either not de-energized or partially de-energized is possibly detected as ground fault.

Remedy:	- check the motor-side converter connection for a phase-phase short-circuit. - rule-out interchanged line and motor cables. - check for a ground fault. - check the motor cable connections For a ground fault the following applies: - do not enable the pulses when connecting to a rotating motor without the "Flying restart" function activated (p1200). - increase the de-energization time (p0347). - increase pulse cancellation delay time (p1228) to ensure standstill. - if required, deactivate the monitoring (p1901).
F07810	Drive: Power unit EEPROM without rated data
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM. See also: p0205, r0206, r0207, r0208, r0209
Remedy:	Replace the power unit or inform Siemens Customer Service.
A07850 (F)	External alarm 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 1" is satisfied. Note: The "External alarm 1" is initiated by a $1 / 0$ edge via binector input p2112. See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.
A07851 (F)	External alarm 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 2" is satisfied. Note: The "External alarm 2" is initiated by a 1/0 edge via binector input p2116. See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.
A07852 (F)	External alarm 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 3" is satisfied. Note: The "External alarm 3" is initiated by a $1 / 0$ edge via binector input p2117. See also: p2117
Remedy:	Eliminate the causes of this alarm.
F07860 (A)	External fault 1
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)

Cause:	The condition for "External fault 1 " is satisfied.
	Note:
	The "External fault 1 " is initiated by a 1/0 edge via binector input p2106.
Remedy:	See also: p2106 (External fault 1)
	- eliminate the causes of this fault.
	- acknowledge fault.

F07861 (A) External fault 2

Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 2" is satisfied.
	Note:
	The "External fault 2" is initiated by a $1 / 0$ edge via binector input p2107.
	See also: p2107 (External fault 2)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.

F07862 (A)	External fault 3
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 3" is satisfied.
	Note:
	The "External fault 3" is initiated by a 1/0 edge via the following parameters.
	- AND logic operation, binector input p2108, p3111, p3112.
	- switch-on delay p3110.
	See also: p2108, p3110, p3111, p3112
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.

A07891	Drive: Load monitoring pump/fan blocked
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump or fan (p2193 = 4, 5). The monitoring function detects when the pump/fan is blocked. It is possible that the blocking torque threshold (p2168) is set too low (e.g. heavy duty starting). See also: p2165, p2168, p2181, p2193 - check whether the pump/fan is blocked, and if blocked, then resolve the problem. - check that the fan can freely move, and if necessary, resolve the problem. - adapt the parameterization corresponding to the load (p2165, p2168)..

A07892	Drive: Load monitoring pump/fan no load condition
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump or fan $(\mathrm{p} 2193=4,5)$.
	The monitoring function detects when the pump/fan is operating under no load conditions.
	The pump is running in the dry state (no medium to be pumped) - or the fan has a broken belt.
	It is possible that the detection torque threshold is too low (p2191).
	See also: p2181, p2191, p2193

Remedy:	- for a pump, check the medium being pumped, and if required, provide the medium.
- for a fan, check the belt, and if required, replace.	
- if necessary, increase the detection torque threshold (p2191).	

A07893	Drive: Load monitoring pump leakage
Reaction:	NONE
Acknowledge:	NONE
Cause:	The load monitoring is configured for a pump (p2193 = 4). The monitoring function detects a leak in the pump circuit. In this case, the pump requires a torque that is lower than in normal operation to pump the reduced quantity. See also: p2181, p2182, p2183, p2184, p2186, p2188, p2190, p2193
Remedy:	- remove the leak in the pump circuit.

F07894	Drive: Load monitoring pump/fan blocked		
Reaction:	OFF1 (NONE, OFF2, OFF3)		
Acknowledge:	IMMEDIATELY	\quad	The load monitoring is configured for a pump or fan $(\mathrm{p} 2193=4,5)$.
:---			
Cause:			
The monitoring function detects when the pump/fan is blocked.			
It is possible that the blocking torque threshold (p2168) is set too low (e.g. heavy duty starting).			
See also: p2165, p2168, p2181, p2193			

F07895	Drive: Load monitoring pump/fan no load condition
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring is configured for a pump or fan $(\mathrm{p} 2193=4,5)$. The monitoring function detects when the pump/fan is operating under no load conditions. It is possible that the detection torque threshold is too low (p2191).
Remedy:	See also: p2181, p2191, p2193 - for a pump, check the medium being pumped, and if required, provide the medium.
	- for a fan, check the belt, and if required, replace. - if necessary, increase the detection torque threshold (p2191).

F07896	Drive: Load monitoring pump leakage
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring is configured for a pump (p2193 = 4). The monitoring function detects a leak in the pump circuit.
	In this case, the pump requires a torque that is lower than in normal operation to pump the reduced quantity. See also: p2181, p2182, p2183, p2184, p2186, p2188, p2190, p2193
Remedy:	- remove the leak in the pump circuit.
	- for a nuisance trip, reduce the torque thresholds of the leakage characteristic (p2186, p2188, p2190).

F07900 (N, A) Drive: Motor blocked

Reaction: OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge: IMMEDIATELY

10.6 List of fault codes and alarm codes

Cause: | Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in |
| :--- |
| p2175. |
| This signal can also be triggered if the speed is oscillating and the speed controller output repeatedly goes to its limit. |
| It may also be the case that thermal monitoring of the power unit reduces the current limit (see p0290), thereby causing |
| the motor to decelerate. |
| See also: p2175, p2177 |
| Remedy: |
| - check that the motor can freely move. |
| - check the effective torque limit (r1538, r1539). |
| - check the parameter, message "Motor blocked" and if required, correct (p2175, p2177). |
| - check the direction of rotation enable signals for a flying restart of the motor (p1110, p1111). |
| - for U/f control: check the current limits and acceleration times (p0640, p1120). |

F07901	Drive: Motor overspeed
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible speed was either positively or negatively exceeded.
	The maximum permissible positive speed is formed as follows: Minimum (p1082, Cl: p1085) + p2162
	The maximum permissible negative speed is formed as follows: Maximum (-p1082, Cl: 1088) - p2162
Remedy:	The following applies for a positive direction of rotation:
	- check r1084 and if required, correct p1082, Cl:p1085 and p2162.
	The following applies for a negative direction of rotation:
	- check r1087 and if required, correct p1082, Cl:p1088 and p2162.
	Activate precontrol of the speed limiting controller (p1401.7 = 1).
	Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A)	Drive: Motor stalled
Reaction:	OFF2 (IASCIDCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The system has identified that the motor has stalled for a time longer than is set in p2178.
	Fault value (r0949, interpret decimal):
	1: Reserved.
	2: Stall detection using r1408.12 (p1745) or via (r0084 ... r0083).
	See also: p2178 (Motor stalled delay time)
Remedy:	Steps should always be taken to ensure that both motor data identification and the rotating measurement were (if possible) carried out (see p1900, r3925).
	- Check whether the drive is in the open-loop speed control operating range (see p1755), or if the speed setpoint is still zero, whether the load alone caused the drive to stall. If yes, increase ramp-up time p1120, increase ramp-down time p1121 and increase current setpoint via p1610, p1611.
	- If the excitation time (p 0346) of the induction motor was significantly reduced and the drive stalls when it is switched on and immediately run, then p0346 should be increased again.
	- check whether a line phase failure is affecting power unit PM230, PM250, PM260.
	- check whether the motor cables are disconnected (see A07929).
	If there is no fault, then the fault tolerance (p1745) or the delay time (p2178) can be increased.
	- check the current limits (p0640, r0067, r0289). If the current limits are too low, then the drive cannot be magnetized.
	- if the fault occurs with fault value 2 when the motor accelerates very quickly to the field weakening range, the deviation between the flux setpoint and flux actual value can be reduced and, in turn, the message prevented, by reducing p1596 or p1553.

A07903 Drive: Motor speed deviation
Reaction: NONE

Acknowledge: NONE

Cause:	The absolute value of the speed difference from the setpoint ($p 2151$) and the speed actual value ($r 2169$) exceeds the tolerance threshold (p2163) longer than tolerated (p2164, p2166).
	The alarm is only enabled for p2149.0 = 1.
	Possible causes:
	- the load torque is greater than the torque setpoint.
	- when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the drive has been dimensioned too small.
	- for active Vdc controller.
	For U/f control, the overload condition is detected as the I_max controller is active.
	See also: p2149 (Monitoring configuration)
Remedy:	- increase p2163 and/or p2166.
	- increase the torque/current/power limits.
	- deactivate alarm with p2149.0 $=0$.
A07910 (N)	Drive: Motor overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY84/PT1000/PT100 or no sensor:
	The measured motor temperature or the temperature of the motor temperature model 2 has exceeded the alarm threshold (p0604). The response parameterized in p0610 becomes active.
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened.
	Alarm value (r2124, interpret decimal):
	11: No output current reduction.
	12: Output current reduction active.
	See also: p0604, p0610
Remedy:	- check the motor load.
	- check the motor ambient temperature.
	- check KTY84/PT1000/PT100.
	- check overtemperatures of the motor temperature model 2 (p0626 ... p0628).
	See also: p0612, p0617, p0618, p0619, p0625, p0626, p0627, p0628
A07920	Drive: Torque/speed too low
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too low).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low).
	See also: p2181 (Load monitoring response)
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.
A07921	Drive: Torque/speed too high
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).

Remedy:	- check the connection between the motor and load.
- adapt the parameterization corresponding to the load.	

A07922	Drive: Torque/speed out of tolerance
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.

F07923	Drive: Torque/speed too low
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1: The torque deviates from the torque/speed envelope characteristic (too low). For p2193 = 2: The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low). Remedy: - check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07924	Drive: Torque/speed too high
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2: The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high). Remedy: - check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07925	Drive: Torque/speed out of tolerance
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.

A07926	Drive: Envelope curve parameter invalid
Reaction:	NONE
Acknowledge:	NONE

Cause:	Invalid parameter values were entered for the envelope characteristic of the load monitoring.
	The following rules apply for the speed thresholds:
	$\mathrm{p} 2182<\mathrm{p} 2183<\mathrm{p} 2184$
	The following rules apply for the torque thresholds:
	p2185 > p2186
	p2187 > p2188
	p2189 > p2190
	Load monitoring configuration and response must match.
	It is not permissible that the individual load torque monitoring areas overlap.
	Alarm value (r2124, interpret decimal):
	Number of the parameter with the invalid value.
	The load torque monitoring has not been activated as long as the alarm is active.
Remedy:	- set the parameters for the load monitoring according to the applicable rules.
	- if necessary, deactivate the load monitoring (p2181 = 0, p2193 = 0).
A07927	DC braking active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked with DC current. DC braking is active.
	A message with response DCBRK is active. The motor is braked with the braking current set in p 1232 for the duration set in in p 1233 . If the standstill threshold p 1226 is undershot, then braking is prematurely canceled.
	DC braking has been activated at binector input p1230 with the DC braking set ($\mathrm{p} 1230=4$). Braking current p1232 is injected until this binector input becomes inactive.
Remedy:	Not necessary.
	The alarm automatically disappears once DC braking has been executed.
A07929 (F)	Drive: No motor detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute current value is so small after enabling the inverter pulses that no motor is detected.
	Note:
	- in the case of vector control and an induction motor, this alarm is followed by fault F07902.
	- PM330: Correction currents are calculated and displayed in the optimized pulse pattern range.
	See also: p2179 (Output load identification current limit)
Remedy:	- check the motor feeder cables.
	- reduce the threshold value (p2179), e.g. for synchronous motors.
	- increase threshold value (PM330).
	- check the voltage boost of the U/f control (p1310).
	- carry out a standstill measurement to set the stator resistance (p0350).
F07936	Drive: load failure
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring has detected a load failure.
Remedy:	- check the sensor.
	- if necessary, deactivate the load monitoring (p2193).
	See also: p2193, p3232

F07950 (A)	Motor parameter incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor)
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0315, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct.
F07967	Drive: Incorrect pole position identification
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, interpret decimal):
	10: Stage 1: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
Remedy:	For fault value = 10:
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	Deactivate technique (p1909).
	For fault value = 12:
	Check whether motor data have been correctly entered.
	Deactivate technique (p1909).
	For fault value = 16:
	Deactivate technique (p1909).
	For fault value = 17:
	Repeat technique.
F07969	Drive: Incorrect pole position identification
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, interpret decimal):
	1: Current controller limited
	2: Motor shaft locked.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	18: First harmonic too low.
	20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.
Remedy:	For fault value = 1:
	Check whether the motor is correctly connected.
	Check whether motor data have been correctly entered.
	Replace the power unit involved.
	For fault value = 2 :
	Bring the motor into a no-load condition.
	For fault value = 10:
	When selecting p1980 = 4: Increase the value for p0325.
	When selecting p1980 = 1: Increase the value for p 0329.
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	For fault value = 11:
	Increase the value for p0329.
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	For fault value = 12:
	When selecting p1980 = 4: Reduce the value for p0325.
	When selecting p1980 = 1: Reduce the value for p 0329 .
	Check whether motor data have been correctly entered.
	For fault value = 13:
	Reduce the value for p 0329.
	Check whether motor data have been correctly entered.
	For fault value = 14:
	Increase the value for p0329.
	For fault value = 15:
	Increase the value for p0325.
	Motor not sufficiently anisotropic, change the technique (p1980 = 1, 10).
	For fault value = 16:
	Change the technique (p1980).
	For fault value = 17:
	Repeat technique.
	For fault value = 18:
	Increase the value for p0329.
	Saturation not sufficient, change the technique (p1980 = 10).
	For fault value = 20:
	Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed)

A07980	Drive: Rotating measurement activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next switch-on command.
	Note:
	During the rotating measurement it is not possible to save the parameters (p0971).
	See also: p1960 (Rotating measurement selection)
Remedy:	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$.
A07981	Drive: Enable signals for the rotating measurement missing
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals.
	For p1959.13 = 1, the following applies:
	- enable signals for the ramp-function generator missing (see p1140 ... p1142).
	- enable signals for the speed controller integrator missing (see p1476, p1477).
Remedy:	- acknowledge faults that are present.
	- establish missing enable signals.
	See also: r0002, r0046
F07983	Drive: Rotating measurement saturation characteristic
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while determining the saturation characteristic.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The rotor flux did not reach a steady-state condition.
	3: The adaptation circuit did not reach a steady-state condition.
	4: The adaptation circuit was not enabled.
	5: Field weakening active.
	6: The speed setpoint was not able to be approached as the minimum limiting is active.
	7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	8: The speed setpoint was not able to be approached as the maximum limiting is active.
	9: Several values of the determined saturation characteristic are not plausible.
	10: Saturation characteristic could not be sensibly determined because load torque too high.

Remedy:	For fault value =1: - the total drive moment of inertia is far higher than that of the motor (p0341, p0342). De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement. For fault value = $1 \ldots 2$: - increase the measuring speed (p1961) and repeat the measurement. For fault value = $1 \ldots 4$: - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967<25\%). For fault value $=5$: - the speed setpoint (p1961) is too high. Reduce the speed. For fault value $=6$: - adapt the speed setpoint (p1961) or minimum limiting (p1080). For fault value = 7: - adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101). For fault value $=8$: - adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086). For fault value $=9,10$: - the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements. Note: The saturation characteristic identification routine can be disabled using p1959.1. See also: p1959
F07984 Reaction: Acknowledge: Cause:	Drive: Speed controller optimization, moment of inertia OFF1 (NONE, OFF2) IMMEDIATELY A fault has occurred while identifying the moment of inertia. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4. The speed setpoint was not able to be approached as the maximum limiting is active. 5: It is not possible to increase the speed by 10% as the minimum limiting is active. 6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active. 7: It is not possible to increase the speed by 10% as the maximum limiting is active. 8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia. 9: Too few data to be able to reliably identify the moment of inertia. 10: After the setpoint step, the speed either changed too little or in the incorrect direction. 11: The identified moment of inertia is not plausible. The measured moment of inertia is less than the 0.1 x or greater than $500 x$ the preset moment of inertia of the motor p0341.

Remedy:	For fault value = 1: - check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967<25\%). For fault value $=2,5$: - adapt the speed setpoint (p1965) or adapt the minimum limit (p1080). For fault value $=3,6$: - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). For fault value $=4,7$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). For fault value $=8$: - the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement. For fault value = 9: - check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340=3 or 4). For fault value =10: - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$. For fault value $=11$: - reduce the moment of inertia of the motor p0341 (e.g. factor of 0.2) or increase (e.g. factor of 5) and repeat the measurement. Note: The moment of inertia identification routine can be disabled using p1959.2. See also: p1959
F07985 Reaction: Acknowledge: Cause:	Drive: Speed controller optimization (oscillation test) OFF1 (NONE, OFF2) IMMEDIATELY A fault has occurred during the vibration test. Fault value (r0949, interpret decimal): 1: The speed did not reach a steady-state condition. 2: The speed setpoint was not able to be approached as the minimum limiting is active. 3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active. 4: The speed setpoint was not able to be approached as the maximum limiting is active. 5: Torque limits too low for a torque step. 6: No suitable speed controller setting was found.

Remedy:	For fault value $=1$: - check the motor parameters (rating plate data). After the change: Calculate p0340=3. - check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 . - carry out a motor data identification routine (p1910). - if required, reduce the dynamic factor (p1967 < 25%). For fault value $=2$: - adapt the speed setpoint (p1965) or adapt the minimum limit (p1080). For fault value = 3: - adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101). For fault value $=4$: - adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086). For fault value $=5$: - increase the torque limits (e.g. p1520, p1521). For fault value = 6: - reduce the dynamic factor (p1967). - disable the vibration test (p1959.4 $=0$) and repeat the rotating measurement. See also: p1959
F07986 Reaction: Acknowledge: Cause: Remedy:	Drive: Rotating measurement ramp-function generator OFF1 (NONE, OFF2) IMMEDIATELY During the rotating measurements, problems with the ramp-function generator occurred. Fault value (r0949, interpret decimal): 1: The positive and negative directions are inhibited. For fault value $=1$: Enable the direction (p1110 or p1111).
F07988 Reaction: Acknowledge: Cause: Remedy:	Drive: Rotating measurement, no configuration selected OFF2 (NONE, OFF1) IMMEDIATELY When configuring the rotating measurement (p1959), no function was selected. Select at least one function for automatic optimization of the speed controller (p1959). See also: p1959
F07990 Reaction: Acknowledge:	Drive: Incorrect motor data identification OFF2 (NONE, OFF1) IMMEDIATELY

Cause:	A fault has occurred during the identification routine.
	Fault value (r0949, interpret decimal):
	1: Current limit value reached.
	2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	4: identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	5: identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} \ldots 5 \mathrm{~s}$.
	7: identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn .
	8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	10: Motor has been incorrectly connected.
	11: Motor shaft rotates.
	12: Ground fault detected.
	15: Pulse inhibit occurred during motor data identification.
	20: Identified threshold voltage of the semiconductor devices lies outside the expected range $0 \ldots 10 \mathrm{~V}$.
	30: Current controller in voltage limiting.
	40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
	60: Incorrect power stack data for the calibration of the converter output voltage
	61: Incorrect measured values for the calibration of the converter output voltage
	Note:
	Percentage values are referred to the rated motor impedance:
	Zn = Vmot.nom / sqrt(3) / Imot, nom
Remedy:	For fault value = $1 . . .40$:
	- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
	- is there an appropriate relationship between the motor power rating and that of the power unit? The ratio of the power unit to the rated motor current should not be less than 0.5 and not be greater than 4 .
	- check connection type (star-delta).
	For fault value $=4,7$:
	- check whether the inductance in p0233 is correctly set.
	- check whether motor has been correctly connected (star-delta).
	For fault value $=11$ in addition:
	- deactivate oscillation monitoring (p1909.7 = 1).
	For fault value = 12:
	- check the power cable connections.
	- check the motor.
	- check the CT.
A07991 (N)	Drive: Motor data identification activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next switch-on command.
	If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or deactivated, the option to save the parameter assignment will be made available again.
	See also: p1910
Remedy:	Not necessary.
	The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.

A07994 (F, N)	Drive: motor data identification not performed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Vector control" mode or application class "Standard Drive Control, STC" (p0096 = 1) has been selected, and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases: - vector control is parameterized in the actual drive data set (p1300 >= 20). and
	- motor data identification has still not been performed in the actual drive data set (see r3925).
	Note:
	For SINAMICS G120, a check is made and the alarm is output also when exiting commissioning and when the system powers up.
Remedy:	- Perform motor data identification (see p1900).
	- if required, parameterize "U/f control" (p1300 < 20) or set p0096 = 0 (only G120).
	- switch over to a drive data set, in which the conditions do not apply.

F08010 (N, A) CU: Analog-to-digital converter
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The analog-to-digital converter on the Control Unit has not supplied any converted data.
Remedy: - check the power supply.

- replace Control Unit.

F08501 (N, A)	PROFINET: Setpoint timeout
Reaction:	OFF3 (IASCIDCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from PROFINET has been interrupted. - bus connection interrupted. - controller switched off.
Remedy: \quad- controller set into the STOP state. - Restore the bus connection and set the controller to RUN. - if the error is repeated, check the update time set in the bus configuration (HW Config).	

F08502 (A) PROFINET: Monitoring time sign-of-life expired

Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause:	The monitoring time for the sign-of-life counter has expired.
The connection to the PROFINET interface was interrupted.	
Remedy:	- carry out a POWER ON (switch-off/switch-on).
	- contact Technical Support.

A08511 (F)	PROFINET: Receive configuration data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	2: Too many PZD data words for input or output. The number of possible PZD is specified by the number of indices in r2050/
	p2051.
	3: Uneven number of bytes for input or output.

Remedy:	Check the receive configuration data.
	For alarm value $=2:$
- check the number of data words for output and input.	

A08526 (F)	PROFINET: No cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no connection to a PROFINET controller.
Remedy:	Establish the cyclic connection and activate the controller with cyclic operation.
	Check the parameters "Name of Station" and "IP of Station" (r61000, r61001).

A08564	PN/COMM BOARD: syntax error in the configuration file
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the Communication Board Ethernet. The saved configuration file has not been loaded.
Remedy:	- correct the PROFINET interface configuration (p8920 and following) and activate (p8925 = 2).
	- reinitialize the station (e.g. using the STARTER commissioning software)
	Note:
	The configuration is not applied until the next POWER ON!
	See also: p8925 (Activate PN interface configuration)

A08564	PN/COMM BOARD: syntax error in the configuration file
Reaction:	NONE
Acknowledge:	NONE
Cause:	A syntax error has been detected in the ASCII configuration file for the Communication Board Ethernet. The saved configuration file has not been loaded.
Remedy:	- correct the PROFINET interface configuration (p8920 and following) and activate (p8925 = 2). - reinitialize the station
	Note: The configuration is not applied until the next POWER ON! See also: p8925 (Activate PN interface configuration)

A08565	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0 : general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway)
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask)
Remedy:	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925). or
	- reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software).
	See also: p8925 (Activate PN interface configuration)

A08565	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0 : general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway)
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask)
Remedy:	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).
	or
	- reconfigure the station via the "Edit Ethernet node" screen form.
	See also: p8925 (Activate PN interface configuration)

A08800	PROFlenergy energy-saving mode active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFlenergy energy-saving mode is active
	Alarm value (r2124, interpret decimal):
	Mode ID of the active PROFlenergy energy-saving mode.
Remedy:	See also: r5600 (Pe energy-saving mode ID)
	The alarm is automatically withdrawn when the energy-saving mode is exited.
	Note:
	The energy-saving mode is exited after the following events:
	- the PROFlenergy command end_pause is received from the higher-level control.
	- the higher-level control has changed into the STOP operating state.
	- the PROFINET connection to the higher-level control has been disconnected.

F13009	Licensing OA application not licensed
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one OA application which is under license does not have a license. Note: Refer to r4955 and p4955 for information about the installed OA applications.
Remedy:	- enter and activate the license key for OA applications under license (p9920, p9921). - if necessary, deactivate unlicensed OA applications (p4956).
F13100	Know-how protection: Copy protection error
Reaction:	OFF1
Acknowledge:	IMMEDIATELY

10.6 List of fault codes and alarm codes

Cause:	The know-how protection with copy protection for the memory card is active.
	An error has occurred when checking the memory card.
	Fault value (r0949, interpret decimal):
	0 : A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	2: An invalid memory card is inserted.
	3: The memory card is being used in another Control Unit.
	12: An invalid memory card is inserted (OEM input incorrect, p7769).
	13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
	See also: p7765 (KHP configuration)
Remedy:	For fault value $=0,1$:
	- insert the correct memory card and carry out POWER ON.
	For fault value $=2,3,12,13$:
	- contact the responsible OEM.
	- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
	- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).
	Note:
	In general, the copy protection can only be changed when know-how protection is deactivated.
	KHP: Know-How Protection
	See also: p3981, p7765
F13101	Know-how protection: Copy protection cannot be activated
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error occurred when attempting to activate the copy protection for the memory card.
	Fault value (r0949, interpret decimal):
	0: A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	Note:
	KHP: Know-How Protection
Remedy:	- insert a valid memory card.
	- Try to activate copy protection again (p7765).
	See also: p7765 (KHP configuration)
F13102	Know-how protection: Consistency error of the protected data
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = object number, xxxx = fault cause
	$x x x x=1$:
	A file has a checksum error.
	$x \mathrm{xxx}=2$:
	The files are not consistent with one another.
	$x \mathrm{xxxx}=3:$
	The project files, which were loaded into the file system via load (download from the memory card), are inconsistent.
	Note:
	KHP: Know-How Protection
Remedy:	- Replace the project on the memory card or replace project files for download from the memory card. - Restore the factory setting and download again.

F30001	Power unit: Overcurrent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- Ulf operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- High discharge and post-charging current for line supply voltage interruptions.
	- High post-charging currents for overload when motoring and DC link voltage dip. - short-circuit currents at switch-on due to the missing line reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star/delta).
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the line supply quality.
	- reduce motor load.
	- correct connection of line reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	- check the line supply phases.
F30002	Power unit: DC link voltage overvoltage
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overvoltage condition in the DC link.
	- motor regenerates too much energy.
	- line supply voltage too high.
	- line phase interrupted.
	- DC link voltage control switched off.
	- dynamic response of DC link voltage controller excessive or insufficient.
	Fault value (r0949, interpret decimal):
	DC link voltage at the time of trip [0.1 V].

10.6 List of fault codes and alarm codes

Remedy:	-increase the ramp-down time (p1121). - set the rounding times (p1130, p1136). This is particularly recommended in U/f operation to relieve the DC link voltage controller with rapid ramp-down times of the ramp-function generator. - Activate the DC link voltage controller (p1240, p1280). - adapt the dynamic response of the DC link voltage controller (p1243, p1247, p1283, p1287). - check the line supply and DC link voltage. set p0210 as low as possible (also see A07401, p1294 = 0). - check and correct the phase assignment at the power unit. - check the line supply phases. See also: p0210, p1240
F30003	Power unit: DC link voltage undervoltage
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an undervoltage condition in the DC link. - line supply failure - line supply voltage below the permissible value. - line phase interrupted. Note: The monitoring threshold for the DC link undervoltage is the minimum of the following values: - for a calculation, refer to p0210.
Remedy:	- check the line supply voltage - check the line supply phases. See also: p0210 (Drive unit line supply voltage)
F30004	Power unit: Overtemperature heat sink AC inverter
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949, interpret decimal): Temperature [1 bit $=0.01^{\circ} \mathrm{C}$].
Remedy:	- check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after the alarm threshold for alarm A05000 has been undershot. See also: p1800
F30005	Power unit: Overload 12t
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = 100%). - the permissible rated power unit current was exceeded for an inadmissibly long time. - the permissible load duty cycle was not maintained. Fault value (r0949, interpret decimal): $12 \mathrm{t}[100 \%=16384] .$

Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the motor and power unit rated currents. - reduce the current limit (p0640). - during operation with U/f characteristic: reduce the integral time of the current limiting controller (p1341). See also: r0036, r0206, p0307
F30011	Power unit: Line phase failure in main circuit
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	At the power unit, the DC link voltage ripple has exceeded the permissible limit value. Possible causes: - a line phase has failed. - the 3 line phases are inadmissibly asymmetrical. - the capacitance of the DC link capacitor forms a resonance frequency with the line inductance and the reactor integrated in the power unit. - the fuse of a phase of a main circuit has ruptured. - a motor phase has failed. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- check the main circuit fuses. - check whether a single-phase load is distorting the line voltages. - Detune the resonant frequency with the line inductance by using an upstream line reactor. - Dampen the resonant frequency with the line inductance by switching over the DC link voltage compensation in the software (see p1810) - or increase the smoothing (see p1806). However, this can have a negative impact on the torque ripple at the motor output. - check the motor feeder cables.
F30012	Power unit: Temperature sensor heat sink wire breakage
Reaction:	
Acknowledge:	IMMEDIATELY
Cause:	The connection to a heat sink temperature sensor in the power unit is interrupted. Fault value (r0949, interpret hexadecimal): Bit 0: Module slot (electronics slot) Bit 1: Air intake Bit 2: Inverter 1 Bit 3: Inverter 2 Bit 4: Inverter 3 Bit 5: Inverter 4 Bit 6: Inverter 5 Bit 7: Inverter 6 Bit 8: Rectifier 1 Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30013	Power unit: Temperature sensor heat sink short-circuit
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY

A30016 (N)	Power unit: Load supply switched off
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low.
	Alarm value (r2124, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	Under certain circumstances, the AC line supply is not switched on.

F30017 Power unit: Hardware current limit has responded too often
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit.

- closed-loop control is incorrectly parameterized.
- fault in the motor or in the power cables.
- the power cables exceed the maximum permissible length.
- motor load too high
- power unit defective.

Fault value (r0949, interpret binary):
Bit 0: Phase U
Bit 1: Phase V
Bit 2: Phase W

Remedy:	- check the motor data. - check the motor circuit configuration (star-delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.
F30021	Power unit: Ground fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power has detected a ground fault. Possible causes: - ground fault in the power cables. - ground fault at the motor. - CT defective. - when the brake closes, this causes the hardware DC current monitoring to respond. - short-circuit at the braking resistor. Fault value (r0949, interpret decimal): 0 : - the hardware DC current monitoring has responded. - short-circuit at the braking resistor. >0 : Absolute value, summation current [32767 = 271 \% rated current].
Remedy:	- check the power cable connections. - check the motor. - check the CT. - check the cables and contacts of the brake connection (a wire is possibly broken). - check the braking resistor. See also: p0287 (Ground fault monitoring thresholds)
F30022	Power unit: Monitoring U_ce
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	In the power unit, the monitoring of the collector-emitter voltage (U_{-}ce) of the semiconductor has responded. Possible causes: - fiber-optic cable interrupted. - power supply of the IGBT gating module missing. - short-circuit at the power unit output. - defective semiconductor in the power unit. Fault value (r0949, interpret binary): Bit 0: Short-circuit in phase U Bit 1: Short circuit in phase V Bit 2: Short-circuit in phase W Bit 3: Light transmitter enable defective Bit 4: U_ce group fault signal interrupted See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace. - check the power supply of the IGBT gating module (24 V). - check the power cable connections. - select the defective semiconductor and replace.

10.6 List of fault codes and alarm codes

F30024	Power unit: Overtemperature thermal model
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature difference between the heat sink and chip has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. See also: r0037
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. - if DC braking is active: reduce braking current (p1232).
F30025	Power unit: Chip overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature of the semiconductor has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949, interpret decimal): Temperature difference between the heat sink and chip $\left[0.01^{\circ} \mathrm{C}\right]$.
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after the alarm threshold for alarm A05001 has been undershot. See also: r0037

F30027 Power unit: Precharging DC link time monitoring
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: \quad The power unit DC link was not able to be precharged within the expected time.

1) There is no line supply voltage connected.
2) The line contactor/line side switch has not been closed.
3) The line supply voltage is too low.
4) Line supply voltage incorrectly set (p0210).
5) The precharging resistors are overheated as there were too many precharging operations per time unit.
6) The precharging resistors are overheated as the DC link capacitance is too high.
7) The DC link has either a ground fault or a short-circuit.
8) Precharging circuit may be defective.

Fault value (r0949, interpret binary):
yyyyxxxx hex:
yyyy = power unit state
0: Fault status (wait for OFF and fault acknowledgment).
1: Restart inhibit (wait for OFF).
2: Overvoltage condition detected $->$ change into the fault state.
3: Undervoltage condition detected $->$ change into the fault state.
4: Wait for bridging contactor to open -> change into the fault state.
5: Wait for bridging contactor to open -> change into restart inhibit.
6: Commissioning.
7: Ready for precharging.
8: Precharging started, DC link voltage less than the minimum switch-on voltage.
9: Precharging, DC link voltage end of precharging still not detected.
10: Wait for the end of the de-bounce time of the main contactor after precharging has been completed.
11: Precharging completed, ready for pulse enable.
12: Reserved.
$x x x x=$ Missing internal enable signals, power unit (inverted bit-coded, FFFF hex $->$ all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down.
Bit 1: Ground fault detected.
Bit 2: Peak current intervention.
Bit 3: 12t exceeded.
Bit 4. Thermal model overtemperature calculated.
Bit 5: (heat sink, gating module, power unit) overtemperature measured.
Bit 6: Reserved.
Bit 7: Overvoltage detected.
Bit 8: Power unit has completed precharging, ready for pulse enable.
Bit 9: Reserved.
Bit 10: Overcurrent detected.
Bit 11: Reserved.
Bit 12: Reserved.
Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
Bit 14: Undervoltage detected.
See also: p0210 (Drive unit line supply voltage)

Remedy: \quad In general: \begin{tabular}{l}

- check the line supply voltage at the input terminals.

- check the line supply voltage setting (pO 210).

- wait until the precharging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line

supply.

For 5):

- carefully observe the permissible precharging frequency (refer to the appropriate Equipment Manual).

For 6):

- check the capacitance of the DC link and, if necessary, reduce it in accordance with the maximum permissible DC link

capacitance (see relevant Equipment Manual).

For 7):

- check the DC link for a ground fault or short circuit.

See also: p0210 (Drive unit line supply voltage)
\end{tabular}

A30030	Power unit: Internal overtemperature alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
	- possibly use an additional fan.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

A30031	Power unit: Hardware current limiting in phase U
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1). - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.

A30032	Power unit: Hardware current limiting in phase V
Reaction:	NONE
Acknowledge:	NONE

Cause: | Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. |
| :--- |
| - closed-loop control is incorrectly parameterized. |
| - fault in the motor or in the power cables. |
| - the power cables exceed the maximum permissible length. |
| - motor load too high |
| - power unit defective. |
| Note: |
| Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds. |
| Check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data |
| identification (p1910=1, p1960 $=1$). |
| - check the motor circuit configuration (star/delta). |
| - check the motor load. |
| - check the power cable connections. |
| - check the power cables for short-circuit or ground fault. |
| - check the length of the power cables. |

A30033	Power unit: Hardware current limiting in phase W
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification (p1910 = 1, p1960 = 1). - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.

A30034	Power unit: Internal overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the unit continues to increase, fault F30036 may be triggered.
	- ambient temperature might be too high.
	- insufficient cooling, fan failure.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the ambient temperature.
	- check the fan for the inside of the unit.

F30035	Power unit: Air intake overtemperature
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY

Cause:	The air intake in the power unit has exceeded the permissible temperature limit.
For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.	
- ambient temperature too high.	
- insufficient cooling, fan failure.	
Fault value (r0949, interpret decimal):	
Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.	
Remedy:	- check whether the fan is running.
- check the fan elements.	
- check whether the ambient temperature is in the permissible range.	
Notice:	
This fault can only be acknowledged after the alarm threshold for alarm A05002 has been undershot.	

F30036	Power unit: Internal overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

F30037 Power unit: Rectifier overtemperature

Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.

- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.
- line supply phase failure.

Fault value (r0949, interpret decimal):
Temperature $\left[0.01^{\circ} \mathrm{C}\right.$].
Remedy: - check whether the fan is running.

- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- check the line supply phases.

Notice:
This fault can only be acknowledged after the alarm threshold for alarm A05004 has been undershot.

A30042	Power unit: Fan has reached the maximum operating hours
Reaction:	NONE
Acknowledge:	NONE

Cause:	The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
	Alarm value (r2124, interpret binary):
	Bit 0: heat sink fan will reach the maximum operating time in 500 hours.
	Bit 1: heat sink fan has exceeded the maximum operating time.
	Bit 8: internal device fan will reach the maximum operating time in 500 hours.
	Bit 9: internal device fan has exceeded the maximum operating time.
	Note:
	The maximum operating time of the heat sink fan in the power unit is displayed in p0252.
	The maximum operating time of the internal device fan in the power unit is internally specified and is fixed.
Remedy:	For the fan involved, carry out the following:
	- replace the fan.
	- reset the operating hours counter (p0251, p0254).
	See also: p0251, p0252, p0254
A30049	Power unit: Internal fan faulty
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan has failed.
Remedy:	Check the internal fan and replace if necessary.
F30051	Power unit: Motor holding brake short circuit detected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A short-circuit at the motor holding brake terminals has been detected.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the motor holding brake for a short-circuit.
	- check the connection and cable for the motor holding brake.
F30052	EEPROM data error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module.
	Fault value (r0949, interpret decimal):
	0, 2, 3, 4:
	The EEPROM data read in from the power unit module is inconsistent.
	1:
	EEPROM data is not compatible to the firmware of the Control Unit.
Remedy:	Replace power unit module.
F30055	Power unit: Braking chopper overcurrent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An overcurrent condition has occurred in the braking chopper.
Remedy:	- check whether the braking resistor has a short circuit.
	- for an external braking resistor, check whether the resistor may have been dimensioned too small.
	Note:
	The braking chopper is only enabled again at pulse enable after the fault has been acknowledged.

A30057	Power unit: Line asymmetry
Reaction:	NONE
Acknowledge:	NONE
Cause:	Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase. It is also possible that a motor phase has failed.
	Fault F30011 is output if the alarm is present and at the latest after 5 minutes.
	The precise duration depends on the power unit type and the particular frequencies. For booksize and chassis power units, the duration also depends on how long the alarm has been active.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the line phase connection.
	- check the motor feeder cable connections.
	If there is no phase failure of the line or motor, then line asymmetry is involved.
	- reduce the power in order to avoid fault F30011.

F30059	Power unit: Internal fan faulty
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.
Remedy:	Check the internal fan and replace if necessary.

A30065 (F, N)	Voltage measured values not plausible
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement is not supplying any plausible values
	Alarm value $(\mathrm{r} 2124$, interpret bitwise binary):
	Bit 1: Phase U.
	Bit 2: Phase V.
	Bit 3: Phase W.
	- Deactivate voltage measurement $(p 0247.0=0)$.
Remedy: \quad - Deactivate flying restart with voltage measurement $(p 0247.5=0)$ and deactivate fast flying restart $(p 1780.11=0)$.	

F30068	Power unit: undertemperature inverter heat sink
Reaction:	OFF2
Acknowledge:	
Cause:	IMMEDIATELY The actual inverter heat sink temperature is below the permissible minimum value. Possible causes: - the power unit is being operated at an ambient temperature that lies below the permissible range. - the temperature sensor evaluation is defective. Fault value (r0949, interpret decimal): inverter heat sink temperature $\left[0.1^{\circ} \mathrm{C}\right]$.
- ensure that higher ambient temperatures prevail.	
- replace the power unit.	

F30072	Setpoints can no longer be transferred to the Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one setpoint telegram was not able to be transferred to the power unit module.
Remedy:	Check the interface (adjustment and locking) to the power unit module.
F30074 (A)	Communication error between the Control Unit and Power Module
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
	Fault value (r0949, interpret hexadecimal):
	0 hex:
	- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
	- with the Power Module switched off, the external 24 V supply for the Control Unit was interrupted for some time.
	1 hex:
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.
	20A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	20B hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number. The Control Unit executes an automatic warm restart to accept the new calibration data.
Remedy:	For fault value $=0$ and 20A hex:
	Insert the Control Unit on an appropriate Power Module and continue operation. If required, carry out a POWER ON of the Control Unit.
	For fault value = 1 hex:
	Carry out a POWER ON of the Control Unit.
F30075	Configuration of the power unit unsuccessful
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A communication error has occurred while configuring the power unit using the Control Unit. The cause is not clear.
	Fault value (r0949, interpret decimal):
	$0:$
	The output filter initialization was unsuccessful.
	Activation/deactivation of the regenerative feedback functionality was unsuccessful.
Remedy:	- acknowledge the fault and continue operation.
	- if the fault reoccurs, carry out a POWER ON (switch-off/switch-on).
	- if required, replace the power unit.
F30080	Power unit: Current increasing too quickly
Reaction:	OFF2
Acknowledge:	IMMEDIATELY

10.6 List of fault codes and alarm codes

Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
- closed-loop control is incorrectly parameterized.	
- motor has a short-circuit or fault to ground (frame).	
- U/f operation: Up ramp set too low.	
- U/f operation: rated current of motor much greater than that of power unit.	
- power cables are not correctly connected.	
- power cables exceed the maximum permissible length.	
- power unit defective.	
Fault value (r0949, interpret bitwise binary):	
Bit 0: Phase U.	
Bit 1: Phase V.	
Bit $2:$ Phase W.	
- check the motor data - if required, carry out commissioning.	
- check the motor circuit configuration (star-delta)	
- U/f operation: Increase up ramp.	
- U/f operation: Check assignment of rated currents of motor and power unit.	
- check the power cable connections.	
- check the power cables for short-circuit or ground fault.	
- check the length of the power cables.	
- replace power unit.	

F30081 Power unit: Switching operations too frequent

Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause:	The power unit has executed too many switching operations for current limitation. - closed-loop control is incorrectly parameterized. - motor has a short-circuit or fault to ground (frame). - U/f operation: Up ramp set too low. - U/f operation: rated current of motor much greater than that of power unit. - power cables are not correctly connected. - power cables exceed the maximum permissible length. - power unit defective. Fault value (r0949, interpret bitwise binary): Bit 0: Phase U. Bit 1: Phase V. Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star-delta) - U/f operation: Increase up ramp. - U/f operation: Check assignment of rated currents of motor and power unit. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit.

F30105 PU: Actual value sensing fault

Reaction:
OFF2
Acknowledge: IMMEDIATELY
Cause: At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy: Evaluate the diagnostic parameters.
If the actual value channel is incorrect, check the components and if required, replace.

A30502	Power unit: DC link overvoltage
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit. - device connection voltage too high. - line reactor incorrectly dimensioned. Alarm value (r0949, interpret decimal): DC link voltage [1 bit $=100 \mathrm{mV}$]. See also: r0070 (Actual DC link voltage)
Remedy:	- check the device supply voltage (p0210). - check the dimensioning of the line reactor. See also: p0210 (Drive unit line supply voltage)
F30662	Error in internal communications
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (switch-off/switch-on). - upgrade firmware to later version. - contact Technical Support.

F30664 Error while booting

Reaction:	OFF2
Acknowledge:	POWER ON

Cause:	An error has occurred during booting.
	Fault value (r0949, interpret hexadecimal):
Remedy:	Only for internal Siemens troubleshooting.
	- carry out a POWER ON (switch-off/switch-on).
	- upgrade firmware to later version.
	- contact Technical Support.

N30800 (F)	Power unit: Group signal
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.

F30802 Power unit: Time slice overflow
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: A time slice overflow has occurred. Fault value (r0949, interpret decimal): $x x$: Time slice number $x x$

Remedy: | - carry out a POWER ON (switch-off/switch-on) for all components. | |
| ---: | :--- |
| | - upgrade firmware to later version. |
| | - contact Technical Support. |

F30804 (N, A) Power unit: CRC

Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A checksum error (CRC error) has occurred for the power unit.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components. - upgrade firmware to later version. - contact Technical Support.

F30805	Power unit: EEPROM checksum error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.

F30809	Power unit: Switching information not valid
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit, the following applies: The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found. Remedy:
	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

A30810 (F)	Power unit: Watchdog timer
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (switch-off/switch-on) for all components.
	- upgrade firmware to later version.
	- contact Technical Support.

F30850	Power unit: Internal software error
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. Remedy: - replace power unit. - if required, upgrade the firmware in the power unit. - contact Technical Support.

F30903	Power unit: I2C bus error occurred
Reaction:	OFF2 (IASCIDCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or an analog/digital converter. Fault value (r0949, interpret hexadecimal): 80000000 hex: - internal software error. 00000001 hex ... 0000FFFF hex: - module fault.
Remedy:	For fault value $=80000000$ hex: - upgrade firmware to later version. For fault value $=00000001$ hex.. 0000FFFF hex: - replace the module.

A30920 (F)	Temperature sensor fault
Reaction:	NONE
Acknowledge:	NONE

Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
1: Wire breakage or sensor not connected.	
	KTY: $R>2120$ Ohm, PT1000: $R>2120$ Ohm
2: Measured resistance too low.	
Remedy:	PTC: $R<20$ Ohm, KTY: $R<50$ Ohm, PT1000: $R<603$ Ohm
- make sure that the sensor is connected correctly.	
- replace the sensor.	

F30950	Power unit: Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal): Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the power unit to a later version.
	- contact Technical Support.

A30999 (F, N)	Power unit: Unknown alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy:	- replace the firmware on the power unit by an older firmware version (r0128).
	- upgrade the firmware on the Control Unit (r0018).

F35950 TM: Internal software error
Reaction: OFF2 (NONE)

Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if necessary, upgrade the firmware in the Terminal Module to a later version.
	- contact Technical Support.

A50010 (F)	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set
	configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0: general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway).
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	Note:
	DHCP: Dynamic Host Configuration Protocol
	See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask), p8924
(PN DHCP Mode)	
	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).
Remedy:	
	- reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software).
	See also: p8925 (Activate PN interface configuration)

A50010 (F)	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The currently set
	configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0: general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway).
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	Note:
	DHCP: Dynamic Host Configuration Protocol
	See also: p8920 (PN Name of Station), p8921 (PN IP address), p8922 (PN Default Gateway), p8923 (PN Subnet Mask), p8924
(PN DHCP Mode)	
	- check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).
or	
Remedy:	- reconfigure the station via the "Edit Ethernet node" screen form.

A50011 (F)	Ethernet/IP: configuration error
Reaction:	NONE
Acknowledge:	NONE

Cause:	An EtherNet/IP controller attempts to establish a connection using an incorrect configuring telegram. The telegram length set in the controller does not match the parameterization in the drive device.
Remedy:	Check the set telegram length. For p0922 not equal to 999, then the length of the selected telegram applies. For p0922 = 999, the maximum interconnected PZD (r2067) applies. See also: p0922, r2067
F50510	FBLOCKS: Logon of the runtime group rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the runtime groups of the free function blocks attempted to log on with the sampling time management, the logon of at least one runtime group was rejected. Too many different hardware sampling times may have been assigned to the free function blocks. See also: r20008 (Hardware sampling times available)
Remedy:	- check number of available hardware sampling times (T_sample < 8 ms) (r7903).
F50511	FBLOCKS: Memory no longer available for free function blocks
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the free function blocks were activated, more memory was requested than was available on the Control Unit.
Remedy:	Not necessary.
A50513 (F)	FBLOCKS: Run sequence value already assigned
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to assign a run sequence value already assigned to a function block on this drive object to another additional function block on the same drive object. A run sequence value can only be precisely assigned to one function block on one drive object.
Remedy:	Set another value that is still available on this drive object for the run sequence.
A50517	FBLOCKS: Int. meas. active
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Siemens internal measurement has been activated.
Remedy:	Carry out a POWER ON (switch-off/switch-on) for the Control Unit involved.
F50518	FBLOCKS: Sampling time of free runtime group differs at download
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	In the STARTER/SCOUT project that was downloaded, the hardware sampling time of a free runtime group ($1<=$ p20000[i] <= 256) was set to a value that was either too low or too high. The sampling time must be between 1 ms and the value $\mathrm{r} 20003-\mathrm{r} 20002$. If the sampling time of the selected free runtime group is $<1 \mathrm{~ms}$, the equivalent value of 1 ms is used. If the value $>=r 20003$, then the sampling time is set to the next higher or the same software sampling time $>=r 21003$. Fault value (r0949, interpret decimal): Number of the p20000 index of the runtime group where the sampling time is incorrectly set. Number of the runtime group $=$ fault value +1 See also: r20008 (Hardware sampling times available)

10.6 List of fault codes and alarm codes

Remedy:	- Correctly set the sampling time of the runtime group.
- If required, take all of the blocks from the runtime group.	
Note:	
Fault F50518 only detects an incorrectly parameterized runtime group. If, after correcting p20000[i] in the project, this error	
occurs again at download, then the runtime group involved should be identified using the fault value (r0949) and the	
sampling time correctly set.	

F52960	Cavitation protection failure
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Conditions exist for cavitation damage. Cavitation damage is damage caused to a pump in pumping systems when the fluid is not flowing sufficiently. This can lead to heat build up and subsequent damage to the pump.
Remedy:	If cavitation is not occurring, reduce the cavitation threshold p29626, or increase the cavitation protection delay. Ensure sensor feedback is working.

A52961	Cavitation protection warning
Reaction:	NONE
Acknowledge:	NONE
Cause:	Conditions for possible cavitation damage are detected.
Remedy:	See F52960.

A52962	Mpc operating time limit exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The continuous operating time of at least one motor has exceeded the limit.
Remedy:	Increase p29531 or set p29547 = 0.

A52963 Mpc PID deviation exceeded
Reaction: NONE
Acknowledge: NONE

Cause:	The technology controller system deviation (r2273) has exceeded the threashold (p29546) and all motors are running
except the motors under service or locked.	
Remedy:	- Repair or unlock motors if there are motors under service or locked.
	- Add more motors in the system if the number of motors is less than four.

A52964	Mpc one motor available
Reaction:	NONE
Acknowledge: NONE Cause: Only one motor is not under service or locked manually. All the other motors are under service or locked manually. Remedy: Repair or unlock motors. F52965 Mpc no motor available Reaction: OFF2 Acknowledge: IMMEDIATELY Cause: All motors are under service or locked manually. Remedy: Repair or unlock (set p29542 $=0$) motors. F52966 Mpc motor quantity not matched Reaction: OFF2	

Acknowledge: IMMEDIATELY

Cause: \quad p29521 and digital output settings do not match.

Remedy: Case 1: without I/O extended module.
Change p29521 or digital output (p0730, p0731, p0732, p0733) settings to ensure that the motor quantity set in p29521 matches with the quantity of digital outputs (mapped in r29529).
Case 2: added I/O extended module.
Change p29521 or digital output (p0730, p0731, p0732, p0733, p0734, p0735) settings to ensure that the motor quantity set in p29521 matches with the quantity of digital outputs (mapped in r29529). If p29521 is greater than four, but the CU without I/O extended module, the fault occurs.

Warnings, faults and system messages
10.6 List of fault codes and alarm codes

Corrective maintenance

Wind WARNING
Fire or electric shock due to defective components
If an overcurrent protection device is triggered, the converter may be defective. A defective
converter can cause a fire or electric shock.
- Have the converter and the overcurrent protection device checked by a specialist.

4. WARNING

Fire or electric shock due to defective components
If an overcurrent protection device is triggered, the converter may be defective. A defective converter can cause a fire or electric shock.

- Have the converter and the overcurrent protection device checked by a specialist.

Repair

WARNING

Fire or electric shock due to improper repair
Improper repair of the converter may cause malfunctions or result in consequential damage such as fire or electric shock.

- Only commission the following persons to repair the converter:
- Siemens customer service
- A repair center that has been authorized by Siemens
- Specialist personnel who are thoroughly acquainted with all the warnings and operating procedures contained in this manual.
- Only use original spare parts when carrying out repairs.

1 CAUTION
Burns due to touching hot surfaces
Certain components (e.g. the heat sink or line reactor) can become very hot during operation. The components can remain hot for some time after operation. Touching hot surfaces can cause burns to the skin.

- Do not touch hot components during operation or immediately following operation.

11.1 Replacing the converter

11.1.1 Replacing the converter hardware

Overview

You may only replace a converter with a different converter under certain preconditions.

Requirement

The following preconditions apply for making a replacement:

- The new converter has the same or more recent firmware version than that of the converter being replaced.
- The two converters must also satisfy one of the following conditions:
- The new and replaced converters have the same power rating.
- The new converter has a different power rating than the converter it replaced, but still has the same frame size.
In this case, the rated converter power and the rated motor power must not differ too much.
The following values are permissible for the quotients (rated motor power)/(rated converter power):
200 V converter and 400 V converter: 0.25 ... 1.5
690 V converter: 0.5 ... 1.5

Description

WARNING

Unexpected machine motion caused by incorrect converter type

Replacing converters of different types can result in incomplete or incorrect/inappropriate converter settings. As a consequence, unexpected machine motion, e.g. speed oscillation, overspeed or incorrect direction of rotation. Unexpected machine motion can result in death, injury or material damage.

- In all cases not permitted according to the above requirement, you must recommission the drive after replacing the converter.

WARNING

Unexpected machine motion caused by inappropriate/incorrect converter settings
Missing or incorrect converter settings can lead to unexpected operating states or machine movements, e.g. a non-functioning EMERGENCY STOP or an incorrect direction of rotation. As a consequence, machine components or devices can become damaged or death or bodily injury may result.

- Back up the settings of the converter to be replaced by uploading them to an external storage medium, e.g. a memory card.
- Transfer the settings of the converter to be replaced by downloading them to the new converter.
- If you do not have a backup of the converter settings, commission the new converter as completely new converter.
- Check that the new converter works properly.

Procedure

1. Disconnect the line voltage to the converter.

WARNING

Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 min . until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.

- Check the voltage at the converter connections, before removing the connection cables.

2. Remove the connecting cables of the converter.
3. Remove the defective converter.
4. Install the new converter.
5. Connect all of the cables to the converter.

NOTICE

Damage caused by interchanging the motor cables

The direction in which the motor rotates switches if you exchange the two phases of the motor line. An incorrect direction of rotation can lead to damage in the machine or system.

- Connect the 3 phases of the motor lines in the right order.

6. Switch on the line voltage of the converter.
7. Set the new converter to suit the application:

- If the settings of the replaced converter are backed up on an external storage medium, transfer the settings via a download.
D Download of the converter settings (Page 1276)
- If there is no data backup of the replaced converter, commission the converter as new converter.

You successfully replaced the converter. \square

11.1.2 Download of the converter settings

11.1.2.1 Automatic download from the memory card

Overview

We recommend that you insert the memory card before switching on the converter. The converter automatically imports its settings from the inserted memory card.

Precondition

The following requirements apply:

- The converter power supply has been switched off.
- The converter settings are not protected against copying.

Download with active know-how protection with copy protection (Page 1282)

Function description

Procedure

1. Insert the memory card into the converter.
2. Switch on the power supply for the converter.
3. The converter loads the settings from the memory card.
4. After loading, check whether the converter outputs Alarm A01028.

- Alarm A01028:

The loaded settings are not compatible with the converter.
Delete the alarm with p0971 = 1 .
Recommission the drive.

- No alarm A01028:

The converter accepts the settings that have been loaded.
You have transferred the settings to the converter.
\square
11.1.2.2 Manual downloading from the memory card with the BOP-2

Overview

If you have backed up the settings of several converters on the memory card, the settings download must be started manually.

Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.

D Download with active know-how protection with copy protection (Page 1282)

Function description

Procedure

1. Insert the memory card into the converter.
2. Select the download.

3. Set the number of your data backup. You can back up 99 different settings on the memory card.

4. Start the data transfer.

5. Wait until the converter has transferred the settings from the memory card.

6. Back up the settings so that they are protected against power failure.

You have transferred the settings from the memory card to the converter. \square

11.1.2.3 Download from BOP-2 operator panel

Overview

You can transfer the converter settings that are backed up on the BOP-2 operator panel back into the converter.

Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.

Download with active know-how protection with copy protection (Page 1282)

Function description

Procedure

1. Attach the Operator Panel to the converter.
2. Select the download from the operator panel to the converter.

3. Start the download.

4. Wait until the download is completed.

5. After loading, check whether the converter outputs Alarm A01028.

- Alarm A01028:

The loaded settings are not compatible with the converter.
Delete the alarm with p0971 = 1 .
Recommission the drive.

- No alarm A01028: Proceed with the next step.

6. Back up the settings so that they are protected against power failure.

You have transferred the settings to the converter. \square

11.1.2.4 Download from IOP-2 operator panel

Overview

You can transfer the converter settings that are backed up on the IOP-2 operator panel back into the converter.

Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.
\checkmark Download with active know-how protection with copy protection (Page 1282)

Function description

Procedure

1. Connect the operator panel to the converter.
2. Start the download.

3. Wait until the download is completed.
4. After loading, check whether the converter outputs Alarm A01028.

- Alarm A01028:

The loaded settings are not compatible with the converter.
Delete the alarm with p0971 = 1 .
Recommission the drive.

- No alarm A01028: Proceed with the next step.

5. Back up the settings so that they are protected against power failure.

You transferred the settings to the converter.
\square

11.1.2.5 Download from Smart Access

Overview

You can transfer the converter settings that are backed up on the digital terminal device back into the converter.

Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.

Download with active know-how protection with copy protection (Page 1282)

Function description

Procedure

1. Attach the Smart Access to the converter.
2. Connect your terminal device with the Smart Access.
3. Select the file for restoring the converter settings.

4. Back up the settings so that they are protected against power failure.

5. After loading, check whether the converter outputs Alarm A01028.

- Alarm A01028:

The loaded settings are not compatible with the converter.
Delete the alarm with p0971 = 1 .
Recommission the drive.

- No alarm A01028: Proceed with the next step.

You transferred the settings from the Smart Access to the new converter. \square

11.1.2.6 Download with active know-how protection with copy protection

Overview

The know-how protection function prevents converter settings from being copied.

There are two options to avoid recommissioning after a converter has been replaced.

Requirement

The following preconditions apply:

- The end user uses a SIEMENS memory card.
- The machine manufacturer (OEM) has an identical machine.

Function description

Procedure 1: The machine manufacturer only knows the serial number of the new converter

1. The end customer provides the machine manufacturer with the following information:

- For which machine must the converter be replaced?
- What is the serial number (r7758) of the new converter?

2. The machine manufacturer performs the following steps online on the prototype machine:

- Deactivating know-how protection Activating and deactivating know-how protection (Page 243)
- Enter the serial number of the new converter in p7759.
- Enter the serial number of the inserted memory card as reference serial number in p7769.
- Activate know-how protection with copy protection. "Copy RAM to ROM" must be activated.
- Write the configuration with p0971 = 1 to the memory card.
- Send the memory card to the end customer.

3. The end user inserts the memory card.
4. The end user switches on the converter power supply.
5. The converter checks the serial numbers of the card and the converter, and when there is a match the converter goes into the "Ready for switching on" state.
If the numbers do not match, then the converter signals fault F13100 (no valid memory card).

The settings have been transferred to the converter.
\square

Procedure 2: The machine manufacturer knows the serial number of the new converter and the serial number of the memory card

1. The end customer provides the machine manufacturer with the following information:

- For which machine must the converter be replaced?
- What is the serial number (r7758) of the new converter?
- What is the serial number of the memory card?

2. The machine manufacturer performs the following steps online on the prototype machine:

- Deactivating know-how protection 4] Activating and deactivating know-how protection (Page 243)
- Enter the serial number of the new converter in p7759.
- Enter the serial number of the customer's memory card as reference serial number in p7769.
- Activate know-how protection with copy protection. "Copy RAM to ROM" must be activated.
- Write the configuration with p0971 = 1 to the memory card.
- Copy the encrypted project from the card to the associated PC.
- Send the encrypted project to the end customer, e.g. via e-mail.

3. The end user copies the project to the Siemens memory card that belongs to the machine.
4. The end user inserts the Siemens memory card into the converter.
5. The end user switches on the converter power supply.
6. The converter checks the serial numbers of the card and the converter, and when there is a match the converter goes into the "Ready for switching on" state.
If the numbers do not match, then the converter signals fault F13100 (no valid memory card).

The settings have been transferred to the converter.
\square

11.2 Replacing spare parts

11.2.1 Spare parts compatibility

Continuous development within the scope of product maintenance

Converter components are being continuously developed within the scope of product maintenance. Product maintenance includes, for example, measures to increase the ruggedness or hardware changes which become necessary as components are discontinued.

These further developments are "spare parts-compatible" and do not change the article number.
In the scope of such spare parts-compatible ongoing development, plug connector or connection positions are sometimes slightly modified. This does not cause any problems when the components are properly used. Please take this fact into consideration in special installation situations (e.g. allow sufficient reserve regarding the cable length).

11.2.2 Spare parts overview

The look of the spare part can differ from the picture.

Spare parts		Frame size	Article number
Control Unit (USS, Modbus RTU, BACnet MS/TP)		FSD ... FSJ	6SL3200-0SC10-0BA0
Control Unit (PROFINET, EtherNet/IP)		FSD ... FSJ	6SL3200-0SC10-0FA0
Control Unit (PROFIBUS DP)		FSD ... FSJ	6SL3200-0SC10-0PA0
Kit for control interfaces: - 4 sets of labels - 1 CU door - 1 ESD cover - 2 U clamps - 1 functional grounding clamp - 2 STO connectors - 1 RS485 connector - 1 set of I/O connectors		FSA ... FSJ	6SL3200-0SK10-0AAO
1 set of small parts for installation		FSD ... FSG	6SL3200-0SK08-0AAO

Corrective maintenance

11.2 Replacing spare parts

Spare parts		Frame size	Article number
Shield connection kit		FSA	6SL3262-1AA01-0DA0
		FSB	6SL3262-1AB01-0DA0
		FSC	6SL3262-1AC01-0DA0
Shield connection kit for the Control Unit		FSD ... FSG	6SL3264-1EA00-0YAO
Shield connection kit for the Power Module		FSD	6SL3262-1AD01-0DA0
		FSE	6SL3262-1AE01-0DA0
		FSF	6SL3262-1AF01-0DA0
		FSG	6SL3262-1AG01-ODAO
Terminal cover kit		FSD	6SL3200-0SM13-0AA0
		FSE	6SL3200-0SM14-0AA0
		FSF	6SL3200-0SM15-0AA0
		FSG	6SL3200-0SM16-0AA0
External fan unit for the heat sink		FSA	6SL3200-0SF52-0AAO
		FSB	6SL3200-0SF53-0AAO
		FSC	6SL3200-0SF54-0AAO
		FSD	6SL3200-0SF15-0AAO
		FSE	6SL3200-OSF16-0AA0
		FSF	6SL3200-0SF17-0AAO
		FSG	6SL3200-0SF18-0AAO
		FSH/FSJ	6SL3300-0SF01-0AA0
Internal fan unit		FSH/FSJ	6SL3200-0SF50-0AAO
Free programmable interface		FSH/FSJ	6SL3200-0SP05-0AAO
Power supply board		FSH/FSJ	6SL3200-0SP06-0AAO
Current sensor		FSJ	6SL3200-0SE01-0AA0
		FSH/FSJ	6SL3200-0SE02-0AAO

11.2.3 Replacing the Control Unit

In the event of a long-term function fault, you may replace the Control Unit.

Precondition

The following preconditions apply for making a replacement:

- The new Control Unit has the same or more recent firmware version than that of the Control Unit being replaced.
- The new and replaced Control Unit have the same type of fieldbus interface.

Procedure

1. Disconnect the line voltage to the Power Module and (if installed) the external 24 V supply and the voltage for the digital outputs of the Control Unit.
2. For FSH and FSJ, open the left-hand housing flap to gain access to the Control Unit. For FSD to FSG, go to Step 3 directly.
3. Remove the control cables from the Control Unit.
4. Press and push down the release catch on the Power Module to release and remove the Control Unit (Step (1)).
5. Fit the new Control Unit in place and press it on the Power Module until the latch audibly engages (Step (2).

6. Connect all the control cables to the new Control Unit.
7. Set the converter with the new Control Unit to suit the application:

- If the settings of the replaced Control Unit are backed up on an external storage medium, transfer the settings via a download.
Download of the converter settings (Page 1276)
- If there is no data backup of the replaced Control Unit, commission the converter as a new one.

You have successfully replaced the Control Unit.

11.2.4 Fan units

The average service life of the fan is 40,000 hours. In practice, however, the service life may deviate from this value. Especially a dusty environment can block up the fan. The defective fan must be replaced timely to ensure that the converter is ready for operation.

When must the fan unit be replaced?

A defective fan in operation results in an overtemperature condition of the converter. For example, the following messages indicate that the fan unit is defective:

- A05002 (air intake overtemperature)
- A05004 (rectifier overtemperature)
- F30004 (heat sink overtemperature)
- F30024 (temperature model overtemperature)
- F30025 (chip overtemperature)
- F30035 (air intake overtemperature)
- F30037 (rectifier overtemperature)

Precondition

Switch off the converter power supply before replacing the fan unit.

WARNING
Electric shock as a result of a residual charge in power components
After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the
converter have discharged so that the residual charge is at a non-hazardous level. Therefore,
touching the converter immediately after powering off can result in electric shock due to
residual charge in the power components.
- Check the voltage at the converter connections before you replace the fan unit.

11.2.4.1 Replacing the fan unit, FSA ... FSC

The fan unit is installed at the top.

Procedure

1. Switch off the converter power supply.
2. Use a screwdriver to remove the fan unit from the converter as shown below.
1

3. Install the new fan unit in the inverse sequence as shown below.

By inserting the fan unit, you have established the electrical connection between the converter and fan unit.
4. For a push-through mounted converter, you must also mount the top push-through mounting frame back.
You have replaced the fan unit.
\square

11.2.4.2 Replacing the fan unit, FSD FSG

The fan unit is installed at the top.

Procedure

1. Switch off the converter power supply.
2. Press the release clips to remove the fan unit from the converter as shown below. Use a screwdriver if necessary.

3. Install the new fan unit in the inverse sequence as shown below.

By inserting the fan unit, you have established the electrical connection between the converter and fan unit.

You have replaced the fan unit.

\square

11.2.4.3 Replacing the fan unit, FSH/FSJ

Two external fan units are installed at the bottom of the converter.

Procedure

1. Switch off the converter power supply.
2. Release the fixing screws from one fan unit using a screwdriver (1)). The screws are captive.
(1)

3. Shift this fan unit from position "2" to position "1" (this is marked on the housing) (2)). The connector is simultaneously released.

4. Remove the fan unit from the converter (3).

B

5. Repeat steps 2 to 4 to remove the other fan unit.
6. Install the new fan units in the inverse sequence (tightening torque for the captive fixing screws: 1.8 Nm/15.9 lbf.in).
You have replaced the fan unit.
-
11.2 Replacing spare parts

11.2.4.4 Replacing the internal fan, FSH/FSJ only

Preconditions

The converter power supply is switched off.

Required tools

Torque wrench for TX-25 screws.

Function description

Removing the fan

1. Remove the screws (TX-25) of the upper and lower terminal cover.

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Remove the front cover.
5. Remove the fan connector.

6. Remove 2 screws (TX-25).

7. Remove the fan.

The fan is removed.
\square

Installing the fan

1. Mount the fan into the converter.
2. Tighten 2 fan screws (TX-25).
3. Plug the fan connector.
4. Mount the front cover.
5. Tighten 2 screws (TX-25) of the front cover.
6. Mount the terminal covers.
7. Tighten the screws (TX-25) of the upper and lower terminal cover.

The fan is installed.
ㅁ

11.2.5 Assemblies for FSH and FSJ

11.2.5.1 Replacing the power supply board

Precondition

The converter power supply is switched off.

Required tools

Torque wrench for the following screws:

- TX-20
- TX-25

Function description

Removing the power supply board

1. Remove the screws (TX-25) of the upper and lower terminal cover.

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Remove the front cover.
5. Remove the connectors on the power supply board.

6. Remove 5 screws (TX-20).

7. Remove the power supply board.

The power supply board is removed.
-

Installing the power supply board

1. Align the power supply board to the screw holes.
2. Tighten 5 screws (TX-20)
3. Plug the connectors onto the power supply board.
4. Mount the front cover.
5. Tighten 2 screws (TX-25) of the front cover.
6. Mount the terminal covers.
7. Tighten the screws (TX-25) of the upper and lower terminal cover The power supply board is installed. \square
11.2 Replacing spare parts

11.2.5.2 Replacing the free programmable interface (FPI)

Precondition

The converter power supply is switched off.

Required tools

Torque wrench for the following screws:

- TX-20
- TX-25

Function description

Removing the FPI board

1. Remove the screws (TX-25) of the upper and lower terminal cover.

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Remove the front cover.
5. Remove the connectors on the FPI board.

6. Open the locking devices of the IPD.
7. Remove the IPD.

8. Remove the 6 screws on the FPI board (TX-20).

9. Remove the FPI board.

The FPI board is removed.
\square
Installing the FPI board

1. Align the FPI board to the screw holes.
2. Insert 6 screws (TX-20)
3. Plug the IPD.
4. Close the locking devices of the IPD.
5. Plug the connectors onto the FPI board.
6. Mount the front cover.
7. Tighten 2 screws (TX-25) of the front cover.
8. Mount the terminal covers.
9. Tighten the screws (TX-25) of the upper and lower terminal cover.

The FPI board is installed.
\square

11.2.5.3 Replacing the current sensor

Precondition

The converter power supply is switched off.

Required tools

Torque wrench for the following screws:

- TX-20
- TX-25
- TX-30

Function description

Removing the current sensor

1. Remove screws (TX-25) of the upper and lower terminal cover:

- FSH: 3 screws
- FSJ: 4 screws

2. Remove the terminal covers.
3. Remove 2 screws (TX-25) of the front cover.

4. Open the front cover.
5. Remove the IP20 cover (TX-25).

6. Remove the upper copper bar (TX30 and TX-25).

7. Remove the lower copper bar (TX-25).

8. Remove the connector of the current sensor.

9. Remove the current sensor (TX-20).

The current sensor is removed.
\square

Installing the current sensor

1. Mount the current sensor.
2. Plug the connector of the current sensor.
3. Mount the lower copper bar (TX-25).
4. Mount the upper copper bar (TX30 and TX25).
5. Mount the IP20 cover.
6. Mount the front cover.
7. Tighten 2 screws (TX-25) of the front cover.
8. Mount the terminal covers.
9. Tighten the screws (TX-25) of the upper and lower terminal cover

The current sensor is installed.
\square

11.3 Firmware upgrade and downgrade

Figure 11-1 Overview of the firmware upgrade and firmware downgrade
11.3 Firmware upgrade and downgrade

11.3.1 Preparing the memory card

Overview

You can load the converter firmware from the Internet to a memory card.

Precondition

You have the appropriate memory card.
\leadsto Memory card (Page 66)

Function description

Procedure

1. Download the required firmware to your PC from the Internet.
(3) Download Firmware (https://support.industry.siemens.com/cs/ww/en/view/ 109771049)
2. Extract the files to a directory of your choice on your PC.
3. Transfer the unzipped files into the root directory of the memory card.

DUSER	\square ATMG168.UFW	\square B2XX_BE. 10
\square B2XX_BE. 15	\square B2XX_DSP. 10	\square B2XX_DSP. 15
\square B2XX_S.5	\square B2XX_S.10	\square B230.10
\square BET200.10	\square BG110M. 10	\square be20_1.ufw
\square CONTENT.TXT	\square F230P.BIN	\square F230P_BT.BIN
\square F240B.BIN	\square F240D.BIN	\square F240E.BIN
\square F250D.BIN	\square F250S.BIN	\square FET200.BIN
\square FG110M.BIN	\square FG120C.BIN	\square img_G120MC.Ist
\square UPDATE.CTR	MUPDATER.INF	

Figure 11-2 Example of memory card contents after the file transfer
Depending on the firmware, the filenames and the number of files may differ from the display above.
The "USER" directory does not exist on unused memory cards. After the memory card is plugged in for the first time, the converter creates a new "USER" directory.

You have prepared the memory card for the firmware upgrade or downgrade.
\square

11.3.2 Upgrading the firmware

Overview

When upgrading the firmware, you replace the converter firmware by a later version.

Precondition

Converter and memory card have different firmware versions.

Function description

Procedure

1. Switch off the converter power supply.
2. Wait until all LEDs on the converter are dark.

3. Insert the card with the matching firmware into the converter slot until it latches into place.

4. Switch on the converter power supply again.
5. The converter transfers the firmware from the memory card into its memory.
The transfer takes approximately 5 ... 10 minutes. While data is being transferred, the LED RDY on the converter stays red. The LED BF flashes orange with a variable frequency.
6. At the end of the transfer, the LED RDY and BF slowly flash red (0.5 Hz).

Power supply failure during transfer

The converter firmware will be incomplete if the power supply fails during the transfer.

- Start again with step 1 of the instructions.

7. Switch off the converter power supply.
8. Wait until all LEDs on the converter are dark.

Decide whether you want to withdraw the memory card from the converter:

- You remove the memory card:
\Rightarrow The converter keeps its settings.

- You leave the memory card in the converter:
\Rightarrow If the memory card still does not have a data backup of the converter settings, in step 9 the converter writes its settings to the memory card.
\Rightarrow If the memory card already includes a data backup, the converter imports the settings from the memory card in step 9.

9. Switch on the converter power supply again.

10 If the firmware upgrade was successful, after several seconds the converter LED RDY turns green.
If the memory card is still inserted, depending on the previous content of the memory card, one of the two following cases has occurred:

- The memory card contains a data backup:
\Rightarrow The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
\Rightarrow The converter has written its settings to the memory card.
You have upgraded the converter firmware.
\square

11.3.3 Firmware downgrade

Overview

When downgrading the firmware, you replace the converter firmware by an older version.

Precondition

- Converter and memory card have different firmware versions.
- The settings have been saved on a memory card or in an operator panel.

Function description

Procedure

1. Switch off the converter power supply.
2. Wait until all LEDs on the converter are dark.

3. Insert the card with the matching firmware into the converter slot until it latches into place.

4. Switch on the converter power supply again.
5. The converter transfers the firmware from the memory card into its memory.
The transfer takes approximately 5 ... 10 minutes. While data is being transferred, the LED RDY on the converter stays red. The LED BF flashes orange with a variable frequency.
6. At the end of the transfer, the LED RDY and BF slowly flash red (0.5 Hz).
Power supply failure during transfer
The converter firmware will be incomplete if the power supply fails during the transfer.

- Start again with Step 1 of these instructions.

7. Switch off the converter power supply.
8. Wait until all LEDs on the converter are dark.

Decide whether you want to withdraw the memory card from the converter:

- The memory card contains a data backup: \Rightarrow The converter has taken the settings from the memory card.
- There was no data backup on the memory card:

\Rightarrow The converter has the factory setting.

9. Switch on the converter power supply again.

10 If the firmware downgrade was successful, after several seconds . the converter LED RDY turns green.

If the memory card is still inserted, depending on the previous content of the memory card, one of the two following cases has occurred:

- The memory card contains a data backup:
\Rightarrow The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
\Rightarrow The converter has the factory setting.
11 If the memory card did not contain a data backup of the converter settings, then you must transfer your settings to the converter from another data backup.
D Download of the converter settings (Page 1276)
You have replaced the converter firmware by an older version.
\square

11.3.4 Correcting an unsuccessful firmware upgrade or downgrade

Precondition

The converter signals an unsuccessful firmware upgrade or downgrade by a quickly flashing LED RDY and the lit LED BF.

Function description

You can check the following to correct an unsuccessful firmware upgrade or downgrade:

- Have you correctly inserted the card?
- Does the card contain the correct firmware?

Repeat the firmware upgrade or downgrade
11.4 Reduced acceptance test after component replacement and firmware change

11.4 Reduced acceptance test after component replacement and firmware change

After a component has been replaced or the firmware updated, a reduced acceptance test of the safety functions must be performed.

Measure	Reduced acceptance test	
	Acceptance test	Documentation
Replacing the converter with an identical type	No. Only check the direction of rotation of the motor.	- Supplement the converter data - Log the new checksums - Countersignature - Supplement the hardware version in the converter data.
Replacing the motor with an identical pole pair number		No change.
Replace the gearbox with an identical ratio		
Replacing safety-related I/O devices (e.g. Emergency Stop switch).	No. Only check the control of the safety functions affected by the components that have been replaced.	No change.
Converter firmware update.	No.	- Supplement firmware version in the converter data - Log the new checksums - Countersignature.

12.1 Technical data of inputs and outputs

Property	Explanation
Fieldbus interface (depending on the Control Unit)	PROFINET
	USS
	PROFIBUS DP
24 V power supply	There are two options regarding the 24 V supply: - The converter generates its 24 V power supply from the line voltage. - The converter obtains its 24 V power supply via terminals 31 and 32 with 20.4 ... 28.8 VDC. Current consumption: Maximum 0.5A (The current consumption can be higher if the Control Unit supplies I/O extension module, additional 0.4 A is needed.)
Output voltages	- 24 V (max. 250 mA) - 10 V (max. 10 mA$)$
Setpoint resolution	0.01 Hz
Digital inputs	6 (DI $0 \ldots$ DI 5) - Electrically isolated - Type 3 in accordance with EN 61131-2 - Voltage for "low" state: < 5 V - Voltage for "high" state: > 11 V - Current for 24 V input voltage: 4 mA - Minimum current for the "high" state: 2.5 mA - Maximum input voltage: 30 V - PNP/NPN switchable - Compatible to SIMATIC outputs - 10 ms response time for debounce time p0724 $=0$
	Additional on FSH, - Electrically isolated FSJ: - Type 3 in accordance with EN 61131-2 4 (DI $0 \ldots$ DI 3) - Voltage for "low" state: < 5 V - Voltage for "high" state: $>15 \mathrm{~V}$ - Current for 24 V input voltage: 6.4 mA - Minimum current for the "high" state: 4 mA - Maximum input voltage: 30 V

12.1 Technical data of inputs and outputs

Property	Explanation	
Failsafe digital input	1 (STO_A, STO_B)	- Electrically isolated - Maximum input voltage: 60 V - Comply to type 1 according IEC 61131-2 (FSA ... FSG only)
	Only on FSH, FSJ: 1 (STO_A1, STO_A2)	- Electrically isolated - Digital inputs in accordance with EN 61131-2 - Voltage for "low" state: < 5 V - Voltage for "high" state: > 15 V - Current for 24 V input voltage: 15 mA - Maximum input voltage: 30 V
Analog inputs	$2(\mathrm{Al} 0 \ldots \mathrm{Al} \mathrm{1)}$	- Differential input - 12-bit resolution - 13 ms response time - Switchable between voltage and current via mechanical switch: - $0 \mathrm{~V} \ldots 10 \mathrm{~V}$ or $-10 \mathrm{~V} \ldots+10 \mathrm{~V}$: typical current drain: 0.1 mA , maximum voltage 35 V - $0 \mathrm{~mA} . . .20 \mathrm{~mA}: 120 \Omega$ input resistance, voltage $<10 \mathrm{~V}$, current $<80 \mathrm{~mA}$ - If AI 0 and AI 1 are configured as supplementary digital inputs: Voltage $<35 \mathrm{~V}$, low $<1.6 \mathrm{~V}$, high $>4.0 \mathrm{~V}, 13 \mathrm{~ms} \pm 1 \mathrm{~ms}$ response time for debounce time p0724 $=0$.
Digital outputs	2 (DO $0 \ldots$... DO 1)	- 250 V AC 2 A/30 V DC 2 A, for resistive, inductive or capacitive load (For FSA ... FSC, the maximum current is 0.5 A to be UL-compliant) - Type C relay - Update time: 2 ms - Overvoltage category: III (Not for corner grounded network $380-480 \mathrm{~V}$ AC or power supply network $>=600 \mathrm{~V}$ AC without electrical isolation) ${ }^{1)}$ - Switching cycle: 1 Hz
	Only on FSH, FSJ: 1 (FB_Ax, FB_Bx)	- 30 V DC 0.5 A, for resistive load - Overvoltage category: III (Not for corner grounded network $380-480 \mathrm{~V}$ AC or power supply network $>=600 \mathrm{~V}$ AC without electrical isolation) ${ }^{1)}$
Analog outputs	1 (AO 0)	- Not isolated - 16-bit resolution - Switchable between voltage and current via parameter setting: - $0 \ldots 10 \mathrm{~V}$ Min. burden $10 \mathrm{k} \Omega$ - 0/4... 20 mA Max. burden 500Ω - Update time: 4 ms - <400 mV offset at 0 \%

Property	Explanation
Motor temperature sensor	PTC - Short-circuit monitoring < 20Ω - Overtemperature 1650Ω
	KTY84 - Short-circuit monitoring < 50Ω - Wire-break: > 2120Ω
	- Connection of sensors: - 2-wire technique - 3-wire technique - 4-wire technique - Measurement range: $-48^{\circ} \mathrm{C}$ to $248^{\circ} \mathrm{C}$
	Pt1000 - Short-circuit monitoring $<603 \Omega$ - Wire-break $>2120 \Omega$
	Bimetalic temperature switch with NC contact
Memory card (optional)	Slot for SD or MMC memory cards Memory card (Page 66)

Note

Short-term voltage dips in the external 24 V supply ($\leq 3 \mathrm{~ms}$ and $\leq 95 \%$ of the rated voltage)

When the mains voltage of the converter is switched off, the converter responds to short-term voltage dips in the external 24 V supply with fault F30074. Communication via fieldbus, however, remains in effect in this case.
12.2 Load cycles and overload capability

12.2 Load cycles and overload capability

Overload capability is the property of the converter to temporarily supply a current that is higher than the rated current to accelerate a load. Two typical load cycles are defined to clearly demonstrate the overload capability: "Low Overload" and "High Overload".

Definitions

Base load

Constant load between the accelerating phases of the converter

Low Overload

- LO base load input current Permissible input current for a "Low Overload" load cycle
- LO base load output current

Permissible output current for a "Low Overload" load cycle

- LO base load power

Rated power based on the LO base load output current
High Overload

- HO base load input current

Permissible input current for a "High Overload" load cycle

- HO base load output current Permissible output current for a "High Overload" load cycle
- HO base load power Rated power based on the HO base load output current

If not specified otherwise, the power and current data in the technical data always refer to a load cycle according to Low Overload.

Load cycles and typical applications

"Low Overload" load cycle

The "Low Overload" load cycle assumes a uniform base load with low requirements placed on brief accelerating phases. Typical "Low Overload" applications include the following:

- Centrifuge pump, fan and compressor
- Axial flow fan
- Propeller pump
"High Overload" load cycle
The "High Overload" load cycle permits, for reduced base load, dynamic accelerating phases. Typical "High Overload" applications include the following:
- Displacement pump and fan and compressor
- Geared pump
- Screw pump
- Roots blower

Permissible converter overload

The converter has two different power data: "Low Overload" (LO) and "High Overload" (HO), depending on the expected load.

Note that the rated ambient temperature for the above load cycles is $45^{\circ} \mathrm{C}$.

Note

Permissible converter overload for converter FSH/FSJ

When converter FSH/FSJ is operated in low overload, either 135 \% overload or 110% overload is permissible, but not together.
The High Overload cycle of the converter FSH/FSJ is 300 s .

12.3 General converter technical data

Property	Explanation
Line voltage	200 V converters: - for systems according to IEC: 3 AC $200 \mathrm{~V}(-20 \%)$... 240 V (+10\%) - for systems according to UL: 3 AC 200 V ... 240 V 400 V converters: - FSA ... FSG: - for systems according to IEC: 3 AC 380 V (-20\%) ... 480 V (+10\%) - for systems according to UL: 3 AC $380 \mathrm{~V} . . .480 \mathrm{~V}$ - FSH/FSJ: 3 AC 380 V (-15\%) ... 480 V (+10\%) 690 V converters: - FSA ... FSG: - for systems according to IEC: 3 AC 500 V (-20\%) ... 690 V (+10\%) - for systems according to UL: 3 AC 500 V ... 600 V - FSH/FSJ: 3 AC 500 V (-15%) ... 690 V (+10\%)
Output voltage	0 V 3 AC ... line voltage $\times 0.97$
Input frequency	$47 \mathrm{~Hz} \ldots 63 \mathrm{~Hz}$
Output frequency	- FSA ... FSG: $0 \mathrm{~Hz} \ldots 550 \mathrm{~Hz}$, depending on the control mode - FSH/FSJ: $0 \mathrm{~Hz} \ldots 150 \mathrm{~Hz}$, depending on the control mode
Power factor λ	- FSA ... FSG: 0.75 ... 0.93 - FSH, FSJ with line reactor uk $=2 \%$: $0.75 \ldots 0.93$
Relative short-circuit voltage uk	4\%
Inrush current	< $2 \times$ peak input current The converter can withstand 100000 power cycles with an inverval of 120 s .
Overvoltage category	According to IEC 61800-5-1: - OVC III for Power Module - OVC III for Control Unit (Not for corner grounded network 380-480V AC or power supply network $\geq 600 \mathrm{VAC}$ without electrical isolation) ${ }^{1)}$
Line harmonics	The converter fulfils the requirements of IEC 61000-3-12 with Rsce $=120$. Further technical data on request.
Pulse frequency (factory setting)	200 V converters: 4 kHz 400 V converters: - FSA .. FSG: - 4 kHz for devices with an LO base load power < 100 kW - 2 kHz for devices with an LO base load power $\geq 100 \mathrm{~kW}$ - FSH/FSJ: 4 kHz 690 V converters: 2 kHz

Property	Explanation
Safety Integrated	An external safety device is necessary, e. g. F-PLC or Siemens Safety device 3SK2xxx. The higher-level control system must monitor the selection of STO and the feedback from the converter. "Safe Torque Off" safety function (Page 168)
	STO fulfils the requirements of the following standards: - SIL 3 according to IEC 61508, part 1 to 3 (2010) - PL e according to IEC 61800-5-2 (2016) - Category 3 according to ISO 13849 part 1 (2015) The function STO corresponds to stop category 0 according to IEC 60204 (2005)
	Response time: 20 ms The response time of the Safe Torque Off function is the time between selecting the function and the function becoming active.
	Probability of failures: - Probability of failures per hour: $\mathrm{PFH}, \mathrm{PFH}_{\mathrm{D}}=50 \times 10^{-9} 1 / \mathrm{h}$ PFH according to IEC 61800-5-2, PFH ${ }_{D}$ according to IEC 62061 - Mean probability of failure for a low demand rate of the safety function according to IEC 61508: PFD $=50 \times 10^{-5}$
	Mission time: 20 years You may not operate converters with integrated safety functions for longer than the mission time. The mission time starts when the device is delivered. The mission time cannot be extended. This is the case even if a service department checks the converter - or in the meantime, the converter was decommissioned.
Degree of protection	IP20
Maximum short-circuit current (SCCR or Icc)	When using fuses: 100 kA rms You can find the data for further overcurrent protection devices on the Internet: (3) Branch protection and short-circuit strength according to UL and IEC (https:// support.industry.siemens.com/cs/us/en/view/109762895)
Surrounding air temperature during operation ${ }^{2)}$	- FSA: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C},>45^{\circ} \mathrm{C}$ with derating - FSB ... FSG - with PROFINET interface: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C},>45^{\circ} \mathrm{C}$ with derating - with USS or PROFIBUS DP interface: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C},>45^{\circ} \mathrm{C}$ with derating - FSH/FSJ: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C},>45^{\circ} \mathrm{C}$ with derating Current derating as a function of the ambient temperature (Page 1339)
Relative humidity	<95\% (non-condensing)
Installation altitude	Up to 1000 m above sea level without derating Above 1000 m with derating Current derating as a function of the installation altitude (Page 1338)
Surrounding air temperature during storage	- FSA ... FSG: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ - FSH, FSJ: $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ for maximal 24 h

12.3 General converter technical data

Property	Explanation
Shock and vibration	- FSA ... FSG
	- Transport in transportation packaging according to Class 2M3 according to EN 61800-5-1 and EN 60068-2-6
	- Vibration in operation according to Class 3M1 according to EN 60721-3-3: 1995 - FSH, FSJ
	- Vibration during operation: Fc test according to EN 60068-2-6 0.075 mm for 10 ... $58 \mathrm{~Hz} 9.81 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{xg})$ at $>58 \ldots 200 \mathrm{~Hz}$
	- Shock during operation: Test according to EN 60068-2-27 (EA shock type) $49 \mathrm{~m} / \mathrm{s}^{2}$ $(5 \times \mathrm{g}) / 30 \mathrm{~ms} 147 \mathrm{~m} / \mathrm{s}^{2}(15 \times \mathrm{g}) / 11 \mathrm{~ms}$
	- Vibration in transportation packaging: Fc test according to EN 60068-2-6 $\pm 1.5 \mathrm{~mm}$ for $5 \ldots 9 \mathrm{~Hz} 0.5 \mathrm{~g}$ at $9 \ldots 200 \mathrm{~Hz}$
	- Shock in transportation packaging: Fc test according to EN 60068-2-6 $\pm 1.5 \mathrm{~mm}$ for $5 \ldots 9 \mathrm{~Hz} 0.5 \mathrm{~g}$ at $9 \ldots 200 \mathrm{~Hz}$

Protection against chemical sub- Protected according to EN 60721-3-3: stances

- FSA ... FSG
- Class 3C2
- Class 3C3 ${ }^{3)}$
- FSH, FSJ: Class 3C2

Pollution	Suitable for environments with degree of pollution 2 according to EN 61800-5-1
Sound pressure level LPA $(1 \mathrm{~m})$	$\leq 74 \mathrm{~dB}(\mathrm{~A})^{4)}$
Cooling method	Air forced cooling
Cooling air	Clean and dry air

1) Overvoltage category: III is only supported on the G120X converter with FS version 0202 (FSA ... FSG)/02 (FSH, FSJ) or higher.
2) The data is valid without BOP-2, IOP-2, I/O Extension Module, or SINAMICS G120 Smart Access. A lateral clearance of 50 mm is required for FSA ... FSC with surrounding air temperature $>50^{\circ} \mathrm{C}$.
3) Class 3C3 is available on the G120X converter with FS version 0202 or higher.
4) Maximum sound pressure level, ascertained in the IP20 cabinet.

12.4 Technical data dependent on the power

The power losses (kW) in the tables below are determined according to EN 50598-2 (IEC $61800-9-2$) at 90% speed, 100% torque and 50 Hz input frequency.

Table 12-1 Electrical data based on Low Overload

Frame size	Article number	Rated power [kW] (NEC [hp])	Rated input current [A] (NEC 240 V)	Rated output current [A] (NEC 240 V)
	Based on Low Overload			

Table 12-2 Electrical data based on High Overload

Frame size	Article number	Power [kW] (NEC [hp])	$\begin{aligned} & \text { Input current [A] } \\ & (\mathrm{NEC} 240 \mathrm{~V} \text {) } \end{aligned}$	Output current [A] (NEC 240 V)
		Based on High Overload		
FSA	6SL32 . 0-. YC10-. U. 0	0.55 (0.75)	2.8 (2.8)	3.2 (3.2)
	6SL32.0-. YC12-. U. 0	0.75 (1)	3.8 (3.8)	4.2 (4.2)
	6SL32.0-. YC14-. U. 0	1.1 (1.5)	5.4 (5.4)	6.0 (6.0)
FSB	6SL32.0-. YC16-. U. 0	1.5 (2)	6.7 (6.7)	7.4 (7.4)
	6SL32. 0-. YC18-. U. 0	2.2 (3)	9.6 (9.6)	10.4 (10.4)
	6SL32.0-. YC20-. U. 0	3 (4)	12.7 (12.7)	13.6 (13.6)
FSC	6SL32 . 0-. YC22-. U. 0	4 (5)	16.3 (16.3)	17.5 (17.5)
	6SL32.0-. YC24-. U. 0	5.5 (7.5)	20.8 (20.8)	22 (22)
FSD	6SL32 . 0-. YC26-. U. 0	7.5 (10)	26.3 (26.3)	28 (28)
	6SL32.0-. YC28-. U. 0	11 (15)	40 (40)	42 (42)
	6SL32.0-.YC30-.U. 0	15 (20)	51 (51)	54 (54)

Technical data

12.4 Technical data dependent on the power

Frame size	Article number	Power [kW] (NEC [hp])	$\begin{aligned} & \text { Input current [A] } \\ & \text { (NEC } 240 \mathrm{~V} \text {) } \end{aligned}$	Output current [A] (NEC 240 V)
		Based on High Overload		
FSE	6SL32.0-. YC32-. U. 0	18.5 (25)	64 (64)	68 (68)
	6SL32.0-. YC34-. U. 0	22 (30)	76 (76)	80 (80)
FSF	6SL32.0-. YC36-. U. 0	30 (40)	98 (98)	104 (104)
	6SL32.0-. YC38-. U. 0	37 (50)	126 (126)	130 (130)
	6SL32.0-. YC40-. U. 0	45 (60)	149 (149)	154 (154)

Table 12-3 Further data

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Power loss (W) @ 200... 240 V	Push-through power loss (W)		Required cooling air flow (l/s)	Net weight (kg)
				External	Internal		
FSA	6SL32 . 0-. YC10-. U. 0	0.75	57.7	42.2	15.5	5	3.3
	6SL32.0-. YC12-. U. 0	1.1	84.4	67.8	16.6		3.3
	6SL32.0-. YC14-. U. 0	1.5	108.8	91.1	17.7		3.3
FSB	6SL32 . 0-. YC16-. U. 0	2.2 (3)	120.8	98.2	22.5		5.8
	6SL32.0-. YC18-. U. 0	3 (4)	160.7	133.6	27.1	7	5.8
	6SL32.0-. YC20-. U. 0	4 (5)	216.8	182.5	34.3	9.2	5.8
FSC	6SL32.0-. YC22-. U. 0	5.5 (7.5)	251.5	203.7	47.8		7.1
	6SL32.0-. YC24-. U. 0	7.5 (10)	337.1	271.5	65.6		7.1
FSD	6SL32.0-. YC26-. U. 0	11 (15)	463.4	410.3	53.2	18.5	16.6
	6SL32.0-. YC28-. U. 0	15 (20)	626.4	560.6	65.8		16.6
	6SL32.0-. YC30-. U. 0	18.5 (25)	843.2	759.1	84.1	55	16.6
FSE	6SL32.0-. YC32-. U. 0	22 (30)	937.2	829.1	108.1		16.6
	6SL32.0-. YC34-. U. 0	30 (40)	1312.1	1157.6	154.5		16.6
FSF	6SL32.0-. YC36-. U. 0	37 (50)	1445.4	1287.0	158.3		18.8
	6SL32.0-. YC38-. U. 0	45 (60)	1805.3	1620.7	184.6	83	17.6
	6SL32.0-. YC40-. U. 0	55 (75)	2432.1	2207.6	224.5		26.7

380
... 480 V 3 AC

Table 12-4 Electrical data based on Low Overload

Frame size	Article number	Rated power [kW] (NEC [hp])	Rated input current [A] (NEC 480 V)	Rated output current [A] (NEC 480 V)
		Based on Low Overload		
FSA	6SL32 . 0-. YE10-. . 0	0.75 (1)	2.1(2.0)	2.2 (2.1)
	6SL32 . 0-. YE12-... 0	1.1 (1.5)	2.8 (2.7)	3.1 (3.0)
	6SL32.0-. YE14-... 0	1.5 (2)	3.6 (3.0)	4.1 (3.4)
	6SL32 . 0- . YE16-. . 0	2.2 (3)	5.5 (4.6)	5.9 (4.8)
	6SL32.0- . YE18-. . 0	3 (4)	6.9 (5.8)	7.7 (6.2)

Frame size	Article number	Rated power [kW] (NEC [hp])	Rated input current [A] (NEC 480 V)	Rated output current [A] (NEC 480 V)
		Based on Low Overload		
FSB	6SL32 . 0-. YE20-... 0	4 (5)	9.75 (8)	10.2 (7.6)
	6SL32.0-.YE22-... 0	5.5 (7.5)	12 (10.6)	13.2 (11)
	6SL32 . 0-. YE24-... 0	7.5 (10)	17 (14.3)	18 (14)
FSC	6SL32 . 0-. YE26-... 0	11 (15)	24.5 (21.3)	26 (21)
	6SL32 . 0-. YE28-... 0	15 (20)	29.5 (26)	32 (27)
FSD	6SL32 . 0-. YE30-... 0	18.5 (25)	36 (32)	38 (34)
	6SL32 . 0-. YE32-... 0	22 (30)	42 (37)	45 (40)
	6SL32 . 0-. YE34-... 0	30 (40)	57 (49)	60 (52)
	6SL32 . 0-. YE36-... 0	37 (50)	70 (61)	75 (65)
FSE	6SL32 . 0-. YE38-.. 0	45 (60)	86 (74)	90 (77)
	6SL32 . 0-. YE40-... 0	55 (75)	104 (91)	110 (96)
FSF	6SL32 . 0-. YE42-... 0	75 (100)	140 (120)	145 (124)
	6SL32 . 0-. YE44-... 0	90 (125)	172 (151)	178 (156)
	6SL32 . 0-. YE46-... 0	110 (150)	198 (174)	205 (180)
	6SL32 . 0-. YE48-... 0	132 (200)	241 (232)	250 (240)
FSG	6SL32 . 0-. YE50-... 0	160 (250)	301 (301)	302 (302)
	6SL32 . 0-. YE52-... 0	200 (300)	365 (356)	370 (361)
	6SL32 . 0-. YE54-... 0	250 (400)	471 (471)	477 (477)
FSH	6SL32.0-. YE56-. C. 0	315 (---)	585 (486)	570 (477)
	6SL32.0-. YE58-. C. 0	355 (450)	654 (525)	640 (515)
	6SL32.0-. YE60-. C. 0	400 (500)	735 (602)	720 (590)
FSJ	6SL32.0-.YE62-. C. 0	450 (---)	850 (687)	820 (663)
	6SL32.0-. YE64-. C. 0	500 (600)	924 (751)	890 (724)
	6SL32.0-.YE66-.C. 0	560 (700)	1038 (862)	1000 (830)

--- not applicable

Table 12-5 Electrical data based on High Overload

Frame size	Article number	Power [kW] (NEC [hp])	Input current [A] (NEC 480 V)	$\begin{aligned} & \text { Output current [A] } \\ & \text { (NEC } 480 \mathrm{~V} \text {) } \end{aligned}$
		Based on High Overload		
FSA	6SL32 . 0-. YE10-... 0	0.55 (0.75)	1.7 (1.6)	1.7 (1.6)
	6SL32.0-.YE12-...0	0.75 (1)	2.1 (2.0)	2.2 (2.1)
	6SL32.0-. YE14-... 0	1.1 (1.5)	2.8 (2.7)	3.1 (3.0)
	6SL32.0-. YE16-...0	1.5 (2)	3.6 (3.0)	4.1 (3.4)
	6SL32.0-. YE18-... 0	2.2 (3)	5.5 (4.6)	5.9 (4.8)
FSB	6SL32.0-. YE20-... 0	3 (4)	7.75	7.7 (6.2)
	6SL32.0-.YE22-... 0	4 (5)	9.75	10.2 (7.6)
	6SL32.0-. YE24-... 0	5.5 (7.5)	13.25	13.2 (11)
FSC	6SL32 . 0-. YE26-... 0	7.5 (10)	18.25	18 (14)
	6SL32.0-. YE28-... 0	11 (15)	24.5	26 (21)

Technical data

12.4 Technical data dependent on the power

Frame size	Article number	Power [kW] (NEC [hp])	Input current [A] (NEC 480 V)	$\begin{aligned} & \text { Output current [A] } \\ & (\text { NEC } 480 \mathrm{~V} \text {) } \end{aligned}$
		Based on High Overload		
FSD	6SL32 . 0-. YE30-... 0	15 (20)	33 (28)	32 (27)
	6SL32 . 0-. YE32-... 0	18.5 (25)	38 (35)	38 (34)
	6SL32 . 0-. YE34-... 0	22 (30)	47 (41)	45 (40)
	6SL32 . 0-. YE36-... 0	30 (40)	62 (54)	60 (52)
FSE	6SL32 . 0-. YE38-... 0	37 (50)	78 (69)	75 (65)
	6SL32 . 0-. YE40-... 0	45 (60)	94 (80)	90 (77)
FSF	6SL32 . 0-. YE42-. . 0	55 (75)	117 (102)	110 (96)
	6SL32 . 0-. YE44-... 0	75 (100)	154 (132)	145 (124)
	6SL32 . 0-. YE46-... 0	90 (125)	189 (166)	178 (156)
	6SL32 . 0-. YE48-... 0	110 (150)	218 (191)	205 (180)
FSG	6SL32 . 0-. YE50-. . 0	132 (200)	275 (263)	250 (240)
	6SL32 . 0-. YE52-... 0	160 (250)	330 (327)	302 (302)
	6SL32 . 0-. YE54-... 0	200 (300)	400 (392)	370 (361)
FSH	6SL32 . 0-. YE56- . C. 0	250 (300)	477 (397)	468 (390)
	6SL32 . 0- . YE58- . C. 0	250 (300)	501 (402)	491 (394)
	6SL32 . 0- . YE60- . C. 0	315 (350)	562 (461)	551 (452)
FSJ	6SL32 . 0-. YE62-. C. 0	355 (450)	696 (561)	672 (542)
	6SL32 . 0- . YE64- . C. 0	400 (500)	756 (614)	728 (591)
	6SL32.0-. YE66-. C. 0	450 (500)	816 (677)	786 (652)

--- not applicable

Table 12-6 Power loss

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Power loss (W) @ 400 V		Push-though power loss (W)	
			Without filter	With filter	External/Internal (without filter)	External/Internal (with filter)
FSA	6SL32 . 0-. YE10-... 0	0.75 (1)	42.9	42.9	28.0 / 14.9	28.0 / 14.9
	6SL32.0-.YE12-... 0	1.1 (1.5)	55.4	55.1	40.1 / 15.3	$39.8 / 15.3$
	6SL32.0-.YE14-... 0	1.5 (2)	72.3	71.5	56.3 / 16.0	55.5 / 16.0
	6SL32.0-.YE16-... 0	2.2 (3)	92.8	91.5	76.0 / 16.7	74.7 / 16.7
	6SL32.0-.YE18-... 0	3 (4)	127.6	125.4	109.3 / 18.4	107.0 / 18.4
FSB	6SL32 . 0-. YE20-... 0	4 (5)	136.3	138.1	117.9 / 18.4	117.9 / 20.2
	6SL32.0-.YE22-... 0	5.5 (7.5)	179.7	183.2	159.7 / 20.0	159.8 / 23.5
	6SL32 . 0-. YE24-... 0	7.5 (10)	245.1	253.5	$221.7 / 23.4$	221.8/29.8
FSC	6SL32 . 0-. YE26-... 0	11 (15)	315.8	319.6	294.6/21.2	294.7 / 24.9
	6SL32.0-.YE28-... 0	15 (20)	395.8	401.5	373.4/22.4	373.5 / 28.0

12.4 Technical data dependent on the power

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Power loss (W) @ 400 V		Push-though power loss (W)	
			Without filter	With filter	External/Internal (without filter)	External/Internal (with filter)
FSD	6SL32.0-.YE30-... 0	18.5 (25)	591.5	598.0	538.0/53.5	$538.1 / 60.0$
	6SL32.0-.YE32-... 0	22 (30)	722.9	731.8	$660.4 / 60.5$	662.5 / 69.3
	6SL32.0-.YE34-... 0	30 (40)	834.3	840.9	752.5 / 81.9	752.5 / 88.4
	6SL32.0-.YE36-... 0	37 (50)	1096.6	1106.6	991.1/105.5	$991.2 / 115.3$
FSE	6SL32.0-.YE38-... 0	45 (60)	1333.6	1343.6	1194.5 / 139.1	1194.6/149.0
	6SL32.0-.YE40-... 0	55 (75)	1713.1	1727.8	1529.1/184.0	1529.3/198.4
FSF	6SL32.0-.YE42-... 0	75 (100)	1970.1	1995.9	1775.6/194.5	1775.9/220.0
	6SL32.0-.YE44-... 0	90 (125)	2566.6	2605.4	2327.2/239.4	2327.5/278.0
	6SL32.0-.YE46-... 0	110 (150)	2368.1	2405.1	2092.3/275.8	2092.6/312.5
	6SL32.0-.YE48-... 0	132 (200)	3104.8	3160.0	2748.1 / 356.7	2748.5/411.5
FSG	6SL32.0-.YE50-... 0	160 (250)	3661.0 *	3661.0 **	$3461.0 / 200.0$	3461.0/200.0
	6SL32.0-.YE52-... 0	200 (300)	4612.8 *	4612.8 **	$4361.7 / 251.1$	$4361.7 / 251.1$
	6SL32.0-.YE54-... 0	250 (400)	6171.4 *	6171.4 **	5843.6/327.8	5843.6/327.8
FSH	$\begin{aligned} & \text { 6SL32 . O- . YE56- . C. } \\ & 0 \end{aligned}$	315 (---)	---	6791	---	---
	$\begin{aligned} & \text { 6SL32 . O- . YE58- . C. } \\ & 0 \end{aligned}$	355 (450)	---	7687	---	---
	$\begin{aligned} & \text { 6SL32 . O- . YE60-. C. } \\ & 0 \end{aligned}$	400 (500)	---	8385	---	---
FSJ	$\begin{aligned} & \text { 6SL32 . O- . YE62- . C. } \\ & 0 \end{aligned}$	450 (---)	---	10418	---	---
	$\begin{aligned} & \text { 6SL32 . O- . YE64-. C. } \\ & 0 \end{aligned}$	500 (600)	---	10885	---	---
	$\begin{aligned} & \text { 6SL32 . O- . YE66-. C. } \\ & 0 \end{aligned}$	560 (700)	---	12495	---	---

* With C3 filter
** With C2 filter
--- not applicable

Table 12-7 Cooling air flow and weight

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Required cooling air flow (l/s)	Net weight (kg)	
				Without filter	With filter
FSA	6SL32 . 0-. YE10-... 0	0.75 (1)	5	3.3	3.5
	6SL32.0-.YE12-... 0	1.1 (1.5)	5	3.3	3.5
	6SL32.0-.YE14-... 0	1.5 (2)	5	3.3	3.5
	6SL32 .0-. YE16-... 0	2.2 (3)	5	3.4	3.6
	6SL32.0-.YE18-... 0	3 (4)	7	3.4	3.6

Technical data
12.4 Technical data dependent on the power

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Required cooling air flow (I/s)	Net weight (kg)	
				Without filter	With filter
FSB	6SL32 . 0-. YE20-... 0	4 (5)	9.2	5.8	6.2
	6SL32.0-.YE22-... 0	5.5 (7.5)	9.2	5.8	6.2
	6SL32.0-.YE24-... 0	7.5 (10)	9.2	5.8	6.2
FSC	6SL32 . 0-. YE26-... 0	11 (15)	18.5	7.1	7.7
	6SL32 . 0-. YE28-... 0	15 (20)	18.5	7.1	7.7
FSD	6SL32 . 0-. YE30-... 0	18.5 (25)	55	16.6	18.3
	6SL32.0-.YE32-... 0	22 (30)	55	16.6	18.3
	6SL32 . 0-. YE34-...0	30 (40)	55	16.6	18.3
	6SL32 .0-.YE36-... 0	37 (50)	55	18.8	19.5
FSE	6SL32 . 0-. YE38-... 0	45 (60)	83	17.6	18.3
	6SL32 . 0-. YE40-... 0	55 (75)	83	26.7	28.7
FSF	6SL32.0-. YE42-... 0	75 (100)	153	61	67.5
	6SL32.0-.YE44-... 0	90 (125)	153	61	67.5
	6SL32 . 0-. YE46-... 0	110 (150)	153	66.5	71
	6SL32 . 0-. YE48-... 0	132 (200)	153	66.5	71
FSG	6SL32 . 0-. YE50-... 0	160 (250)	210	---	105
	6SL32 . 0-. YE52-... 0	200 (300)	210	---	113
	6SL32.0-.YE54-... 0	250 (400)	210	---	120
FSH	$\begin{aligned} & \text { 6SL32 . O- . YE56- . C . } \\ & 0 \end{aligned}$	315 (---)	360	---	151
	$\begin{aligned} & \text { 6SL32 . 0- . YE58- . C . } \\ & 0 \end{aligned}$	355 (450)	360	---	157
	$\begin{aligned} & \text { 6SL32 . O- . YE60- . C . } \\ & 0 \end{aligned}$	400 (500)	360	---	159
FSJ	$\begin{aligned} & \text { 6SL32 . O- . YE62- . C . } \\ & 0 \end{aligned}$	450 (---)	450	---	235
	$\begin{aligned} & \text { 6SL32 . 0- . YE64- . C . } \\ & 0 \end{aligned}$	500 (600)	450	---	250
	$\begin{aligned} & \text { 6SL32 . O- . YE66- . C . } \\ & 0 \end{aligned}$	560 (700)	450	---	250

--- not applicable

Table 12-8 Electrical data based on Low Overload

Frame size	Article number	Rated power [kW] (NEC [hp])	Rated input current [A] (NEC 600 V)	Rated output current [A] (NEC 600 V)
		Based on Low Overload		
FSD	6SL32 . 0-. YH18-... 0	3 (4)	5 (5)	5 (5)
	6SL32 . 0-. YH20-... 0	4 (5)	6 (6)	6.3 (6.3)
	6SL32.0-.YH22-... 0	5.5 (7.5)	9 (9)	9 (9)
	6SL32 . 0-. YH24-. . 0	7.5 (10)	11 (11)	11 (11)
	6SL32.0-. YH26-... 0	11 (---)	14 (14)	14 (14)
	6SL32.0-.YH28-... 0	15 (15)	18 (18)	19 (19)
	6SL32 . 0-. YH30-... 0	18.5 (20)	22 (22)	23 (23)
	6SL32.0-.YH32-... 0	22 (25)	25 (25)	27 (27)
	6SL32.0-. YH34-... 0	30 (30)	33 (33)	35 (35)
	6SL32 . 0-. YH36-... 0	37 (40)	40 (40)	42 (42)
FSE	6SL32 . 0-. YH38-... 0	45 (50)	50 (50)	52 (52)
	6SL32 . 0-. YH40-... 0	55 (60)	59 (59)	62 (62)
FSF	6SL32 . 0-. YH42-... 0	75 (75)	78 (78)	80 (80)
	6SL32.0-.YH44-... 0	90 (100)	97 (97)	100 (100)
	6SL32.0-. YH46-... 0	110 (125)	121 (121)	125 (125)
	6SL32.0-. YH48-... 0	132 (150)	138 (138)	144 (144)
FSG	6SL32.0-. YH50-. C. 0	160 (---)	171 (171)	171 (171)
	6SL32.0-.YH52-. C. 0	200 (200)	205 (205)	208 (208)
	6SL32.0-.YH54-. C. 0	250 (250)	249 (249)	250 (250)
FSH	6SL32.0-. YH56-. C. 0	315 (350)	343 (375)	330 (345)
	6SL32.0-. YH58-. C. 0	355 (400)	401 (408)	385 (388)
	6SL32.0-. YH60-. C. 0	400 (450)	437 (461)	420 (432)
	6SL32.0-.YH62-. C. 0	450 (500)	489 (526)	470 (487)
FSJ	6SL32.0-. YH64-. C. 0	500 (---)	540 (591)	520 (546)
	6SL32.0-. YH66-. C. 0	560 (600)	602 (665)	580 (610)
	6SL32.0-. YH68-. C. 0	630 (700)	675 (737)	650 (679)

* For systems according to UL: 500 V ... 600 V
--- not applicable

12.4 Technical data dependent on the power

Table 12-9 Electrical data based on High Overload

Frame size	Article number	Power [kW] (NEC [hp])	$\begin{aligned} & \text { Input current [A] } \\ & \text { (NEC } 600 \mathrm{~V} \text {) } \end{aligned}$	Output current [A] (NEC 600 V)
		Based on High Overload		
FSD	6SL32 . 0-. YH18-... 0	2.2 (3)	4.4 (4.4)	4 (4)
	6SL32 . 0-. YH2O-... 0	3 (4)	5.2 (5.2)	5 (5)
	6SL32.0- . YH22-... 0	4 (5)	6.9 (6.9)	6.3 (6.3)
	6SL32.0-. YH24-... 0	5.5 (7.5)	9.9 (9.9)	9 (9)
	6SL32.0- . YH26-... 0	7.5 (10)	12.1 (12.1)	11 (11)
	6SL32.0- . YH28-... 0	11 (n/a)	14.6 (14.6)	14 (14)
	6SL32 . 0-. YH30-... 0	15 (15)	20 (20)	19 (19)
	6SL32.0-. YH32-... 0	18.5 (20)	23.4 (23.4)	23 (23)
	6SL32.0-. YH34-... 0	22 (25)	28 (28)	27 (27)
	6SL32 . 0-. YH36-... 0	30 (30)	36.6 (36.6)	35 (35)
FSE	6SL32 . 0-. YH38-... 0	37 (40)	44.4 (44.4)	42 (42)
	6SL32 . 0-. YH40-... 0	45 (50)	54.4 (54.4)	52 (52)
FSF	6SL32 . 0-. YH42-... 0	55 (60)	66.4 (66.4)	62 (62)
	6SL32.0-. YH44-... 0	75 (75)	85.2 (85.2)	80 (80)
	6SL32 . 0-. YH46-... 0	90 (100)	106.3 (106.3)	100 (100)
	6SL32.0-. YH48-... 0	110 (125)	131.6 (131.6)	125 (125)
FSG	6SL32 . 0-. YH50-. C. 0	132 (150)	158.2 (158.2)	144 (144)
	6SL32.0-. YH52-. C. 0	160 (n/a)	185.1 (185.1)	171 (171)
	6SL32.0-. YH54-. C. 0	200 (200)	227.5 (227.5)	208 (208)
FSH	6SL32.0-. YH56-. C. 0	250 (250)	283 (307)	272 (295)
	6SL32.0-. YH58-. C. 0	315 (300)	327 (333)	314 (320)
	6SL32.0-. YH60-. C. 0	355 (350)	362 (381)	348 (367)
	6SL32.0-. YH62-. C. 0	400 (450)	410 (440)	394 (423)
FSJ	6SL32.0-. YH64-. C. 0	450 (450)	461 (501)	444 (482)
	6SL32.0-. YH66-. C. 0	500 (500)	494 (543)	476 (523)
	6SL32.0-. YH68-. C. 0	560 (500)	552 (602)	532 (580)

[^5]
12.4 Technical data dependent on the power

Table 12-10 Power loss

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Power loss (W) @ 600 V		Push-through power loss (W)	
			Without filter	With filter	External/Internal (Without filter)	External/ Internal (With filter)
FSD	6SL32.0-.YH18-... 0	3 (4)	158.0	158.1	120.5/37.4	120.5/37.5
	6SL32.0-.YH2O-... 0	4 (5)	190.5	190.7	152.6/38.0	152.6/38.1
	6SL32.0-.YH22-... 0	5.5 (7.5)	261.8	262.2	222.6/39.2	222.6/39.7
	6SL32.0-.YH24-... 0	7.5 (10)	305.6	306.2	265.4/40.2	265.4/40.8
	6SL32.0-.YH26-... 0	11 (---)	359.3	360.3	317.6/41.7	$317.6 / 42.7$
	6SL32.0-.YH28-... 0	15 (15)	451.7	453.4	406.1/45.6	$406.2 / 47.3$
	6SL32.0-.YH30-... 0	18.5 (20)	532.8	535.4	483.6/49.3	$483.6 / 51.8$
	6SL32.0-.YH32-... 0	22 (25)	613.5	616.9	$560.2 / 53.4$	560.3/56.6
	6SL32.0-.YH34-... 0	30 (30)	796.6	802.4	$733.8 / 62.8$	$733.9 / 68.5$
	6SL32.0-.YH36-... 0	37 (40)	971.4	979.8	898.9 / 72.5	899.1 / 80.7
FSE	6SL32.0-.YH38-... 0	45 (50)	1113.1	1120.9	1030.5 / 82.7	1030.6/90.4
	6SL32.0-.YH4O-... 0	55 (60)	1350.9	1361.8	1253.1 / 97.9	1253.2/108.6
FSF	6SL32.0-.YH42-... 0	75 (75)	1405.1	1414.3	1221.1/184.0	1221.2/193.2
	6SL32.0-.YH44-... 0	90 (100)	1800.8	1815.1	1571.6/229.3	1571.6/243.4
	6SL32.0-.YH46-... 0	110 (125)	2222.9	2244.9	2043.3/179.6	2043.5/201.4
	6SL32.0-.YH48-... 0	132 (150)	2637.9	2667.0	2430.5/207.4	2430.7/236.3
FSG	$\begin{aligned} & \text { 6SL32 . 0- . YH50- . C. } \\ & 0 \end{aligned}$	160 (---)	---	2931.7	---	2784.0/147.7
	$\begin{aligned} & \text { 6SL32 . 0- . YH52- . C. } \\ & 0 \end{aligned}$	200 (200)	---	3699.5	---	3529.7 / 169.9
	$\begin{aligned} & \text { 6SL32 . 0- . YH54- . C. } \\ & 0 \end{aligned}$	250 (250)	---	4633.6	---	4439.1 / 194.5
FSH	$\begin{aligned} & \text { 6SL32 . 0- . YH56- . C . } \\ & 0 \end{aligned}$	315 (350)	---	5402	---	---
	$\begin{aligned} & \text { 6SL32 . 0- . YH58- . C. } \\ & 0 \end{aligned}$	355 (400)	---	6191	---	---
	$\begin{aligned} & \text { 6SL32 . 0- . YH60- . C . } \\ & 0 \end{aligned}$	400 (450)	---	6884	---	---
	$\begin{aligned} & \text { 6SL32 . 0- . YH62- . C. } \\ & 0 \end{aligned}$	450 (500)	---	7716	---	---
FSJ	$\begin{aligned} & \text { 6SL32 . 0- . YH64- . C. } \\ & 0 \end{aligned}$	500 (---)	---	8134	---	---
	$\begin{aligned} & \text { 6SL32 . O- . YH66- . C. } \\ & 0 \end{aligned}$	560 (600)	---	8828	---	---
	$\begin{aligned} & \text { 6SL32 . 0- . YH68- . C. } \\ & 0 \end{aligned}$	630 (700)	---	9937	---	---

[^6]
12.4 Technical data dependent on the power

Table 12-11 Cooling air flow and weight

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Required cooling air flow (l/s)	Weight (kg)	
				Without filter	With filter
FSD	$\begin{aligned} & \text { 6SL32 . 0- . YH18- . . } \\ & 0 \end{aligned}$	3 (4)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . O- . YH2O- . . } \\ & 0 \end{aligned}$	4 (5)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH22- . . . } \\ & 0 \end{aligned}$	5.5 (7.5)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH24- . . } \\ & 0 \end{aligned}$	7.5 (10)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH26- . . } \\ & 0 \end{aligned}$	11 (---)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH28- . . } \\ & 0 \\ & \hline \end{aligned}$	15 (15)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH30- . . . } \\ & 0 \end{aligned}$	18.5 (20)	55	16.6	18.3
	$\begin{array}{\|l} \text { 6SL32 . O- . YH32- . . . } \\ 0 \end{array}$	22 (25)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH34- . . . } \\ & 0 \end{aligned}$	30 (30)	55	16.6	18.3
	$\begin{aligned} & \text { 6SL32 . 0- . YH36- . . } \\ & 0 \end{aligned}$	37 (40)	55	18.8	19.5
FSE	$\begin{aligned} & \text { 6SL32 . O- . YH38- . . } \\ & 0 \end{aligned}$	45 (50)	83	17.6	18.3
	$\begin{array}{\|l} \text { 6SL32 . O- . YH4O- . . } \\ 0 \end{array}$	55 (60)	83	26.7	28.7
FSF	$\begin{aligned} & \text { 6SL32 . O- . YH42- . . . } \\ & 0 \end{aligned}$	75 (75)	153	61	68
	$\begin{array}{\|l\|} \hline \text { 6SL32 . 0- . YH44- . . } \\ 0 \\ \hline \end{array}$	90 (100)	153	61	68
	$\begin{aligned} & \text { 6SL32 . O- . YH46- . . } \\ & 0 \end{aligned}$	110 (125)	153	66.5	71
	$\begin{aligned} & \text { 6SL32 . 0- . YH48- . . . } \\ & 0 \end{aligned}$	132 (150)	153	66.5	71
FSG	$\begin{aligned} & \text { 6SL32 . O- . YH50- . C . } \\ & 0 \end{aligned}$	160 (---)	210	---	105
	$\begin{aligned} & \text { 6SL32 . O- . YH52- . C . } \\ & 0 \end{aligned}$	200 (200)	210	---	113
	$\begin{aligned} & \text { 6SL32 . O- . YH54- . C . } \\ & 0 \end{aligned}$	250 (250)	210	---	120

Frame size	Article number	Rated power [kW] (NEC [hp]) Based on Low Overload	Required cooling air flow (I/s)	Weight (kg)	
				Without filter	With filter
FSH	$\begin{aligned} & \text { 6SL32. O- . YH56- . C. } \\ & 0 \end{aligned}$	315 (350)	360	---	158
	$\begin{aligned} & \text { 6SL32 . 0- . YH58- . C. } \\ & 0 \end{aligned}$	355 (400)	360	---	158
	$\begin{aligned} & \text { 6SL32 . O- . YH60- . C. } \\ & 0 \end{aligned}$	400 (450)	360	---	162
	$\begin{aligned} & \text { 6SL32. O- . YH62- . C. } \\ & 0 \end{aligned}$	450 (500)	360	---	162
FSJ	$\begin{aligned} & \text { 6SL32. 0- . YH64- . C. } \\ & 0 \end{aligned}$	500 (---)	450	---	236
	$\begin{aligned} & \text { 6SL32 . O- . YH66- . C . } \\ & 0 \end{aligned}$	560 (600)	450	---	236
	$\begin{aligned} & \text { 6SL32 . O- . YH68-. C. } \\ & 0 \end{aligned}$	630 (700)	450	---	246

[^7]
12.5 1 AC input supply for the unfiltered 200 V and 400 V converters

The following converters are permissible to operate with 1AC (Line to Line) input and derated 3 AC output:

- Unfiltered 200 V converters, FSA ... FSF
- Unfiltered 400 V converters, FSA ..
. FSG

Restrictions

- 1 AC (Line to Neutral) 200... 240 V or $380 . . .480$ V input supply system is prohibited in the USA and Canada.
- The converter is delivered with the internal phase loss detection activated from the factory. For the operation on a 1 AC (Line to Line) application, deactivate this detection by setting the parameter p1822 = 540000 (maximum value).
- Adhere to the rating tables, because the specifications below are unique to 1 AC (Line to Line) input supply system configuration and differ from the standard specifications for applications of converters on 3 AC input supply system.
- Make sure that you get the motor rating plate data including motor horsepower (hp) and the full load amps (FLA), and that the chosen converter ratings based on the tables below meet or exceed both the hp rating and FLA requirements of the motor rating plate.
- Account for any known operating conditions and overloads, such as operating the motor into its service factor by using the service factor horsepower and amperage of the motor to make your selection.
- The 1 AC (Line to Line) input supply can be connected to any two line input terminals of the converter through appropriate UL-approved branch circuit or overcurrent protective device (OCPD) from the SINAMICS G120X overcurrent protective devices and SCCR product information sheet available on the Siemens Industry Online Support (https:// support.industry.siemens.com/cs/us/en/view/109762895).

Technical data

Table 12-12 1 AC ratings for 200 V converters

Frame size	Article number	3 AC LO (VT) Output Ratings with 1 AC 240 V (L-L) Input ${ }^{1)}$		3 AC HO (CT) Output Ratings with 1 AC 240V (L-L) Input ${ }^{2)}$		Rated Input Current, A @ 1 AC 240 V (LL)
		Output Power [hp] (240V)	Rated Output Current I_{L} A (240 V)	Output Power [hp] (240V)	Rated Output Current I_{H}, A (240 V)	
FSA	$\begin{aligned} & \text { 6SL32 . 0- . YC10- } \\ & \text {. U. . } \end{aligned}$	-	1.9	-	1.4	3.8
	$\begin{aligned} & \text { 6SL32 . O- . YC12- } \\ & \text {.U. . } \end{aligned}$	0.5	2.7	-	1.9	5.2
	$\begin{aligned} & \text { 6SL32 . O- . YC14- } \\ & \text {.U. . } \end{aligned}$	0.75	3.4	0.5	2.8	6.5

Frame size	Article number	3 AC LO (VT) Output Ratings with 1 AC 240 V (L-L) Input ${ }^{1)}$		3 AC HO (CT) Output Ratings with 1 AC 240V (L-L) Input ${ }^{2)}$		Rated Input Current, A @ 1 AC 240 V (LL)
		Output Power [hp] (240V)	Rated Output Current IL, A (240 V)	Output Power [hp] (240V)	Rated Output Current I $(240 \mathrm{~V})$	
FSB	$\begin{aligned} & \text { 6SL32 . 0- . YC16- } \\ & \text {. U . . } \end{aligned}$	1	4.7	0.75	3.3	9.2
	$\begin{aligned} & \text { 6SL32 . O- . YC18- } \\ & \text {.U. . } \end{aligned}$	1.5	6.2	1	4.7	12.1
	$\begin{aligned} & \text { 6SL32 . 0- . YC20- } \\ & \text {. U . . } \end{aligned}$	2	8.0	1.5	6.2	15.5
FSC	$\begin{aligned} & \text { 6SL32 . 0- . YC22- } \\ & \text {. U . . } \end{aligned}$	3	10	2	8.0	20
	$\begin{aligned} & \text { 6SL32 . 0- . YC24- } \\ & \text {. U . . } \end{aligned}$	3	13	3	10.2	25
FSD	$\begin{aligned} & \text { 6SL32 . 0- . YC26- } \\ & \text {. U . . } \end{aligned}$	5	17	3	11.3	40
	$\begin{aligned} & \text { 6SL32 . 0- . YC28- } \\ & . \mathrm{U} . \mathrm{I} \end{aligned}$	7.5	22	5	17.1	51
	$\begin{aligned} & \text { 6SL32 . 0- . YC30- } \\ & \text {. U . . } \end{aligned}$	10	28	7.5	22.2	52
FSE	$\begin{aligned} & \text { 6SL32 . 0- . YC32- } \\ & \text {. U . . } \end{aligned}$	10	32	7.5	27.2	74
	$\begin{aligned} & \text { 6SL32 . 0- . YC34- } \\ & \text {. U . . } \end{aligned}$	15	42	10	32.3	94
FSF	$\begin{aligned} & \text { 6SL32 . 0- . YC36- } \\ & \text {. U . . } \end{aligned}$	20	54	15	43.2	121
	$\begin{aligned} & \text { 6SL32 . 0- . YC38- } \\ & \text {. U . . } \end{aligned}$	25	68	20	57.4	141
	$\begin{aligned} & \text { 6SL32 . 0- . YC40- } \\ & \text {. U . . } \end{aligned}$	30	80	20	64.2	170

1) Rated power and output current based on the base-load current I_{L}. The base-load current I_{L} is based on the duty cycle for low overload (LO) or Variable Torque (VT) i.e. $110 \% \times I_{L}$ for 60 s every 300 s .
2) Rated power and output current based on the base-load current I_{H}. The base-load current I_{H} is based on the duty cycle for high overload (HO) or Constant Torque (CT) i.e. $150 \% \times \mathrm{I}_{\mathrm{H}}$ for 60 s every 600 s .

Technical data
12.5 1 AC input supply for the unfiltered 200 V and 400 V converters

Table 12-13 1 AC ratings for 400 V converters

Frame size	Article number	3 AC LO (VT) Output Ratings with 1 AC 480V (L-L) Input ${ }^{1)}$		3 AC HO (CT) Output Ratings with 1 AC 480V (L-L) Input ${ }^{2)}$		Rated Input Current, A @ 1 AC 480 V (LL)
		Output Power [hp] (480V)	Rated Output Current I_{L}, A (480V)	Output Power [hp] (480V)	Rated Output Current $\mathrm{I}_{\mathrm{H}}, \mathrm{A}$ (480V)	
FSA	$\begin{aligned} & \text { 6SL32 . O- . YE10- } \\ & \text {. U . . } \end{aligned}$	-	0.8	-	0.6	2.0
	$\begin{aligned} & \text { 6SL32 . 0- . YE12- } \\ & . \mathrm{U} . . \end{aligned}$	0.5	1.2	-	0.8	2.7
	$\begin{aligned} & \hline \text { 6SL32 . O- . YE14- } \\ & \text {.U . . } \end{aligned}$	0.5	1.4	0.5	1.2	3.0
	$\begin{aligned} & \text { 6SL32 . 0- . YE16- } \\ & . \mathrm{U} . \mathrm{I} \\ & \hline \end{aligned}$	0.75	1.9	0.5	1.3	4.6
	$\begin{aligned} & \text { 6SL32 . O- . YE18- } \\ & \text {. U . . } \end{aligned}$	1	2.5	0.75	1.9	5.8
FSB	$\begin{aligned} & \text { 6SL32 . O- . YE20- } \\ & \text {. U . . } \end{aligned}$	1.5	3.0	1.0	2.4	9.75
	$\begin{aligned} & \text { 6SL32 . 0- . YE22- } \\ & \text {. U . . } \end{aligned}$	2	4.4	1.5	3.0	12
	$\begin{aligned} & \hline \text { 6SL32 . 0- . YE24- } \\ & . \mathrm{U} . . \end{aligned}$	3	5.6	2	4.4	17
FSC	$\begin{aligned} & \text { 6SL32 . 0- . YE26- } \\ & \text {. U . . } \end{aligned}$	5	8.4	3	5.6	24.5
	$\begin{aligned} & \text { 6SL32 . 0- . YE28- } \\ & . \mathrm{U} . \mathrm{I} \end{aligned}$	5	10.8	5	8.4	29.5
FSD	$\begin{aligned} & \text { 6SL32 . O- . YE30- } \\ & \text {. U . . } \end{aligned}$	7.5	11	5	8.7	28
	$\begin{aligned} & \text { 6SL32 . 0- . YE32- } \\ & \text {. U . . } \\ & \hline \end{aligned}$	7.5	12	5	10.2	30
	$\begin{aligned} & \text { 6SL32 . 0- . YE34- } \\ & \text {. U . . } \\ & \hline \end{aligned}$	10	16	7.5	12.3	41
	$\begin{aligned} & \text { 6SL32 . 0- . YE36- } \\ & \text {. U . . } \end{aligned}$	15	21	10	16.8	55
FSE	$\begin{aligned} & \text { 6SL32 . 0- . YE38- } \\ & \text {. U . . } \\ & \hline \end{aligned}$	15	23.5	10	19.8	61
	$\begin{aligned} & \text { 6SL32 . 0- . YE40- } \\ & \text {. U . . } \\ & \hline \end{aligned}$	20	29	15	23.3	74
FSF	$\begin{aligned} & \text { 6SL32 . O- . YE42- } \\ & \text {. U . . } \end{aligned}$	30	40	20	31.0	104
	$\begin{array}{\|l} \hline \text { 6SL32 . O- . YE44- } \\ \text {. U . . } \\ \hline \end{array}$	40	52	30	41.3	132
	$\begin{aligned} & \text { 6SL32 . O- . YE46- } \\ & \text {. U . . } \end{aligned}$	50	65	40	56.3	160
	$\begin{aligned} & \text { 6SL32 . O- . YE48- } \\ & \text {. U . . } \end{aligned}$	60	77	40	57.8	174

Frame size	Article number	3 AC LO (VT) Output Ratings with 1 AC 480V (L-L) Input ${ }^{1)}$		3 AC HO (CT) Output Ratings with 1 AC 480V (L-L) Input ${ }^{2)}$		Rated Input Current, A @ 1 AC 480 V (LL)
		Output Power [hp] (480V)	Rated Output Current I_{L}, A (480V)	Output Power [hp] (480V)	Rated Output Current I_{H}, A (480V)	
FSG	$\begin{aligned} & \text { 6SL32 . 0- . YE50- } \\ & \text {. C . . } \end{aligned}$	75	96	50	76.3	210
	$\begin{aligned} & \text { 6SL32 . O- . YE52- } \\ & \text {. C . . } \end{aligned}$	100	124	75	103.7	276
	$\begin{aligned} & \text { 6SL32 . 0- . YE54- } \\ & \text {. C . . } \end{aligned}$	125	156	75	118.1	339

1) Rated power and output current based on the base-load current I_{L}. The base-load current I_{L} is based on the duty cycle for low overload (LO) or Variable Torque (VT) i.e. 110% x I_{L} for 60 s every 300 s.
2) Rated power and output current based on the base-load current I_{H}. The base-load current I_{H} is based on the duty cycle for high overload (HO) or Constant Torque (CT) i.e. $150 \% \times \mathrm{I}_{\mathrm{H}}$ for 60 s every 600 s .

Overcurrent protection

- Circuit breakers and Motor Starter Protectors (MSP) or self-protected Type E combination motor controllers shall be suitable and UL-listed for the use on 1 AC (Line to Line) application and wired as specified in the circuit breakers and MSP operating manuals.
- An OCPD must be dimensioned appropriately according to the 1 AC input current ratings of the SINAMICS G120X as specified in this section.
- The recommended current rating of the OCPD shall comply with the existing applicable local or National Electrical Code (NEC) and be equal to the smaller value of the following two ratings:
- No more than 125% of the SINAMICS G120X 1 AC input current rating as specified in the rating tables.
- Maximum OCPD current rating specified in the SINAMICS G120X overcurrent protective devices and SCCR product information sheet.

Connection overview

Figure 12-1 Connecting fuse

Figure 12-2 Connecting 2-pole circuit breaker

Figure 12-3 Connecting 3-pole (3-phase) circuit breaker or MSP (Motor Starter Protector)

D WARNING
Death or serious injury due to improper OCPD
Improper selection of OCPD could result in death or serious injury, cause damage to the
converter and void the warranty.
- Ensure that you have selected the appropriate OCPD based on the SINAMICS G120X
overcurrent protective devices, SCCR product information sheet and other restrictions
specified in this manual.

NOTICE

Reduced converter life due to operation with 1 AC input supply

Use of any 3 AC converter on 1 AC input supply can cause stresses on the DC link components and rectifier due to increased DC link ripple and harmonics, and as a result, reduce the expected life of the converter.

12.6 Current rating for DC terminals

Frame size	FSA	FSB	FSC	FSD	FSE	FSF	FSG	FSH	FSJ
DC termi- nals	R1, F3								
Current rating	Fully rated ${ }^{11}$	44 A	68 A	130 A	130 A	$2 / 3$ of rated DC current			

1) Fully rated means that the terminal is capable of a $D C$ current of $I _D C=1.15 \times I _L O$.

12.7 Derating data

12.7.1 Current derating as a function of the installation altitude

The permissible converter output current is reduced above an installation altitude of 1000 m .

Figure 12-4 installation altitude

Permissible line supplies dependent on the installation altitude

- For installation altitudes $\leq 2000 \mathrm{~m}$ above sea level, it is permissible to connect the converter to any of the line supplies that are specified for it.
- For installation altitudes 2000 m ... 4000 m above sea level, the following applies:
- Connection to a TN line system with grounded neutral point is permissible.
- TN systems with grounded line conductor are not permitted.
- The TN line system with grounded neutral point can also be supplied using an isolation transformer.
- The phase-to-phase voltage does not have to be reduced.

Note

Using converters connected to TN line supplies with voltages $\geq 600 \mathrm{~V}$ for installation altitudes 2000 m ... 4000 m

For voltages $\geq 600 \mathrm{~V}$, the TN line supply must have a grounded neutral point established using an isolation transformer.

12.7.2 Current derating as a function of the ambient temperature

Note that Operator Panel can restrict the maximum permissible operating ambient temperature of the converter.

12.7.3 Current derating as a function of the line voltage

200 V converters

Figure 12-5 Current derating as a function of the input voltage for FSA..FSF

400 V converters

The thermal protection of the converter can reduce the current or the pulse frequency above 415 V or 480 V respectively.
Figure 12-6 Current derating as a function of the input voltage for FSA ... FSG

Figure 12-7 Current derating as a function of the input voltage for FSH, FSJ

690 V converters

Figure 12-8 Current derating as a function of the input voltage for FSA ... FSG

Figure 12-9 Current derating as a function of the input voltage for FSH, FSJ

12.7.4 Current derating as a function of the pulse frequency

200 V converters

Frame size	Rated power based on LO (kW)	Output current (A) (at $200 \mathrm{~V}, 45{ }^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of							
		2 kHz	4 kHz	6 kHz	8 kHz	10 kHz	12 kHz	14 kHz	16 kHz
FSA	0.75	4.2	4.2	3.5	2.9	2.5	2.1	1.8	1.6
	1.1	6	6	5.1	4.2	3.6	3	2.7	2.4
	1.5	7.4	7.4	6.2	5.1	4.4	3.7	3.3	2.9
FSB	2.2	10.4	10.4	8.8	7.2	6.2	5.2	4.6	4.1
	3	13.6	13.6	11.5	9.5	8.1	6.8	6.1	5.4
	4	17.5	17.5	14.8	12.2	10.4	8.7	7.8	7
FSC	5.5	22	22	18.7	15.4	13.2	11.0	9.9	8.8
	7.5	28	28	23.8	19.6	16.8	14.0	12.6	11.2
FSD	11	42	42	35.7	29.4	25.2	21.0	18.9	16.8
	15	54	54	45.9	37.8	32.4	27.0	24.3	21.6
	18.5	68	68	57.8	47.6	40.8	34.0	30.6	27.2
FSE	22	80	80	68.0	56	48	40.0	36	32.0
	30	104	104	88.4	72.8	62.4	52.0	46.8	41.6
FSF	37	130	130	110.5	91	78	65.0	58.5	52
	45	154	154	130.8	107.8	92.4	77.0	69.3	61.6
	55	192	192	163.2	134.4	115.2	96.0	86.4	76.8

The rated output currents in bold refer to the default pulse frequency at $45^{\circ} \mathrm{C}$ ambient temperature.

400 V converters

Frame size	Rated power based on LO (kW)	Output current (A) (at $400 \mathrm{~V}, 45{ }^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of							
		2 kHz	4 kHz	6 kHz	8 kHz	10 kHz	12 kHz	14 kHz	16 kHz
FSA	0.75	2.2	2.2	1.87	1.54	1.32	1.1	0.99	0.88
	1.1	3.1	3.1	2.635	2.17	1.86	1.55	1.395	1.24
	1.5	4.1	4.1	3.485	2.87	2.46	2.05	1.895	1.64
	2.2	5.9	5.9	5.015	4.13	3.54	2.95	2.655	2.36
	3	7.7	7.7	6.545	5.39	4.62	3.85	3.465	3.08
FSB	4	10.2	10.2	8.67	7.14	6.12	5.1	4.59	4.08
	5.5	13.2	13.2	11.22	9.24	7.92	6.6	5.94	5.28
	7.5	18	18	15.3	12.6	10.8	9	8.1	7.2
FSC	11	26	26	22.1	18.2	15.6	13	11.7	10.4
	15	32	32	27.2	22.4	19	18	14.4	12.8

Frame size	Rated power based on LO (kW)	Output current (A) (at $400 \mathrm{~V}, 45^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of							
		2 kHz	4 kHz	6 kHz	8 kHz	10 kHz	12 kHz	14 kHz	16 kHz
FSD	18.5	38	38	32.3	26.6	22.8	19	17.1	15.2
	22	45	45	38.2	31.5	27	22.5	20.2	18
	30	60	60	51	42	36	30	27	24
	37	75	75	63.7	52.5	45	37.5	33.7	30
FSE	45	90	90	76.5	63	54	45	40.5	36
	55	110	110	93.5	77	66	55	49.5	44
FSF	75	145	145	123.2	101.5	87	72.5	65.2	58
	90	178	178	151	124.6	107	89	80.1	71.2
	110	205	143.5	103	82	--	--	--	--
	132	250	175	125	100	--	--	--	--
FSG	160	302	211.4	151	121	--	--	--	--
	200	370	259	185	148	--	--	--	--
	250	477	334	239	191	--	--	--	--
FSH	315	585	$468{ }^{1)}$	--	--	--	--	--	--
	355	655	524 ${ }^{1)}$	--	--	--	--	--	--
	400	735	$588{ }^{1)}$	--	--	--	--	--	--
FSJ	450	840	$672{ }^{1)}$	--	--	--	--	--	--
	500	910	$728^{1)}$	--	--	--	--	--	--
	560	1021	$817^{1)}$	--	--	--	--	--	--

The rated output currents in bold refer to the default pulse frequency at $45^{\circ} \mathrm{C}$ ambient temperature.

1) In the factory setting, the converter starts with a pulse frequency of 4 kHz and reduces automatically the pulse frequency to the associated required frequencies when loaded. When the load decreases, the pulse frequency is increased automatically up to 4 kHz .

690 V converters

Frame Size	Rated power based on LO (kW)	Output current (A) (at $45^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of	
		2 kHz	4 kHz
FSD	3	6	3.6
	4	7	4.2
	5.5	10	6
	7.5	13	7.8
	11	16	9.6
	15	21	12.6
	18.5	25	15
	22	29	17.4
	30	38	22.8
	37	46	27.6

Frame Size	Rated power based on LO (kW)	Output current (A) (at $45^{\circ} \mathrm{C}$ ambient temperature) for a pulse frequency of	
		2 kHz	4 kHz
FSE	45	58	34.8
	55	68	40.8
FSF	75	90	54
	90	112	67.2
	110	128	76.8
	132	158	94.8
FSG	160	196	118
	200	236	142
	250	288	173
FSH	315	330	215 ${ }^{1)}$
	355	385	$250{ }^{1)}$
	400	420	$273{ }^{1)}$
	450	470	$306{ }^{1)}$
FSJ	500	520	$338{ }^{1)}$
	560	580	$377{ }^{1)}$
	630	650	$423{ }^{1)}$

The rated output currents in bold refer to the default pulse frequency at $45^{\circ} \mathrm{C}$ ambient temperature.
${ }^{1)}$ In the factory setting, the converter starts with a pulse frequency of 4 kHz and reduces automatically the pulse frequency to the associated required frequencies when loaded. When the load decreases, the pulse frequency is increased automatically up to 4 kHz .
The values of the rated current refer to a pulse frequency of 2 kHz at $45^{\circ} \mathrm{C}$ ambient temperature and are reached at any time by the automatic adaptation of the output pulse frequency.

12.8 Low frequency performance

The converter can only be operated with reduced output current at low output frequencies.

NOTICE

Reduced converter service life as a result of overheating

Loading the converter with a high output current and at the same time with a low output frequency can cause the current-conducting components in the converter to overheat. Excessively high temperatures can damage the converter or reduce the converter service life.

- Never operate the converter continuously with an output frequency $=0 \mathrm{~Hz}$.
- Only operate the converter in the permissible operating range.

Figure 12-10 Low frequency performance for FSA ... FSG

Figure 12-11 Low frequency performance for FSH/FSJ

- Continuous operation (green area in the figure) Operating state that is permissible for the complete operating time.
- Short-time duty (yellow area in the figure) Operating state that is permissible for less than 2% of the total operating time.
- Sporadic short-time duty (red area in the figure) Operating state that is permissible for less than 0.1% of the total operating time.

12.9 Data regarding the power loss in partial load operation

You can find data regarding power loss in partial load operation in the Internet:
(3) Partial load operation (http://support.automation.siemens.com/WW/view/en/94059311)

12.10 Electromagnetic compability of the converter

12.10.1 Overview

Definition of terms

EMC stands for electromagnetic compatibility.
EMC means that the devices function satisfactorily without interfering with or being disrupted by other devices. EMC applies when both the emitted interference (emission level) and the interference immunity are matched with each other.

The product standard IECIEN 61800-3 describes the EMC requirements placed on variable-speed drives.

A variable-speed drive (referred to as "Power Drive System", or PDS, in IEC/EN 61800-3) consists of the converter as well as the associated motors and encoders including the connecting cables.

The driven machine is not part of the drive.

General information

IEC/EN 61800-3 makes a distinction between the "first environment" and "second environment" - and defines different requirements for these environments.

- First environment

Residential buildings or locations at which the drive is directly connected to the public lowvoltage system without an intermediate transformer.

- Second environment

An environment that includes all other equipment which is not connected directly to a public low-voltage line supply for residential buildings. These are basically industrial areas that have their own medium-voltage supply via their own transformers.

Note

The drive is intended for commercial or industrial use in stationary machines and systems.

Note

The drive is intended to be installed and put into operation by specially trained personnel, in observance of EMC conditions and the installation information in the operating instructions and "EMC layout guidelines" configuration manual.

[^8]
Note

The drive as a component of machines or systems

For the integration of the drive in machines or systems, additional measures may be necessary in order to comply with the product standards of these systems or machines. These additional measures are the responsibility of the system or machine manufacturer.

Caution

In a residential environment, the drive may cause radio interference. In such cases, additional interference suppression measures may be required.

12.10.2 Operation in the Second EMC environment

12.10.2.1 High-frequency interference emissions EMC category C3

Description

The drive may be used in the second EMC environment if at least the limit values of IEC 61800-3 Category C3 with regard to conducted and radiated interference emissions are complied with. The following requirements must be met for this purpose:

- Operation on TN or TT line supply with star-point grounded
- Permissible motor cable length

4] Maximum permissible motor cable length (Page 108)

- Shielded motor cable with low capacitance
- Pulse frequency \leq factotory setting
- With line filter (external or internal)
- Converters with integrated C2 line filter or C3 line filter
- Unfiltered converters with external C2 line filter or C3 line filter

Note

If devices without integrated C3 filters or filters other than those listed above are used, the machine builder or plant engineer must certify that the emitted interference does not exceed the limit values of category C3. Separate line filters for each device or a shared line filter for several devices can be used.
12.10 Electromagnetic compability of the converter

12.10.2.2 High-frequency interference emissions EMC category C2

Description

The drive meets the limit values of IEC 61800-3 Category C2 with regard to conducted and radiated interference emissions under the following conditions:

- Operation on TN or TT line supply with grounded neutral point
- Permissible motor cable length
\checkmark Maximum permissible motor cable length (Page 108)
- Shieled motor cable with low capacitance
- Pulse frequency \leq factotory setting
- With C2 line filter (external or internal)
- Converters with integrated C2 line filter
- Unfiltered FSA ... FSF converters with external C2 line filter
- FSH/FSJ converters with external C2 line filter and line reactor

Note

If devices without integrated C2 filters or filters other than those listed above are used, the machine builder or plant engineer must certify that the emitted interference does not exceed the limit values of category C2. Separate line filters for each device or a shared line filter for several devices can be used.

12.10.2.3 Current harmonics

Overview

IEC 61800-3 does not define any limits for the emission of current harmonics when used in industrial networks. A system evaluation according to IEC 61000-3-14 or 61800-3 Annex B. 4 is recommended.

12.10.3 Operation in the First EMC environment

12.10.3.1 General information

Overview

Devices and systems that are operated on the public low-voltage system must comply with the limit values for electromagnetic interference (interference immunity and interference emission) defined in the relevant standards. Industrial networks are facing increased requirements, particularly regarding emitted interference. The requirements for standard-conformant operation on the public low-voltage system are explained in more detail in the following.

Note

Requirements may be defined in the technical connection conditions of the local network operator that exceed the standard requirements described in this document.

Note

The flicker behavior can only be evaluated in a combination of the drive with an application (see IEC 61800-3, Section 6.2.4.2). The drive behaves passively in this regard, i.e. load fluctuations of the application will be visible without changes on the line side.

Note

Influence by ripple control signals

Ripple control signals in public supply systems can affect the operation of the drive system in unfavorable cases and cause fault shutdowns (e.g. "undervoltage" or "phase failure"). This particularly applies to FSA-C devices if they are operated in the factory-set U/f control mode.

- If ripple control signals are exerting unwanted influence, replace the U/f control mode (Standard Drive Control application class) with the vector control (Dynamic Drive Control application class).

12.10.3.2 High-frequency, conducted and radiated interference emissions, EMC category C2

Description

The drive may only be used in the first EMC environment if at least the limit values of EMC Category C2 are adhered to in regard to the interference emissions. To this end, the requirements listed below must be satisfied:

- Operation on a TN or TT system with a grounded neutral point.
- Use of shielded motor cables with a length of max. 150 meters.
- Operation using the default pulse frequency (or with a reduced pulse frequency)
12.10 Electromagnetic compability of the converter
- FSA - FSG: Use converters with an integrated C2 line filter (-OAFO in the last block of the article number)
- FSH, FSJ: Use of an external line filter
- 400-480 V 3 AC: 6SL3760-0MR00-OAAO
- 500-690 V 3 AC: 6SL3760-0MS00-OAAO

Note

If converters without integrated C2 filters or filters other than those listed above are used, the machine builder or plant engineer must certify that the interference emissions are limited according to EMC Category C2, at a minimum. Separate line filters for each converter or a shared line filter for several converters can be used.

12.10.3.3 High-frequency, conducted interference emissions, EMC category C1

Description

Conditions for compliance with the limits:

- TN or TT system with a grounded neutral point.
- Use of shielded motor cables
- Compliance with maximum motor cable length

4 Maximum permissible motor cable length (Page 108)

- Converter operation using the default pulse frequency or with a reduced pulse frequency Exception: Converters FSF, 75 kW and 90 kW , only with reduced pulse frequency $=2 \mathrm{kHz}$
- Mount the ferrites as close as possible to the terminals on the connecting cables:

Converter frame size 400 V	Ferrite	Installation
Frame size FSB 1)	Würth 74271231S or similar	Ferrite encloses the cables of the 24 V voltage outputs X132.9 and X132.28
	Würth 74271221S or similar	Ferrite encloses the fieldbus cables X150
Frame sizes FSC ${ }^{\text {1) }}$	Würth 74271231S or similar	Ferrite encloses the cables of the 24 V voltage outputs X132.9 and X132.28
	Würth 74271222 or similar	Ferrite encloses the fieldbus cables X150
	Epcos N87 (B64290L0699X087) or similar	2 ferrites enclose the motor cable (U2, V2, W2 and PE)
FSD, FSE	$2 \times$ TDK EPCOS N87 B64290L0699X087	1 ferrite encloses the motor cable (PE, U2, V2, W2), 1 ferrite encloses the line supply cable of the line filter (PE, L1, L2, L3)
FSF, 75 kW ... 90 kW	$2 \times$ TDK EPCOS N87 B64290L0084X087	2 ferrite cores encompass the line feeder cable of the line filter (PE, L1, L2, L3)
FSF, 110 kW	Schaffner RU41572-2	2 ferrite cores per line terminal (L1, L2, L3) 2 ferrite cores per motor terminal (U2, V2, W2)

1) Ferrites are only necessary with footprint filters

The ferrites are not included in the converter delivery.

Figure 12-12 Ferrite on the connection cables, FSB, FSC
12.10 Electromagnetic compability of the converter

Figure 12-13 Ferrite on the connection cables, FSD...FSF

12.10.3.4 Current harmonics of individual devices

Description

In regard to the adherence to limit values for the harmonic currents, the EMC product standard IEC 61800-3 for PDS refers to the compliance with standards IEC 61000-3-2 and IEC 61000-3-12. The limit values of these standards apply to devices that are designed for connecting to the public low-voltage system.

Depending on the rated output and the rated input current of the device, different requirements result for the direct connection to the low-voltage system.

LO base load power	LO input cur- rent	-
$\leq 1 \mathrm{~kW}$	$\leq 16 \mathrm{~A}$	The converters comply with the requirements of IEC 61000-3-2. nally used devices of this output range. Notification of the network operator and a system evaluation according to IEC 61000-3-14 or 61800-3 Annex B.4 are recommended.
$>1 \mathrm{~kW}$	$>16 \mathrm{~A}$ and \leq 75 A	The converters comply with IEC 61000-3-12 (Table 4), provided that the short-circuit capacity (SSC) at the point of connection of the customer system to the public network is greater than or equal to the value in the formula below. $S_{\text {SC }}=U^{2}$ The installer or plant operator must ensure that the converters are only connected to a supply system with sufficient short-circuit capacity. If the converters are to be connected to a supply system with a lower short-circuit capacity, the installer or plant operator must obtain a con- nection approval from the network operator in regard to harmonic cur- rents.

When operated with LO rated power, the converter generates the following typical current harmonics (as a percentage of the fundamental current):

Converter	$\mathbf{R}_{\mathbf{S C}}$	$\mathbf{I 5}$	$\mathbf{1 7}$	$\mathbf{I 1 1}$	$\mathbf{I 1 3}$	$\mathbf{I 1 7}$	$\mathbf{I 1 9}$	$\mathbf{1 2 3}$	$\mathbf{1 2 5}$	THC
FSA ... FSG	120	38%	18%	8%	5%	4%	3%	3%	2%	43%
FSH, FSJ with 2% line reactor	50	37%	13%	7%	3%	3%	2%	1%	1%	40%

The SIZER configuration tool allows the individual calculation of the harmonic parameters.
(3) Download SIZER (http://support.automation.siemens.com/WW/view/en/ 10804987/130000)

Line Harmonics Filter (LHF) for reducing current harmonics

The passive LHF (Line Harmonics Filters) available for the converter allow a significant reduction of the current harmonics. It is especially recommended that LHF be used if devices FSE ... FSG (above 75 A rated input current) are to be operated on the public low-voltage system.
12.10 Electromagnetic compability of the converter

Typical current harmonics with LHF when operating with LO rated power (in percentage of the fundamental current):

Converter	$\mathbf{R}_{\mathbf{s C}}$	$\mathbf{I 5}$	$\mathbf{1 7}$	$\mathbf{I 1 1}$	$\mathbf{I 1 3}$	$\mathbf{I 1 5}$	$\mathbf{I 1 7}$	$\mathbf{I 2 3}$	$\mathbf{I 2 5}$	THC
FSB \ldots FSG I	33	1.7%	1.9%	2.2%	1.5%	0.8%	0.8%	0.7%	0.6%	4.2%
	$\mathbf{4} 00 \mathrm{~V}$	120	1.8%	2.2%	2.4%	1.6%	0.8%	0.8%	0.7%	0.6%

The power factor λ improves with LHF to approx. 98% when operating with rated output.
With an upstream LHF, the converters satisfy the limit values of IEC 61000-3-2 and IEC 61000-3-12.

12.10.3.5 Harmonics at the power supply connection point acc. to IEC 61000-2-2

Description

IEC 61000-2-2 defines the compatibility level for voltage harmonics for the point of common coupling (PCC) with the public supply system.

For systems in which converters or other non-linear loads are widely used, a circuit feedback calculation that takes the individual system configuration into consideration should always be performed.

The converter with upstream Line Harmonics Filters (LHF) allows adherence to the compatibility level for voltage harmonics, regardless of what percentage of the overall load is made up of the converter load.

Note

The voltage distortions behavior in the frequency range of 2 kHz to 9 kHz (IEC $61000-2-2$ AMD 1) and from 9 kHz to 150 kHz (IEC 61000-2-2 AMD 2) must be evaluated specifically for each system as a function of the impedance at the power supply connection point.

12.10.3.6 Harmonics at the power supply connection point acc. to IEEE 519

Description

IEEE 519 defines limit values for voltage and current harmonics for all of the loads at the point of common coupling (PCC).

As a rule, systems only satisfy the limit values of IEEE 519 without implementing special measures if the share of converters and other non-linear loads in the overall load is relatively low. The respective system should always be individually considered.

The converter with upstream Line Harmonics Filters (LHF) enables adherence to the limit values of IEEE 519 (precondition: $\mathrm{R}_{\mathrm{SC}} \geq 20$).

12.11 Protecting persons from electromagnetic fields

Overview

Protection of workers from electromagnetic fields is specified in the European EMF Directive 2013/35/EU. This directive is implemented in national law in the European Economic Area (EEA). Employers are obligated to design workplaces in such a way that workers are protected from impermissibly strong electromagnetic fields.
To this end, assessments and/or measurements must be performed for workplaces.

General conditions

The following general conditions apply for the evaluations and measurements:

1. The laws for protection from electromagnetic fields in force in individual EU member states can go beyond the minimum requirements of the EMF Directive 2013/35/EU and always take precedence.
2. The ICNIRP 2010 limits for the workplace are the basis for the assessment.
3. The 26th BImSchV (German Federal Emission Protection Regulation) defines $100 \mu \mathrm{~T}$ (RMS) for the assessment of active implants. According to Directive 2013/35/EU, $500 \mu \mathrm{~T}$ (RMS) at 50 Hz is applicable here.
4. The routing of power cables has a significant impact on the electromagnetic fields that occur. Install and operate the components inside metallic cabinets in compliance with the documentation and use shielded motor cables.
4] EMC-compliant setup of the machine or plant (Page 93)

Evaluation of the converter

The converters are normally used in machines. The assessment and testing is based on DIN EN 12198.

Compliance with the limit values was assessed for the following frequencies:

- Line frequency 47 ... 63 Hz
- Pulse frequency, for example $4 / 8 / 16 \mathrm{kHz}$ and multiples thereof, assessed up to a maximum of 100 kHz

The indicated minimum distances apply to the head and complete torso of the human body. Shorter distances are possible for extremities.

Table 12-14 Minimum distances to the converter

Individuals without active implants		Individuals with active implants	
Control cabinet closed	Control cabinet open	Control cabinet closed	Control cabinet open
0 cm	Forearm length (approx. $35 \mathrm{~cm})$	Must be separately assessed depending on the ac- tive implant.	

12.11 Protecting persons from electromagnetic fields

Appendix

A. 1 Manuals and technical support

A.1.1 Overview of the manuals

Manuals with additional information that can be downloaded

- Compact hardware installation instructions (https:/I support.industry.siemens.com/cs/us/en/view/109762897) Installing the converter

- 3 Operating instructions (https://support.industry.siemens.com/cs/us/en/view/ 109776312)

Installing, commissioning and maintaining the converter. Advanced commissioning (this manual)

- BOP-2 operating instructions (https://support.industry.siemens.com/cs/ww/en/view/ 109483379)

Operating the converter with the BOP-2 operator panel ENㅡN

- Operating instructions IOP-2 (https://support.industry.siemens.com/cs/ww/en/view/ 109752613)

Operating the converter with the IOP-2 operator panel En

- SINAMICS G120 Smart Access Operating Instructions (https:// support.industry.siemens.com/cs/ww/en/view/109758122)
Operating the converter from a PC, tablet or smartphone

- Protective devices (https://support.industry.siemens.com/cs/us/en/view/109762895) Overcurrent protection devices of the converter NN
A. 1 Manuals and technical support

A.1.2 Configuring support

Catalog

Ordering data and technical information for the converter.

Catalogs for download or online catalog (Industry Mall):
(2) SINAMICS G120X (www.siemens.com/sinamics-g120x)

EMC (electromagnetic compatibility) technical overview

Standards and guidelines, EMC-compliant control cabinet design

(2) EMC overview (https://support.industry.siemens.com/cs/ww/en/view/103704610)

EMC Guidelines configuration manual

EMC-compliant control cabinet design, potential equalization and cable routing

(2) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)

A.1.3 Product Support

Overview

You can find additional information about the product on the Internet:
(2 3 Product support (https://support.industry.siemens.com/cs/ww/en/)
This URL provides the following:

- Up-to-date product information (product announcements)
- FAQs
- Downloads
- The Newsletter contains the latest information on the products you use.
- The Knowledge Manager (Intelligent Search) helps you find the documents you need.
- Users and specialists from around the world share their experience and knowledge in the Forum.
- You can find your local representative for Automation \& Drives via our contact database under "Contact \& Partner".
- Information about local service, repair, spare parts and much more can be found under "Services".

If you have any technical questions, use the online form in the "Support Request" menu:

A. 1 Manuals and technical support

Index

2
$2 / 3$ wire control selection p3334, 1035

3

3RK3 (modular safety system), 176

8

87 Hz characteristic, 127
87 Hz characteristic, 127

A

Accelerating torque smoothing time constant p1517[0...n], 881
Acceleration precontrol scaling p1496[0...n], 880, 881
Acceptance test Reduced scope, 1312 Test scope, 1312
Access level p0003, 666
Acknowledge drive object faults p3981, 1047
Activate PN interface configuration p8925, 1079
Activate/deactivate RTC alarm A01098 p8405, 1065
Actual macro r9463, 1086
Actual motor magnetizing current/short-circuit current r0331[0...n], 721
Actual motor operating hours p0650[0...n], 756
Actual phase voltage r0089[0...2], 694
Actual power unit type r0203[0...n], 698
Actual rotor resistance r0396[0...n], 733
Actual speed rpm smoothed r0022, 670

Actual stator resistance r0395[0...n], 733
Actual torque smoothed r0031, 672
Acyclic communication, 286
ADD, 393
ADD 0 run sequence p20097, 1122
ADD 0 runtime group p20096, 1122
ADD 1 run sequence p20101, 1123
ADD 1 runtime group p20100, 1123
Adder, 393
Additional acceleration torque (sensorless) p1611[0...n], 894
Additional technology controller 0, 386
Air barrier, 74
Alarm, 499, 1179, 1185
Alarm buffer, 499, 1185
Alarm code, 1185 r2122[0...63], 968
Alarm counter p2111, 965
Alarm history, 1186
Alarm number r2110[0...63], 965
Alarm time, 499, 1185
Alarm time received in days r2145[0...63], 974
Alarm time received in milliseconds r2123[0...63], 968
Alarm time removed in days r2146[0...63], 975
Alarm time removed in milliseconds r2125[0...63], 969
Alarm value, 1185 r2124[0...63], 968
Alarm value for float values r2134[0...63], 972
Alert
A01009 (N), 1193
A01016 (F), 1194
A01017, 1194
A01019, 1195
A01020, 1195
A01021, 1195
A01028 (F), 1196

A01035 (F), 1196
A01045, 1200
A01049, 1200
A01066, 1201
A01067, 1201
A01069, 1202
A01073 (N), 1202
A01098, 1203
A01251, 1204
A01514 (F), 1207
A01590 (F), 1208
A01900 (F), 1208
A01920 (F), 1209
A01945, 1209
A02050, 1209
A02051, 1210
A02055, 1210
A02056, 1210
A02057, 1210
A02058, 1210
A02059, 1211
A02060, 1211
A02061, 1211
A02062, 1211
A02063, 1211
A02070, 1212
A02075, 1212
A02095, 1212
A02096, 1212
A02097, 1213
A02098, 1213
A02099, 1213
A02150, 1213
A03510 (F, N), 1215
A03520 (F, N), 1216
A05000 (N), 1216
A05001 (N), 1216
A05002 (N), 1216
A05003 (N), 1217
A05004 (N), 1217
A05006 (N), 1217
A05065 (F, N), 1217
A06921 (N), 1218
A07012 (N), 1219
A07014 (N), 1219
A07015, 1220
A07089, 1222
A07094, 1222
A07200, 1222
A07321, 1224
A07325, 1224
A07352, 1225

A07353, 1225
A07391, 1226
A07400 (N), 1226
A07401 (N), 1226
A07402 (N), 1226
A07409 (N), 1227
A07416, 1228
A07427, 1229
A07428 (N), 1229
A07444, 1230
A07530, 1230
A07531, 1231
A07805 (N), 1232
A07850 (F), 1233
A07851 (F), 1233
A07852 (F), 1233
A07891, 1234
A07892, 1234
A07893, 1235
A07903, 1236
A07910 (N), 1237
A07920, 1237
A07921, 1237
A07922, 1238
A07926, 1238
A07927, 1239
A07929 (F), 1239
A07980, 1242
A07981, 1242
A07991 (N), 1246
A07994 (F, N), 1247
A08511 (F), 1247
A08526 (F), 1248
A08564, 1248
A08565, 1248, 1249
A08800, 1249
A30016 (N), 1254
A30030, 1258
A30031, 1258
A30032, 1258
A30033, 1259
A30034, 1259
A30042, 1260
A30049, 1261
A30057, 1262
A30065 (F, N), 1262
A30502, 1265
A30810 (F), 1266
A30920 (F), 1267
A30999 (F, N), 1267
A50010 (F), 1268
A50011 (F), 1268

A50513 (F), 1269
A50517, 1269
A52961, 1270
A52962, 1270
A52963, 1270
A52964, 1270
F01000, 1191
F01001, 1191
F01002, 1192
F01003, 1192
F01005, 1193
F01010, 1193
F01015, 1193
F01018, 1194
F01023, 1195
F01030, 1196
F01033, 1196
F01034, 1196
F01036 (A), 1197
F01038 (A), 1197
F01039 (A), 1198
F01040, 1198
F01042, 1199
F01043, 1199
F01044, 1200
F01054, 1201
F01068, 1202
F01072, 1202
F01105 (A), 1203
F01107, 1203
F01112, 1203
F01120 (A), 1204
F01152, 1204
F01205, 1204
F01250, 1204
F01257, 1205
F01340, 1205
F01505 (A), 1206
F01510, 1206
F01511 (A), 1206
F01512, 1207
F01513 (N, A), 1207
F01515 (A), 1208
F01662, 1208
F01910 (N, A), 1208
F01946 (A), 1209
F02080, 1212
F02151 (A), 1214
F02152 (A), 1214
F03000, 1214
F03001, 1215
F03505 (N, A), 1215

F06310 (A), 1218
F06922, 1218
F07011, 1218
F07016, 1220
F07080, 1220
F07082, 1220
F07083, 1221
F07084, 1221
F07086, 1222
F07088, 1222
F07220 (N, A), 1223
F07300 (A), 1223
F07311, 1223
F07312, 1223
F07320, 1224
F07330, 1224
F07331, 1225
F07332, 1225
F07390, 1225
F07404, 1227
F07405 (N, A), 1227
F07406 (N, A), 1227
F07410, 1227
F07411, 1228
F07426 (A), 1228
F07435 (N), 1229
F07436 (A), 1229
F07437 (A), 1230
F07438 (A), 1230
F07445, 1230
F07800, 1231
F07801, 1231
F07802, 1231
F07806, 1232
F07807, 1232
F07810, 1233
F07860 (A), 1233
F07861 (A), 1234
F07862 (A), 1234
F07894, 1235
F07895, 1235
F07896, 1235
F07900 (N, A), 1235
F07901, 1236
F07902 (N, A), 1236
F07923, 1238
F07924, 1238
F07925, 1238
F07936, 1239
F07950 (A), 1240
F07967, 1240
F07968, 1240

F07969, 1240
F07983, 1242
F07984, 1243
F07985, 1244
F07986, 1245
F07988, 1245
F07990, 1245
F08010 (N, A), 1247
F08501 (N, A), 1247
F08502 (A), 1247
F13009, 1249
F13100, 1249
F13101, 1250
F13102, 1250
F30001, 1251
F30002, 1251
F30003, 1252
F30004, 1252
F30005, 1252
F30011, 1253
F30012, 1253
F30013, 1253
F30015 (N, A), 1254
F30017, 1254
F30021, 1255
F30022, 1255
F30024, 1256
F30025, 1256
F30027, 1256
F30035, 1259
F30036, 1260
F30037, 1260
F30051, 1261
F30052, 1261
F30055, 1261
F30059, 1262
F30068, 1262
F30071, 1262
F30072, 1263
F30074 (A), 1263
F30075, 1263
F30080, 1263
F30081, 1264
F30105, 1264
F30662, 1265
F30664, 1265
F30802, 1265
F30804 (N, A), 1266
F30805, 1266
F30809, 1266
F30850, 1266
F30903, 1267

F30950, 1267
F35950, 1267
F50510, 1269
F50511, 1269
F50518, 1269
F52960, 1270
F52965, 1270
F52966, 1270
N01004 (F, A), 1192
N01101 (A), 1203
N30800 (F), 1265
Ambient temperature, 595, 596
Analog input, 132
Function, 259
Analog output, 132
Function, 262
AND, 391
AND 0 run sequence p20033, 1111
AND 0 runtime group p20032, 1111
AND 1 run sequence p20037, 1112
AND 1 runtime group p20036, 1112
AND 2 run sequence
p20041, 1113
AND 2 runtime group p20040, 1113
AND block, 391
Application class p0096, 694, 695
Application example, 186, 190, 254, 262, 343, 465, 466

Application example, 256, 260
Application firmware version
r29018[0...1], 1152
Automatic calculation motor/control parameters p0340[0...n], 722
Automatic mode, 382
Automatic restart, 623
Automatic restart delay time start attempts p1212, 846
Automatic restart faults not active p1206[0...9], 844
Automatic restart mode p1210, 845
Automatic restart monitoring time p1213[0...1], 847
Automatic restart start attempts
p1211, 846

B

Bearing code number selection p0531[0...n], 742
Bearing maximum speed p0532[0...n], 742
Bearing version selection p0530[0...n], 741
BF (Bus Fault), 1180, 1181, 1182
BI: 1st acknowledge faults p2103[0...n], 962
BI: $2 / 3$ wire control command 1 p3330[0...n], 1034
BI: $2 / 3$ wire control command 2 p3331[0...n], 1034
BI: $2 / 3$ wire control command 3 p3332[0...n], 1034
BI: 2nd acknowledge faults p2104[0...n], 963
BI : 3rd acknowledge faults p2105[0...n], 963
BI: Active STW1 in the BOP/IOP manual mode p8542[0...15], 1072
BI: AND 0 inputs p20030[0...3], 1111
BI: AND 1 inputs p20034[0...3], 1112
BI: AND 2 inputs p20038[0...3], 1113
BI: Binector-connector converter status word 1 p2080[0...15], 951
BI: Binector-connector converter status word 2 p2081[0...15], 952
BI: Binector-connector converter status word 3 p2082[0...15], 953
BI: Binector-connector converter status word 4 p2083[0...15], 953
BI: Binector-connector converter status word 5 p2084[0...15], 954
BI: Bypass control command p1266, 858
BI: Bypass ramp-function generator p1122[0...n], 831
BI: Bypass switch feedback signal p1269[0...1], 859
BI: Close main contactor p0870, 794
BI : Command data set selection CDS bit 0 p0810, 781
BI : Command data set selection CDS bit 1 p0811, 782

BI: Continue ramp-function generator/freeze ramp-
function generator p1141[0...n], 835, 836
BI: Control by PLC/no control by PLC p0854[0...n], 790, 791
BI : CU analog outputs invert signal source p0782[0...2], 773
BI: CU signal source for terminal DO 0 p0730, 759
BI: CU signal source for terminal DO 1 p0731, 760
BI: CU signal source for terminal DO 2 p0732, 760
BI: CU signal source for terminal DO 3 p0733, 761
BI: CU signal source for terminal DO 4 p0734, 761, 762
BI: CU signal source for terminal DO 5 p0735, 762
BI : DC braking activation p1230[0...n], 849
BI : Deragging enable p29591[0...n], 1163
BI: Drive Data Set selection DDS bit 0 p0820[0...n], 782
BI: Drive Data Set selection DDS bit 1 p0821[0...n], 783
BI: Dual ramp enable p29580[0...n], 1163
BI: Enable energy usage display p0043, 678
BI: Enable operation/inhibit operation p0852[0...n], 789, 790
BI: Enable ramp-function generatorlinhibit ramp-
function generator p1140[0...n], 835
BI: Enable setpoint/inhibit setpoint p1142[0...n], 836, 837
BI: ESM activation signal source p3880, 1040
BI: ESM direction of rotation signal source p3883, 1041
BI: External alarm 1 p2112[0...n], 965
BI: External alarm 2 p2116[0...n], 966
BI: External alarm 3 p2117[0...n], 966
BI: External fault 1 p2106[0...n], 963
BI: External fault 2 p2107[0...n], 964

BI: External fault 3 p2108[0...n], 964
BI: External fault 3 enable p3111[0...n], 1024
BI: External fault 3 enable negated p3112[0...n], 1024
BI: Fixed speed setpoint selection Bit 0 p1020[0...n], 810
BI: Fixed speed setpoint selection Bit 1 p1021[0...n], 810
BI: Fixed speed setpoint selection Bit 2 p1022[0...n], 810
BI: Fixed speed setpoint selection Bit 3 p1023[0...n], 811
BI: Flying restart enable signal source p1201[0...n], 841
BI: Free tec_ctrl 0 enable p11000, 1089
BI: Free tec_ctrl 1 enable p11100, 1096
BI: Free tec_ctrl 2 enable p11200, 1103
BI: Frost protection enable p29622[0...n], 1168
BI: Hold technology controller integrator p2286[0...n], 1003
BI: Inhibit master control p0806, 780
BI: Inhibit negative direction p1110[0...n], 828
BI: Inhibit positive direction p1111[0...n], 828
BI: Jog bit 0 p1055[0...n], 817
BI: Jog bit 1 p1056[0...n], 818
BI: Limit switch minus p3343[0...n], 1035
BI: Limit switch plus p3342[0...n], 1035
BI: Limit switch start p3340[0...n], 1035
BI: Line contactor feedback signal p0860, 792
BI: Load monitoring failure detection p3232[0...n], 1029
BI: MFP 0 input pulse I p20138, 1129
BI: MFP 1 input pulse I p20143, 1130
BI: MFP 2 input pulse I p20354, 1151

BI: Motor stall monitoring enable (negated) p2144[0...n], 974
BI: Motorized potentiometer accept setting value p1043[0...n], 815
BI: Motorized potentiometer inversion p1039[0...n], 814
BI: Motorized potentiometer lower setpoint p1036[0...n], 813
BI: Motorized potentiometer manual/automatic p1041[0...n], 815
BI: Motorized potentiometer setpoint raise p1035[0...n], 812, 813
BI: Multi-pump control motor under repair p29543[0...5], 1158
BI: No coast-down / coast-down (OFF2) signal source 1 p0844[0...n], 786
BI: No coast-down / coast-down (OFF2) signal source 2 p0845[0...n], 787
BI: No Quick Stop / Quick Stop (OFF3) signal source 1 p0848[0..n], 788
BI: No Quick Stop / Quick Stop (OFF3) signal source 2 p0849[0...n], 789
BI: NOT 0 input I p20078, 1119
BI: NOT 1 input I p20082, 1120
BI: NOT 2 input I p20086, 1120
BI: NSW 0 switch setting I p20219, 1137
BI: NSW 1 switch setting I p20224, 1138
BI: ON / OFF (OFF1) p0840[0...n], 785
BI: ON/OFF1 (OFF1) p29651[0...n], 1172
BI: ON/OFF2 (OFF2) p29652[0...n], 1172
BI: OR 0 inputs p20046[0...3], 1113
BI: OR 1 inputs p20050[0...3], 1114
BI: OR 2 inputs p20054[0...3], 1115
BI: PDE 0 input pulse I p20158, 1131
BI: PDE 1 input pulse I p20163, 1132
BI: PDE 2 input pulse I p20334, 1149
BI: PDF 0 input pulse I p20168, 1133

BI: PDF 1 input pulse I p20173, 1134
BI: PDF 2 input pulse I p20344, 1150
BI: Pe set switching on inhibited signal source p5614, 1055
BI: Pipe filling activate p29609[0...n], 1166
BI : Ramp-function generator, accept setpoint p29642, 1171
BI: Ramp-function generator, accept setting value p1143[0...n], 837
$\mathrm{BI}:$ RFG active p2148[0...n], 975
BI: RSR 0 inputs p20188[0...1], 1135
BI: RSR 1 inputs p20193[0...1], 1136
BI: RSR 2 inputs p20324[0...1], 1148
BI: Select IOP manual mode p8558, 1073
BI: Setpoint inversion p1113[0...n], 828, 829
BI: Technology controller enable p2200[0...n], 988
BI: Technology controller fixed value selection bit 0 p2220[0...n], 992
BI : Technology controller fixed value selection bit 1 p2221[0...n], 992
BI: Technology controller fixed value selection bit 2 p2222[0...n], 992
BI : Technology controller fixed value selection bit 3 p2223[0...n], 993
BI: Technology controller limiting enable p2290[0...n], 1003
BI: Technology controller motorized potentiometer
lower setpoint p2236[0...n], 995
BI: Technology controller motorized potentiometer
raise setpoint p2235[0...n], 994
BI: Total setpoint selection p1108[0...n], 827
$\mathrm{BI}:$ XOR 0 inputs p20062[0...3], 1116
$\mathrm{BI}: \mathrm{XOR} 1$ inputs p20066[0...3], 1117
$\mathrm{BI}: \mathrm{XOR} 2$ inputs p20070[0...3], 1118
BICO block, 660

BICO CounterDevice r3978, 1047
BICO interconnections search signal source p9484, 1086
BICO interconnections signal source search count r9485, 1087
BICO interconnections signal source search first index r9486, 1087
Bimetallic switch, 592
Binectors, 661
BIOS/EEPROM data version r0198[0...2], 697
Block, 660
BO: AND 0 output Q r20031, 1111
BO: AND 1 output Q r20035, 1112
BO: AND 2 output Q r20039, 1113
BO: Connector-binector converter binector output r2094.0...15, 959
r2095.0...15, 959
BO: CU analog inputs status word r0751.0...11, 763
BO: CU analog outputs status word r0785.0...2, 774
BO: Deragging status word r29599.0...13, 1165
BO: DIV 0 divisor is zero QF r20120, 1127
BO: DIV 1 divisor is zero QF r20125, 1128
BO: Fixed speed setpoint status r1025.0, 811
BO: LIM 0 input quantity at the lower limit QL r20233, 1140
BO: LIM 0 input quantity at the upper limit QU r20232, 1140
BO: LIM 1 input quantity at the lower limit QL r20241, 1141
BO: LIM 1 input quantity at the upper limit QU r20240, 1141
BO: LVM 0 input quantity above interval QU r20270, 1143
BO: LVM 0 input quantity below interval QL r20272, 1143
BO: LVM 0 input quantity within interval QM r20271, 1143
BO: LVM 1 input quantity above interval QU r20279, 1144
BO: LVM 1 input quantity below interval QL r20281, 1145

BO: LVM 1 input quantity within interval QM r20280, 1144
BO: Master control active r0807.0, 780
BO: MFP 0 output Q r20140, 1129
BO: MFP 1 output Q r20145, 1130
BO: MFP 2 output Q r20356, 1151
BO: NCM 0 output QE r20314, 1146
BO: NCM 0 output QL r20315, 1146
BO: NCM 0 output QU r20313, 1145
BO: NCM 1 output QE r20320, 1147
BO: NCM 1 output QL r20321, 1147
BO: NCM 1 output QU r20319, 1147
BO: NOT 0 inverted output r20079, 1119
BO: NOT 1 inverted output r20083, 1120
BO: NOT 2 inverted output r20087, 1121
BO: OR 0 output Q r20047, 1114
BO: OR 1 output Q r20051, 1115
BO: OR 2 output Q r20055, 1115
BO: PDE 0 output Q r20160, 1131
BO: PDE 1 output Q r20165, 1132
BO: PDE 2 output Q r20336, 1149
BO: PDF 0 output Q r20170, 1133
BO: PDF 1 output Q r20175, 1134
BO: PDF 2 output Q r20346, 1150
BO: Pipe filling enable p29610, 1166
BO: POWER ON delay signal r9935.0, 1088
BO: PROFIdrive PZD state r2043.0...2, 941

BO: PROFIdrive PZD1 receive bit-serial r2090.0...15, 956
BO: PROFIdrive PZD2 receive bit-serial r2091.0...15, 957
BO: PROFIdrive PZD3 receive bit-serial r2092.0...15, 958
BO: PROFIdrive PZD4 receive bit-serial r2093.0...15, 958
BO: RSR 0 inverted output QN r20190, 1135
BO: RSR 0 output Q r20189, 1135
BO: RSR 1 inverted output QN r20195, 1136
BO: RSR 1 output Q r20194, 1136
BO: RSR 2 inverted output QN r20326, 1148
BO: RSR 2 output Q r20325, 1148
BO: RTC DTC1 output
r8413.0...1, 1067
BO: RTC DTC2 output
r8423.0...1, 1069
BO: RTC DTC3 output
r8433.0...1, 1071
BO: STW1 from IOP in the manual mode
r8540.0...15, 1071
BO: XOR 0 output Q r20063, 1116
BO: XOR 1 output Q r20067, 1117
BO: XOR 2 output Q r20071, 1118
Boot state
r3988[0...1], 1048
Bootloader version
r0197[0...1], 697
BOP-2
Menu, 221
Symbols, 221
Braking functions, 579
Braking method, 579
Breaker block, 397
Bus termination, 182
Bypass, 637
Bypass changeover source configuration p1267, 858
Bypass configuration p1260, 856
Bypass dead time
p1262[0...n], 857

Bypass delay time
p1264, 857
Bypass speed threshold p1265, 858
Bypass switch monitoring time p1274[0...1], 860

C

Cable resistance, 504
p0352[0...n], 726
r0372[0...n], 731
Calculation block, 393, 394
Cascade control, 494
Cascade control switch-in speed hysteresis p2388, 1018
Catalog, 1360
Cavitation protection, 444
Cavitation protection enable p29625[0...n], 1168
Cavitation protection threshold
p29626[0...n], 1169
Cavitation protection time
p29627[0...n], 1169
CDS (Command Data Set), 381
Change acknowledge mode fault number p2126[0...19], 969
Change acknowledge mode mode p2127[0...19], 969
Change fault response fault number p2100[0...19], 961
Change fault response response p2101[0...19], 961
Change message type message number p2118[0...19], 967
Change message type type p2119[0...19], 967
Characteristic
Additional, 509
Linear, 509, 513
parabolic, 509, 513
square-law, 509, 513
Checklist
PROFINET, 188
Cl : Active speed setpoint in the BOP/IOP manual mode p8543, 1073
Cl : Active technology setpoint in the IOP manual mode p8546, 1073
CI: ADD 0 inputs p20094[0...3], 1121
CI: ADD 1 inputs
p20098[0...3], 1122

CI: Comm IF USS PZD send word p2016[0...3], 932
CI: Connector-binector converter signal source p2099[0...1], 960
Cl : CU analog outputs signal source p0771[0...2], 770
CI: Current limit, variable p0641[0...n], 755
CI: DIV 0 inputs p20118[0...1], 1127
CI: DIV 1 inputs p20123[0...1], 1128
CI: ESM setpoint technology controller p3884, 1042
CI: Free tec_ctrl 0 actual value signal source p11064, 1093
Cl: Free tec_ctrl 0 limit maximum signal source p11097, 1096
CI: Free tec_ctrl 0 limit minimum signal source p11098, 1096
Cl : Free tec_ctrl 0 limit offset signal source p11099, 1096
CI: Free tec_ctrl 0 setpoint signal source p11053, 1092
CI: Free tec_ctrl 1 actual value signal source p11164, 1100
CI: Free tec_ctrl 1 limit maximum signal source p11197, 1103
CI: Free tec_ctrl 1 limit minimum signal source p11198, 1103
Cl : Free tec_ctrl 1 limit offset signal source p11199, 1103
Cl : Free tec_ctrl 1 setpoint signal source p11153, 1099
CI: Free tec_ctrl 2 actual value signal source p11264, 1107
Cl: Free tec_ctrl 2 limit maximum signal source p11297, 1110
CI: Free tec_ctrl 2 limit minimum signal source p11298, 1110
CI: Free tec_ctrl 2 limit offset signal source p11299, 1110
CI : Free tec_ctrl 2 setpoint signal source p11253, 1106
CI: LIM 0 input X p20228, 1139
CI: LIM 1 input X p20236, 1140
Cl : Load monitoring speed actual value p3230[0...n], 1029
CI: LVM 0 input X p20266, 1142

CI: LVM 1 input X p20275, 1144
Cl: Main setpoint p1070[0...n], 819
Cl : Main setpoint scaling p1071[0...n], 820
Cl : Minimum speed signal source p1106[0...n], 827
Cl : Motorized potentiometer automatic setpoint p1042[0...n], 815
Cl : Motorized potentiometer setting value p1044[0...n], 815
CI: MUL 0 inputs p20110[0...3], 1125
CI: MUL 1 inputs p20114[0...3], 1126
CI: NCM 0 inputs p20312[0...1], 1145
CI: NCM 1 inputs p20318[0...1], 1147
CI: NSW 0 inputs p20218[0...1], 1137
CI: NSW 1 inputs p20223[0...1], 1138
Cl : PROFIdrive PZD send double word p2061[0...15], 946
CI : PROFIdrive PZD send word p2051[0...16], 943
Cl: Ramp-down scaling input p29579[0...n], 1163
Cl : Ramp-function generator ramp-down time scaling p1139[0...n], 834
Cl : Ramp-function generator ramp-up time scaling p1138[0...n], 834
Cl : Ramp-function generator setpoint input p29643, 1171
CI : Ramp-function generator setting value p1144[0...n], 838
CI : Ramp-up scaling input p29578[0...n], 1162
CI: Skip speed scaling p1098[0...n], 826
Cl : Speed limit in negative direction of rotation p1088[0...n], 824
Cl : Speed limit in positive direction of rotation p1085[0...n], 824
Cl : Speed limit RFG negative direction of rotation p1052[0...n], 817
Cl : Speed limit RFG positive direction of rotation p1051[0...n], 817
Cl : Speed setpoint for messages/signals p2151[0...n], 976

Cl: SUB 0 inputs p20102[0...1], 1123
Cl: SUB 1 inputs p20106[0...1], 1124
CI: Supplementary setp p1075[0...n], 820
Cl : Supplementary setpoint scaling p1076[0...n], 820
Cl : Technology controller actual value p2264[0...n], 999
Cl : Technology controller Kp adaptation input value signal source p2310, 1006
Cl : Technology controller Kp adaptation scaling signal
source p2315, 1007
Cl : Technology controller limit offset p2299[0...n], 1005
Cl : Technology controller maximum limit signal source p2297[0...n], 1004
Cl : Technology controller minimum limit signal source p2298[0...n], 1005
Cl: Technology controller output scaling p2296[0...n], 1004
Cl: Technology controller precontrol signal p2289[0...n], 1003
Cl : Technology controller setpoint 1 p2253[0...n], 997
Cl: Technology controller setpoint 2 p2254[0...n], 998
Cl: Technology controller Tn adaptation input value signal source p2317, 1008
Cl : Temperature sensor voltage input source p29701, 1173
Cl: Torque limit lower p1523[0...n], 883
Cl: Torque limit lower scaling p1529[0...n], 884
Cl : Torque limit lower scaling without offset p1554[0...n], 887
Cl: Torque limit upper p1522[0...n], 882
Cl : Torque limit upper scaling p1528[0...n], 884
Cl : Torque limit upper scaling without offset p1552[0...n], 887
Cl: Total setpoint p1109[0...n], 827
Clockwise rotation, 415
Closed-loop cascade control configuration p2371, 1013

Closed-loop cascade control enable
p2370[0...n], 1012
Closed-loop cascade control holding time switch-in speed
p2385, 1017
Closed-loop cascade control holding time switch-out speed
p2387, 1018
Closed-loop cascade control interlocking time p2377, 1015
Closed-loop cascade control max time for continuous operation p2381, 1016
Closed-loop cascade control mode motor selection p2372, 1013
Closed-loop cascade control motor switch-off delay p2386, 1017
Closed-loop cascade control motor switch-on delay p2384, 1017
Closed-loop cascade control operating hours p2380[0...2], 1016
Closed-loop cascade control operating time limit p2382, 1016
Closed-loop cascade control overcontrol threshold p2376, 1015
Closed-loop cascade control switch-in delay p2374, 1014
Closed-loop cascade control switch-in threshold p2373, 1014
Closed-loop cascade control switch-in/switch-out speed p2378, 1015
Closed-loop cascade control switch-out delay p2375, 1015
Closed-loop cascade control switch-out sequence p2383, 1017
Closed-loop current control and motor model
configuration
p1402[0...n], 875, 876
CO/BO: $2 / 3$ wire control control word r3333.0...3, 1034
CO/BO: Automatic restart status r1214.0...15, 847
CO/BO: Bypass control/status word r1261.0...11, 856
CO/BO: Closed-loop cascade control status word r2379.0...10, 1016
CO/BO: Command Data Set CDS effective r0050.0...1, 682
CO/BO: Command Data Set CDS selected r0836.0...1, 784

CO/BO: Command word r29659.0...1, 1172
CO/BO: Compound braking/DC quantity control status word
r3859.0...1, 1039
CO/BO: Control word 1 r0054.0...15, 685
CO/BO: Control word faults/alarms r2138.7...15, 972
CO/BO: Control word sequence control r0898.0...10, 794
CO/BO: Control word setpoint channel r1198.0...15, 840
CO/BO: CU digital inputs status r0722.0...12, 758
$\mathrm{CO} / \mathrm{BO}: \mathrm{CU}$ digital inputs status inverted r0723.0...12, 758
CO/BO: Data set changeover status word r0835.2...8, 783
CO/BO: DC braking status word r1239.8...13, 851
CO/BO: Drive coupling status word/control word r0863.0...1, 792
CO/BO: Drive Data Set DDS effective r0051.0...1, 682
CO/BO: Drive Data Set DDS selected r0837.0...1, 784
CO/BO: ESM status word r3889.0...10, 1042
CO/BO: Extented setpoint channel selection output r29640.0...18, 1170
CO/BO: Faults/alarms trigger word r2129.0...15, 970
CO/BO: Flying restart U/f control status r1204.0...15, 842
CO/BO: Flying restart vector control status
r1205.0...20, 844
r1205.0...21, 843
CO/BO: Free tec_ctrl 0 status word r11049.0...11, 1091
CO/BO: Free tec_ctrl 1 status word r11149.0...11, 1098
CO/BO: Free tec_ctrl 2 status word r11249.0...11, 1105
CO/BO: Gating unit status word 1 r1838.0...15, 913
CO/BO: Hibernation mode status words r2399.0...8, 1021
CO/BO: Limit switch status word r3344.0...5, 1036
CO/BO: Missing enable signal r0046.0...31, 678

CO/BO: Mot_temp status word faults/alarms r5389.0...8, 1052
CO/BO: Multi-pump control bypass command r29545, 1159
CO/BO: Multi-pump control service mode interlock
manually
p29542.0...5, 1158
CO/BO: Multi-pump control status word r29529.0...19, 1155
CO/BO: NAMUR message bit bar r3113.0...15, 1024
CO/BO: Pe energy-saving active/inactive r5613.0...1, 1055
CO/BO: PM330 digital inputs status r4022.0...3, 1049
CO/BO: PM330 digital inputs status inverted r4023.0...3, 1050
CO/BO: PolID diagnostics r1992.0...15, 927
CO/BO: Ramp-function generator status word r1199.0...8, 840
CO/BO: Safely remove memory card status r9401.0...3, 1084
CO/BO: Skip band status word r1099.0, 826
CO/BO: Status word 1 r0052.0...15, 682
CO/BO: Status word 2 r0053.0...11, 683, 684
CO/BO: Status word current controller r1408.0...14, 877
CO/BO: Status word faults/alarms 1 r2139.0...15, 973
CO/BO: Status word faults/alarms 2 r2135.12...15, 972
CO/BO: Status word monitoring 1 r2197.0...13, 986
$\mathrm{CO} / \mathrm{BO}$: Status word monitoring 2 r2198.4...12, 987
CO/BO: Status word monitoring 3 r2199.0...5, 987
CO/BO: Status word sequence control r0899.0...11, 794
CO/BO: Status word speed controller r1407.0...23, 876
CO/BO: Status word, closed-loop control r0056.0...15, 687
CO/BO: Status word: application r29629.0...2, 1169
CO/BO: Supplementary control word r0055.0...15, 685, 686

CO/BO: Technology controller fixed value selection
status word
r2225.0, 993
CO/BO: Technology controller status word r2349.0...13, 1011
CO/BO: Write protection/know-how protection status r7760.0...12, 1056
CO: Absolute actual current smoothed r0027, 671
CO: Absolute current actual value r0068[0...1], 689
CO : Accelerating torque
r1518[0...1], 881
CO: Active power actual value r0082[0...2], 693
CO: Active power actual value smoothed r0032, 673
CO: Actual alarm code
r2132, 971
CO: Actual component number r3132, 1028
CO: Actual DC link voltage r0070, 690
CO: Actual fault code r2131, 971
CO: Actual fault value r3131, 1028
CO: Actual power factor r0087, 694
CO: Actual slip compensation r1337, 870
CO: Actual speed r0063[0...2], 688
CO: Actual speed smoothed
r0021, 670
r1445, 877
CO: Actual speed smoothed signals r2169, 979
CO: ADD 0 output Y r20095, 1122
CO: ADD 1 output Y r20099, 1122
CO: Counter alarm buffer changes r2121, 967
CO: Counter for fault buffer changes r0944, 796
CO: CU analog inputs actual value in percent r0755[0...3], 764
CO : CU analog inputs input voltage/current actual r0752[0...3], 764
CO: Current actual value field-generating r0076, 692

CO: Current actual value torque-generating r0078, 692
CO: Current setpoint field-generating r0075, 691
CO: Current setpoint torque-generating r0077, 692
CO: DC link voltage smoothed r0026, 671
CO: Deragging counter p29605, 1165
CO: Direct-axis voltage setpoint r1732[0...1], 897
CO: DIV 0 quotient r20119[0...2], 1127
CO: DIV 1 quotient r20124[0...2], 1128
CO: Energy display r0039[0...2], 677
CO: Extented setpoint channel setpoint output r29641, 1171
CO: Field weakening controller / flux controller output r1593[0...1], 893
CO: Field weakening controller output r1597, 893
CO: Fieldbus analog outputs p0791[0...2], 774
CO: Fixed speed setpoint 1 p1001[0...n], 806
CO: Fixed speed setpoint 10 p1010[0...n], 808
CO: Fixed speed setpoint 11 p1011[0...n], 808
CO: Fixed speed setpoint 12 p1012[0...n], 808
CO: Fixed speed setpoint 13 p1013[0...n], 809
CO: Fixed speed setpoint 14 p1014[0...n], 809
CO: Fixed speed setpoint 15 p1015[0...n], 809
CO: Fixed speed setpoint 2 p1002[0...n], 806
CO: Fixed speed setpoint 3 p1003[0...n], 806
CO: Fixed speed setpoint 4 p1004[0...n], 806
CO: Fixed speed setpoint 5 p1005[0...n], 807
CO: Fixed speed setpoint 6 p1006[0...n], 807
CO: Fixed speed setpoint 7
p1007[0...n], 807

CO: Fixed speed setpoint 8
p1008[0...n], 807
CO: Fixed speed setpoint 9 p1009[0...n], 808
CO: Fixed speed setpoint effective r1024, 811
CO: Fixed value 1 [\%]
p2900[0...n], 1022
CO: Fixed value 2 [\%]
p2901[0...n], 1022
CO: Fixed value M [Nm]
p2930[0...n], 1023
CO: Fixed values [\%]
r2902[0...14], 1022
CO: Flux actual value
r0084[0...1], 693
CO: Flux setpoint
p1570[0...n], 888, 889
r0083, 693
CO: Free tec_ctrl 0 actual value after limiter r11072, 1094
CO: Free tec_ctrl 0 limit maximum p11091, 1095
CO: Free tec_ctrl 0 limit minimum p11092, 1095
CO: Free tec_ctrl 0 output signal r11094, 1096
CO: Free tec_ctrl 0 setpoint after ramp-function
generator
r11060, 1092
CO: Free tec_ctrl 0 system deviation r11073, 1094
CO: Free tec_ctrl 1 actual value after limiter r11172, 1101
CO: Free tec_ctrl 1 limit maximum p11191, 1102
CO: Free tec_ctrl 1 limit minimum p11192, 1102
CO: Free tec_ctrl 1 output signal r11194, 1103
CO: Free tec_ctrl 1 setpoint after ramp-function
generator
r11160, 1099
CO: Free tec_ctrl 1 system deviation r11173, 1101
CO: Free tec_ctrl 2 actual value after limiter r11272, 1108
CO: Free tec_ctrl 2 limit maximum p11291, 1109
CO: Free tec_ctrl 2 limit minimum p11292, 1109

CO: Free tec_ctrl 2 output signal r11294, 1110
CO: Free tec_ctrl 2 setpoint after ramp-function
generator
r11260, 1106
CO: Free tec_ctrl 2 system deviation r11273, 1108
CO: Hibernation mode output speed actual r2397[0...1], 1020
CO: I_max controller frequency output r1343, 872
CO: LIM 0 output Y
r20231, 1139
CO: LIM 1 output Y r20239, 1141
CO: Lower effective torque limit r1539, 886
CO: Main setpoint effective r1073, 820
CO: Maximum power unit output current r0289, 707
CO: Modulat_depth r0074, 691
CO: Modulator mode actual r1809, 910
CO: Moment of inertia total, scaled r1493, 880
CO: Mot. potentiometer speed setp. in front of ramp-
fct. gen.
r1045, 816
CO: Motor model speed adaptation I comp. r1771, 904
CO: Motor model speed adaptation proportional
component
r1770, 904
CO: Motor temperature r0035, 674
CO: Motor utilization thermal r0034, 673
CO: Motorized potentiometer setpoint after ramp-
function generator
r1050, 816
CO: MUL 0 product Y
r20111, 1125
CO: MUL 1 product Y r20115, 1126
CO: Multi-pump control switch in/out speed p29551, 1160
CO: NSW 0 output Y r20220, 1137
CO: NSW 1 output Y
r20225, 1138

CO: Output current maximum r0067, 689
CO: Output frequency r0066, 689
CO: Output voltage r0072, 691
CO: Output voltage smoothed r0025, 671
CO: Phase current actual value r0069[0...8], 689
CO: Power unit overload 12 t r0036, 674
CO: Power unit temperatures r0037[0...19], 674, 675
CO: Process energy display r0042[0...2], 678
CO: PROFIdrive PZD receive double word r2060[0...10], 945
CO: PROFIdrive PZD receive word r2050[0...11], 942
CO: Pulse frequency r1801[0...1], 908
CO: Quadrature-axis voltage setpoint r1733[0...1], 898
CO: Ramp-down scaling output r29577, 1162
CO: Ramp-function generator acceleration r1149, 839
CO: Ramp-function generator setpoint at the input r1119, 829
CO: Ramp-up scaling output r29576, 1162
CO: Send binector-connector converter status word r2089[0...4], 956
CO: Setpoint after the direction limiting r1114, 829
CO: Speed controller I torque output r1482, 880
CO: Speed controller P-gain effective r1468, 879
CO: Speed controller setpoint sum r1170, 839
CO: Speed controller speed setpoint r1438, 877
CO: Speed controller system deviation r0064, 688
CO: Speed limit in negative direction of rotation p1086[0...n], 824
CO: Speed limit in positive direction of rotation p1083[0...n], 823
CO: Speed limit negative effective r1087, 824

CO: Speed limit positive effective r1084, 824
CO: Speed setpoint after minimum limiting r1112, 828
CO: Speed setpoint after the filter r0062, 688
CO: Speed setpoint before the setpoint filter r0060, 687
CO: Speed setpoint from the IOP in the manual mode r8541, 1072
CO: Stall current limit torque-generating maximum r1548[0...1], 887
CO: SUB 0 difference Y r20103, 1123
CO: SUB 1 difference Y r20107, 1124
CO: Sum of fault and alarm buffer changes r2120, 967
CO: Supplementary setpoint effective r1077, 821
CO: Synchronous reluctance motor flux channel r1568[0...5], 888
CO: Technology controller actual value after filter r2266, 1000
CO: Technology controller actual value scaled r2272, 1001
CO: Technology controller fixed value 1 p2201[0...n], 988
CO: Technology controller fixed value 10 p2210[0...n], 990
CO: Technology controller fixed value 11 p2211[0...n], 991
CO: Technology controller fixed value 12 p2212[0...n], 991
CO: Technology controller fixed value 13 p2213[0...n], 991
CO: Technology controller fixed value 14 p2214[0...n], 991
CO: Technology controller fixed value 15 p2215[0...n], 992
CO: Technology controller fixed value 2 p2202[0...n], 988
CO: Technology controller fixed value 3 p2203[0...n], 989
CO: Technology controller fixed value 4 p2204[0...n], 989
CO: Technology controller fixed value 5 p2205[0...n], 989
CO: Technology controller fixed value 6 p2206[0...n], 989
CO: Technology controller fixed value 7 p2207[0...n], 990

CO: Technology controller fixed value 8 p2208[0...n], 990
CO: Technology controller fixed value 9 p2209[0...n], 990
CO: Technology controller fixed value effective r2224, 993
CO: Technology controller last speed setpoint
(smoothed)
r2344, 1010
CO: Technology controller maximum limiting p2291, 1003
CO: Technology controller minimum limiting p2292, 1003
CO: Technology controller mot. potentiometer
setpoint before RFG
r2245, 995
CO: Technology controller motorized potentiometer
setpoint after RFG
r2250, 996
CO: Technology controller output scaling p2295, 1004
CO: Technology controller output signal r2294, 1004
CO: Technology controller setpoint after filter r2262, 999
CO: Technology controller setpoint after ramp-
function generator r2260, 999
CO: Technology controller system deviation r2273, 1002
CO: Technology controller Tn adaptation output r2322, 1009
CO: Technology controller, Kp adaptation output r2316, 1008
CO: Temperature sensor exciting current output r29706, 1173
CO: Temperature sensor resistance value r29707, 1174
CO: Torque actual value r0080[0...1], 693
CO: Torque limit for speed controller output r1547[0...1], 886
CO: Torque limit lower
p1521[0...n], 882
CO: Torque limit lower scaling p1525[0...n], 883
CO: Torque limit lower without offset r1527, 884
CO: Torque limit upper p1520[0...n], 882
CO : Torque limit upper without offset r1526, 884

CO: Torque limit upper/motoring scaling p1524[0...n], 883
CO: Torque setpoint r0079, 692
CO: Torque setpoint before supplementary torque r1508, 881
CO: Total flux setpoint r1598, 893
CO: Total setpoint effective r1078, 821
CO: U/f control Eco factor actual value r1348, 873
CO: Upper effective torque limit r1538, 886
CO: Vdc controller output r1258, 856
CO: Vdc controller output (U/f) r1298, 864
Comm IF address p2011, 931
Comm IF baud rate p2010, 931
Comm IF error statistics r2019[0...7], 932
Command data set, 381
Commissioning Guidelines, 193
Communication Acyclic, 286
Comparator, 394
Compensation valve lockout time phase U p1828, 912
Compensation valve lockout time phase V p1829, 912, 913
Compensation valve lockout time phase W p1830, 913
Completion of quick commissioning p3900, 1043
Complex block, 398
Component alarm r3121[0...63], 1026
Component fault r3120[0...63], 1026
Compound braking, 583, 584
Compound braking current p3856[0...n], 1038
Compressor, 206, 214
Condensation protection, 442
Condensation protection current p29624[0...n], 1168
Connectors, 661
Control block, 397

Control terminals, 132
Control Unit firmware version r0018, 669
Control word
Control word 3, 277
Control word 1, 275, 348
Control word 3 (STW3), 277
Controlling the motor, 415
Converter
Update, 1312
Converter valve threshold voltage p1825, 912
Cooling, 74
Copy Command Data Set CDS p0809[0...2], 781
Copy Drive Data Set DDS p0819[0...2], 782
Counter-clockwise rotation, 415
CU analog inputs characteristic value $\times 1$ p0757[0...3], 767
CU analog inputs characteristic value $\times 2$ p0759[0...3], 768
CU analog inputs characteristic value y1 p0758[0...3], 767
CU analog inputs characteristic value y2 p0760[0...3], 768
CU analog inputs dead zone p0764[0...3], 769
CU analog inputs simulation mode p0797[0...3], 776
CU analog inputs simulation mode setpoint p0798[0...3], 776
CU analog inputs smoothing time constant p0753[0...3], 764
CU analog inputs type p0756[0...3], 765, 766
CU analog inputs wire breakage monitoring delay time p0762[0...3], 769
CU analog inputs wire breakage monitoring response
threshold p0761[0...3], 768
CU analog outputs activate absolute value generation p0775[0...2], 771
CU analog outputs characteristic value $\times 1$ p0777[0...2], 772
CU analog outputs characteristic value $\times 2$ p0779[0...2], 773
CU analog outputs characteristic value y1 p0778[0...2], 772
CU analog outputs characteristic value y2 p0780[0...2], 773

CU analog outputs output value currently referred r0772[0...2], 770
CU analog outputs output voltage/current actual r0774[0...2], 771
CU analog outputs smoothing time constant p0773[0...2], 770
CU analog outputs type p0776[0...2], 771
CU detection via LED p0124[0...n], 696
CU digital inputs debounce time p0724, 759
CU digital inputs simulation mode p0795, 774
CU digital inputs simulation mode setpoint p0796, 775
CU digital inputs terminal actual value r0721, 757
CU digital outputs status r0747, 762
CU invert digital outputs p0748, 763
CU number of inputs and outputs r0720[0...4], 757
Curr. setpoint torque-gen. smoothing time field
weakening range p1654[0...n], 896
Current actual value field-generating smoothed r0029, 672
Current actual value torque-generating smoothed r0030, 672
Current controller d axis integral time p1722[0...n], 897
Current controller d axis p gain p1720[0...n], 896
Current controller integral-action time p1717[0...n], 896
Current controller P gain p1715[0...n], 896
Current injection ramp time p1601[0...n], 894
Current input, 259
Current limit p0640[0...n], 755
Current limit excitation induction motor p0644[0...n], 756
Current limit maximum torque-generating current r1536[0...1], 885
Current limit minimum torque-generating current r1537[0...1], 886
Current limit torque-generating total r1533, 885

Current setpoint smoothing time p1616[0...n], 895
Current threshold value p2170[0...n], 980
Current threshold value reached delay time p2171[0...n], 980
Cyclic communication, 284

D

Data backup, 229
Data transfer, 234
Data transfer start p0804, 777, 779
Data transfer: device memory as source/target p0803, 777
Data transfer: memory card as source/target p0802, 776
Date, 499
Daylight saving time, 500
DC braking, 277, 580, 581, 582
DC braking braking current p1232[0...n], 850
DC braking configuration p1231[0...n], 850
DC braking time p1233[0...n], 851
DC link voltage, 598
DC link voltage comparison delay time p2173[0...n], 980
DC link voltage overvoltage threshold r0297, 710
DC link voltage threshold value p2172[0...n], 980
DC link voltage undervoltage threshold r0296, 710
DC quantity controller configuration p3855[0...n], 1038
DC quantity controller integral time p3858[0...n], 1039
DC quantity controller P gain p3857[0...n], 1039
DC-link overvoltage, 598
Dead time compensation current level p1832, 913
Deadband, 261
Debypass delay time p1263, 857
Delta connection, 127
Delta connection (Δ), 195, 197
Deragging, 446

Deragging count time p29606, 1166
Deragging forward speed p29592[0...n], 1164
Deragging forward time p29596[0...n], 1165
Deragging maximum count p29607[0...n], 1166
Deragging mode p29590[0...n], 1163
Deragging ramp down time p29595[0...n], 1164
Deragging ramp up time p29594[0...n], 1164
Deragging reverse speed p29593[0...n], 1164
Deragging reverse time p29597[0...n], 1165
Device identification r0964[0...6], 798
DI selection for ON/OFF2 p29650[0...n], 1171
Diagnostic attribute alarm r3123[0...63], 1027
Diagnostic attribute fault r3122[0...63], 1026
Digital input, 132, 415
Digital output, 132 Function, 257, 259, 262
Dimension drawings, 79, 82
DIP switch
Analog input, 259
Direct data exchange, 292
Direction of rotation, 464
Direction reversal, 415
Display values smoothing time constant p0045, 678
DIV, 394
DIV 0 run sequence p20122, 1127
DIV 0 runtime group p20121, 1127
DIV 1 run sequence p20127, 1129
DIV 1 runtime group p20126, 1128
Divider, 394
Drive commissioning parameter filter p0010, 667
Drive control, 245
Drive Data Set, 656
Drive Data Set, DDS, 656

Drive filter type motor side
p0230, 703, 704
Drive operating display
r0002, 666
Drive unit line supply voltage
p0210, 702
Drive unit reset
p0972, 800
Drive unit status word
r3974, 1047
DS 47, 287
DTC (Digital Time Clock), 501
Dual ramp, 472

E

Efficiency optimization p1580[0...n], 891
Efficiency optimization 2 maximum flux limit value p3316[0...n], 1030
Efficiency optimization 2 minimum flux limit value p3315[0...n], 1030
Efficiency optimization 2 optimum flux r3313, 1030
EMC, 93
EMERGENCY STOP, 388
EMERGENCY SWITCHING OFF, 388
EMF maximum r1614, 895
EN 60204-1, 388
EN 61800-5-2, 386
Enable PID autotuning p2350, 1011
Energy consumption saved r0041, 677
Energy-saving display, 647
Equivalent wire resistance p29704, 1173
ESM, 628
ESM number of activations/faults r3887[0...1], 1042
ESM reset number of activations/faults p3888, 1042
ESM setpoint source p3881, 1040
ESM setpoint source alternative p3882, 1041
Essential service mode, 628
Ethernet/IP ODVA speed scaling p8982, 1082
Ethernet/IP ODVA STOP mode p8981, 1082

Ethernet/IP ODVA torque scaling
p8983, 1082
Ethernet/IP profile
p8980, 1081
EXCLUSIVE OR block, 392
Extending the telegram, 285
External fault 3 switch-on delay p3110, 1024

F

Factory assignment, 132
Factory settings Restoring the, 219
Fan, 206, 214
Fan run-on time p0295, 709
Fans, 589, 1288
Fault, 499, 1179, 1188
Acknowledge, 1188, 1189
Fault buffer, 499, 1188
Fault case, 1190
Fault cases counter p0952, 797
Fault code, 1188 r0945[0...63], 796
Fault code list r0946[0...65534], 796
Fault history, 1189
Fault number r0947[0...63], 797
Fault time, 499, 1188
received, 1188
removed, 1188
Fault time received in days r2130[0...63], 971
Fault time received in milliseconds r0948[0...63], 797
Fault time removed in days r2136[0...63], 972
Fault time removed in milliseconds r2109[0...63], 964
Fault value, 1188 r0949[0...63], 797
Fault value for float values r2133[0...63], 971
Faults and alarms Overview, 1191
Faults/alarms trigger selection p2128[0...15], 970
FCC, 507
FCC (Flux Current Control), 509

FD 3050, 475
Field bus int USS PZD no. p2022, 933
Field bus interface address p2021, 933
Field bus interface baud rate p2020, 932
Field bus interface error statistics r2029[0...7], 937
Field bus interface protocol selection p2030, 938
Field bus interface USS PKW count p2023, 934
Field weakening, 127
Field weakening characteristic scaling p1586[0...n], 892
Field weakening controller additional setpoint p1595[0...n], 893
Field weakening controller integral-action time p1596[0...n], 893
Field weakening operation flux setpoint smoothing
time p1584[0...n], 892
Fieldbus interface BACnet COV increment p2026[0...75], 935
Fieldbus interface BACnet device name p7610[0...78], 1055
Fieldbus interface BACnet language selection p2027, 937
Fieldbus interface BACnet settings p2025[0...4], 935
Fieldbus interface MODBUS parity p2031, 939
Fieldbus interface monitoring time p2040, 941
Fieldbus interface times p2024[0...2], 934
Fieldbus interfaces, 128, 182
Field-generating current setpoint (steady-state) r1623[0...1], 895
Field-generating current setpoint total r1624, 895
Filter time constant Vdc correction p1806[0...n], 910
Firmware Update, 1312
Firmware check status r9926, 1087
Firmware downgrade, 1309
Firmware file incorrect
r9925[0...99], 1087

Fixed speed setpoint number actual r1197, 839
Fixed speed setpoint select mode p1016, 809
Flip-flop, 396
Flow control, 478
Flow meter calculated flow r29633, 1170
Flow meter pump flow p29632[0...4], 1170
Flow meter pump power p29631[0...4], 1170
Fluid flow machine power point 1 p3320[0...n], 1031
Fluid flow machine power point 2 p3322[0...n], 1031
Fluid flow machine power point 3 p3324[0...n], 1032
Fluid flow machine power point 4 p3326[0...n], 1033
Fluid flow machine power point 5 p3328[0...n], 1033
Fluid flow machine speed point 1 p3321[0...n], 1031
Fluid flow machine speed point 2 p3323[0...n], 1032
Fluid flow machine speed point 3 p3325[0...n], 1032
Fluid flow machine speed point 4 p3327[0...n], 1033
Fluid flow machine speed point 5 p3329[0...n], 1033
Flux control configuration p1401[0...n], 874
Flux controller integral time p1592[0...n], 892
Flux controller P gain p1590[0...n], 892
Flux current control, 507
Flux model value display r2969[0...6], 1023
Flux reduction factor p1581[0...n], 891
Flux reduction flux build-up time constant p1579[0...n], 890
Flux reduction flux decrease time constant p1578[0...n], 890
Flux reduction torque factor transition value r1566[0...n], 887
Flux setpoint smoothing time p1582[0...n], 891
Flying restart, 621

Flying restart configuration p1270[0...n], 859
Flying restart maximum frequency for the inhibited direction
p1271[0...n], 859, 860
Flying restart operating mode p1200[0...n], 840
Flying restart search current p1202[0...n], 841
Flying restart search rate factor p1203[0...n], 842
Formatting, 66
Forming activation/duration p3380, 1036
Forming remaining time r3381, 1037
Forming status word r3382, 1037
Forming the DC link capacitors, 198
FP 2221, 265
FP 2244, 267
FP 2251, 268
FP 2252, 269
FP 2256, 266
FP 2261, 271
FP 2270, 270
FP 2272, 423
FP 2273, 424
FP 2401, 311
FP 2410, 312
FP 2420, 313
FP 2440, 314
FP 2441, 315
FP 2442, 316
FP 2446, 317
FP 2450, 318
FP 2451, 319
FP 2452, 320
FP 2456, 321
FP 2468, 322
FP 2470, 323
FP 2472, 324
FP 2473, 325
FP 2610, 252
FP 3001, 459
FP 3010, 460
FP 3011, 461
FP 3020, 462
FP 3030, 463
FP 3040, 474
FP 3070, 476
FP 3080, 477

FP 6020, 533
FP 6030, 534
FP 6031, 535
FP 6040, 536
FP 6050, 537
FP 6220, 539, 600
FP 6300, 516
FP 6301, 517
FP 6310, 518
FP 6320, 519, 601
FP 6490, 540
FP 6491, 541
FP 6630, 542
FP 6640, 543
FP 6700, 544
FP 6710, 545
FP 6714, 546
FP 6721, 547
FP 6722, 548
FP 6723, 549
FP 6724, 550
FP 6730, 551
FP 6731, 552
FP 6790, 553
FP 6791, 554
FP 6792, 555
FP 6797, 556
FP 6799, 557
FP 6820, 558
FP 6821, 559
FP 6822, 560
FP 6824, 561
FP 6826, 562
FP 6827, 563
FP 6828, 564
FP 6832, 565
FP 6833, 566
FP 6834, 567
FP 6835, 568
FP 6836, 569
FP 6837, 570
FP 6838, 572
FP 6839, 574
FP 6841, 575
FP 6842, 576
FP 6843, 577
FP 6844, 578
FP 6850, 520
FP 6851, 521
FP 6853, 523
FP 6854, 524, 603
FP 6855, 525

FP 6856, 526
FP 7017, 585
FP 7030, 502
FP 7033, 631
FP 7035, 654
FP 7036, 503
FP 7038, 655
FP 7200, 400
FP 7210, 401
FP 7212, 402
FP 7214, 403
FP 7216, 404
FP 7220, 405
FP 7222, 406
FP 7225, 407
FP 7230, 408
FP 7232, 409
FP 7233, 410
FP 7240, 411
FP 7250, 412
FP 7260, 413
FP 7270, 414
FP 7950, 488
FP 7951, 489
FP 7954, 490
FP 7958, 491
FP 7959, 492
FP 8005, 615
FP 8010, 616
FP 8011, 617
FP 8012, 618
FP 8013, 619
FP 8014, 620
FP 8017, 604
FP 8018, 605
FP 9310, 373
FP 9342, 374
FP 9352, 375
FP 9360, 376
FP 9370, 377
FP 9372, 378
Free function blocks, 390
Free tec_ctrl 0 actual value inversion p11071, 1094
Free tec_ctrl 0 actual value lower limit p11068, 1093
Free tec_ctrl 0 actual value smoothing time constant p11065, 1093
Free tec_ctrl 0 actual value upper limit p11067, 1093
Free tec_ctrl 0 differentiation time constant p11074, 1094

Free tec_ctrl 0 integral time p11085, 1095
Free tec_ctrl 0 limit ramp-up/ramp-down time p11093, 1095
Free tec_ctrl 0 proportional gain p11080, 1094
Free tec_ctrl 0 sampling time p11028, 1091
Free tec_ctrl 0 setpoint ramp-down time p11058, 1092
Free tec_ctrl 0 setpoint ramp-up time p11057, 1092
Free tec_ctrl 0 system deviation inversion p11063, 1092
Free tec_ctrl 0 unit reference quantity p11027, 1091
Free tec_ctrl 0 unit selection p11026, 1090
Free tec_ctrl 1 actual value inversion p11171, 1101
Free tec_ctrl 1 actual value lower limit p11168, 1100
Free tec_ctrl 1 actual value smoothing time constant p11165, 1100
Free tec_ctrl 1 actual value upper limit p11167, 1100
Free tec_ctrl 1 differentiation time constant p11174, 1101
Free tec_ctrl 1 integral time p11185, 1102
Free tec_ctrl 1 limit ramp-up/ramp-down time p11193, 1102
Free tec_ctrl 1 proportional gain p11180, 1101
Free tec_ctrl 1 sampling time p11128, 1098
Free tec_ctrl 1 setpoint ramp-down time p11158, 1099
Free tec_ctrl 1 setpoint ramp-up time p11157, 1099
Free tec_ctrl 1 system deviation inversion p11163, 1099
Free tec_ctrl 1 unit reference quantity p11127, 1098
Free tec_ctrl 1 unit selection p11126, 1097
Free tec_ctrl 2 actual value inversion p11271, 1108
Free tec_ctrl 2 actual value lower limit p11268, 1107
Free tec_ctrl 2 actual value smoothing time constant p11265, 1107

Free tec_ctrl 2 actual value upper limit p11267, 1107
Free tec_ctrl 2 differentiation time constant p11274, 1108
Free tec_ctrl 2 integral time p11285, 1109
Free tec_ctrl 2 limit ramp-up/ramp-down time p11293, 1109
Free tec_ctrl 2 proportional gain p11280, 1108
Free tec_ctrl 2 sampling time p11228, 1105
Free tec_ctrl 2 setpoint ramp-down time p11258, 1106
Free tec_ctrl 2 setpoint ramp-up time p11257, 1106
Free tec_ctrl 2 system deviation inversion p11263, 1106
Free tec_ctrl 2 unit reference quantity p11227, 1105
Free tec_ctrl 2 unit selection p11226, 1104
Frost protection, 440
Frost protection speed p29623[0...n], 1168
Functions BOP-2, 221

G

Gain resonance damping for encoderless closed-loop control p1740[0...n], 898
Generator operation, 579
Getting Started, 1359
Ground fault monitoring thresholds p0287[0...1], 707

H

Hardware sampling times still assignable r7903, 1062
Hibernation mode boost speed p2395[0...n], 1020
Hibernation mode boost time period p2394[0...n], 1019
Hibernation mode delay time p2391[0...n], 1018
Hibernation mode max. shutdown time p2396[0...n], 1020

Hibernation mode operating type p2398, 1021
Hibernation mode restart speed relative w/o techn controller
p2393[0...n], 1019
Hibernation mode restart value with technology
controller
p2392, 1019
Hotline, 1361
Hysteresis speed 1 p2142[0...n], 974
Hysteresis speed 2
p2140[0...n], 973
Hysteresis speed 3
p2150[0...n], 976
Hysteresis speed 4 p2164[0...n], 978
Hysteresis speed n_act > n_max p2162[0...n], 977

I

I_max controller, 588
I_max controller voltage output r1344, 872
I_max frequency controller integral time p1341[0...n], 871
I_max frequency controller proportional gain p1340[0...n], 871
I_max voltage controller integral time p1346[0...n], 872
I_max voltage controller proportional gain p1345[0...n], 872
i2t monitoring, 591
12 t motor model thermal time constant p0611[0...n], 747
Identification and Maintenance 1 p8806[0...53], 1075
Identification and Maintenance 2 p8807[0...15], 1075
Identification and Maintenance 3 p8808[0...53], 1076
Identification and Maintenance 4 p8809[0...53], 1076
Identification and maintenance 4 configuration p8805, 1074
Identification final display r3925[0...n], 1043
Identification stator resistance after restart p0621[0...n], 750, 751
Identified effective valve lockout time r1926[0...2], 923

Identified nominal stator inductance r1915[0...2], 922
Identified rotor resistance r1927[0...2], 923
Identified rotor time constant r1913[0...2], 922
Identified stator resistance r1912[0...2], 921
Identified threshold voltage r1925[0...2], 922
Identified total leakage inductance r1914[0...2], 922
IEC/NEMA Standards p0100, 695
IND (page index), 281, 354, 355
Industry Mall, 1360
Inhibit automatic reference value calculation p0573, 743
Installation, 78
Interfaces, 128
Internal power unit resistance r0238, 705
Interpolator clock cycle for speed setpoints p1079, 821
Invert binector-connector converter status word p2088[0...4], 954, 955
Inverter, 392
Inverter connector-binector converter binector output p2098[0...1], 960
IO Extension Module status r0719, 756
IOP speed unit p8552, 1073
Isd controller combination current time component p1731[0...n], 897
Isd controller integral component shutdown threshold p1730[0...n], 897
Isq current controller precontrol scaling p1703[0...n], 896

J
Jog 1 speed setpoint p1058[0...n], 818
Jog 2 speed setpoint p1059[0...n], 819
JOG function, 379

K

Keep-running operation enable p29630, 1169
KHP configuration p7765, 1058
KHP Control Unit reference serial number p7759[0...19], 1056
KHP Control Unit serial number r7758[0...19], 1056
KHP memory card reference serial number p7769[0...20], 1060
KHP OEM exception list p7764[0...n], 1058
KHP OEM exception list number of indices for p7764 p7763, 1058
KHP password confirmation p7768[0...29], 1060
KHP password input p7766[0...29], 1059
KHP password new p7767[0...29], 1059
Kinetic buffering, 626
Know-how protection, 66, 240
KTY84, 592

L

LED
BF, 1180, 1181, 1182
LNK, 1180
RDY, 1180
LED (light emitting diode), 1179
Level control, 478
LIM, 397
LIM 0 lower limit value LL p20230, 1139
LIM 0 run sequence p20235, 1140
LIM 0 runtime group p20234, 1140
LIM 0 upper limit value LU p20229, 1139
LIM 1 lower limit value LL p20238, 1141
LIM 1 run sequence p20243, 1142
LIM 1 runtime group p20242, 1141

LIM 1 upper limit value LU p20237, 1141
Limit monitor, 398
Limiter, 397
Line contactor, 387
Line contactor monitoring time p0861, 792
Line dip, 626
Linear characteristic, 509, 513
List of existing parameters 1 r0980[0...299], 801
List of existing parameters 10 r0989[0...299], 802
List of existing parameters 2 r0981[0...299], 801
List of faults and alarms, 1191
List of modified parameters 1 r0990[0...99], 802
List of modified parameters 10 r0999[0...99], 803
List of modified parameters 2 r0991[0...99], 802
LNK (PROFINET Link), 1180
Load monitoring configuration p2193[0...n], 985
Load monitoring delay time p2192[0...n], 985
Load monitoring response p2181[0...n], 982
Load monitoring speed deviation p3231[0...n], 1029
Load monitoring speed threshold value 1 p2182[0...n], 982
Load monitoring speed threshold value 2 p2183[0...n], 983
Load monitoring speed threshold value 3 p2184[0...n], 983
Load monitoring stall monitoring torque threshold p2168[0...n], 979
Load monitoring stall monitoring upper threshold p2165[0...n], 978
Load monitoring torque threshold 1 lower p2186[0...n], 984
Load monitoring torque threshold 1 upper p2185[0...n], 983
Load monitoring torque threshold 2 lower p2188[0...n], 984
Load monitoring torque threshold 2 upper p2187[0...n], 984
Load monitoring torque threshold 3 lower p2190[0...n], 985

Load monitoring torque threshold 3 upper p2189[0...n], 984
Load monitoring torque threshold no load p2191[0...n], 985
Logic block, 391, 392
LVM, 398
LVM 0 hyst HY p20269, 1142
LVM 0 interval average value M p20267, 1142
LVM 0 interval limit L p20268, 1142
LVM 0 run sequence p20274, 1143
LVM 0 runtime group p20273, 1143
LVM 1 hyst HY p20278, 1144
LVM 1 interval average value M p20276, 1144
LVM 1 interval limit L p20277, 1144
LVM 1 run sequence p20283, 1145
LVM 1 runtime group p20282, 1145

M

Macro Binector Input (BI) r8571[0...39], 1074
Macro Connector Inputs (CI) for speed setpoints r8572[0...39], 1074
Macro Connector Inputs (CI) for torque setpoints r8573[0...39], 1074
Macro drive object r8570[0...39], 1073
Macro drive unit p0015, 667, 668
Macro execution actual r8585, 1074
Magnetization rate time scaling p1567[0...n], 888
Manual mode, 382
Master control control word effective r2032, 939
Master control mode selection p3985, 1047
Maximum cable length
PROFIBUS, 189
PROFINET, 186
Maximum current controller, 588

Maximum modulation depth p1803[0...n], 909 r0073, 691
Maximum motor current p0323[0...n], 719
Maximum motor speed p0322[0...n], 718
Maximum operating time power unit fan p0252, 706
Maximum output voltage r0071, 690
Maximum speed, 201, 464 p1082[0...n], 822, 823
Maximum speed scaling p1081, 822
Memory block, 396
Memory card, 66
Memory card serial number r7843[0...20], 1061
Memory card/device memory firmware version r7844[0...2], 1062
Menu
BOP-2, 221
Operator panel, 221
MFP, 395
MFP 0 pulse duration in ms p20139, 1129
MFP 0 run sequence p20142, 1130
MFP 0 runtime group p20141, 1129
MFP 1 pulse duration in ms p20144, 1130
MFP 1 run sequence p20147, 1131
MFP 1 runtime group p20146, 1130
MFP 2 pulse duration in ms p20355, 1151
MFP 2 run sequence p20358, 1152
MFP 2 runtime group p20357, 1151
Minimum speed, 201, 464, 467 p1080[0...n], 821
Modular Safety System, 176
Modulation depth smoothed r0028, 672
Modulator configuration p1810, 910
Modulator mode p1802[0...n], 908, 909

Monitoring configuration p2149[0...n], 975
MOP (motorized potentiometer), 454
Mot_temp_mod 1 (I2t) fault threshold p0615[0...n], 749
Mot_temp_mod $1 / 2 /$ sensor threshold and
temperature value p0605[0...n], 746
Mot_temp_mod $1 / 3$ alarm threshold p5390[0...n], 1052
Mot_temp_mod $1 / 3$ ambient temperature p0613[0...n], 748
Mot_temp_mod $1 / 3$ boost factor at standstill p5350[0...n], 1051
Mot_temp_mod 1/3 fault threshold p5391[0...n], 1053
Mot_temp_mod 2/sensor alarm threshold p0604[0...n], 745
Mot_temp_mod activation p0612[0...n], 747
Mot_temp_mod ambient temperature r0630[0...n], 754
Mot_temp_mod rotor temperature r0633[0...n], 755
Mot_temp_mod stator iron temperature r0631[0...n], 754
Mot_temp_mod stator winding temperature r0632[0...n], 755
MotID (motor data identification), 209, 211, 215
Motor ambient temperature during commissioning p0625[0...n], 752
Motor blocked delay time p2177[0...n], 981
Motor blocked speed threshold p2175[0...n], 980
Motor changeover motor number p0826[0...n], 783
Motor code, 197
Motor code number selection p0301[0...n], 713
Motor configuration p0133[0...n], 696
Motor control, 246
Motor cooling type p0335[0...n], 721
Motor data, 195 Identify, 209, 211, 215, 529 Measure, 209, 211, 215
Motor data identification and rotating measurement p1900, 914, 915

Motor data identification and speed controller
optimization
r0047, 681
Motor data identification control word
p1909[0...n], 918, 919
r3927[0...n], 1044
Motor data identification modulated voltage
generation
r3929[0...n], 1045
Motor data identification selection p1910, 919, 920
Motor de-excitation time p0347[0...n], 725
Motor excitation build-up time p0346[0...n], 725
Motor excitation time for Rs_ident after switching on again
p0622[0...n], 752
Motor holding brake, 387
Motor leakage inductance total r0377[0...n], 732
Motor magnetizing inductance p0360[0...n], 728
Motor magnetizing inductance transformed r0382[0...n], 732
Motor model adaptation configuration p1780[0...n], 905, 906
Motor model changeover delay time closed/open-loop control p1758[0...n], 903
Motor model changeover delay time closed-loop control p1769[0...n], 904
Motor model changeover delay time open/closed-loop control p1759[0...n], 903
Motor model changeover speed encoderless operation p1755[0...n], 902
Motor model changeover speed hysteresis
encoderless operation p1756, 902
Motor model configuration p1750[0...n], 899, 900
Motor model error signal stall detection r1746, 898
Motor model error threshold stall detection p1745[0...n], 898
Motor model feedback scaling p1784[0...n], 906
Motor model increase changeover speed encoderless operation
p1749[0...n], 898

Motor model Lh adaptation corrective value r1787[0...n], 907
Motor model Lh adaptation integral time p1786[0...n], 907
Motor model Lh adaptation Kp p1785[0...n], 906
Motor model offset voltage compensation alpha p1774[0...n], 904
Motor model offset voltage compensation beta p1775[0...n], 904
Motor model status r1751, 901
Motor model status signals r1776[0...6], 905
Motor model without encoder speed adaptation Kp p1764[0...n], 903
Motor model without encoder speed adaptation Tn p1767[0...n], 903
Motor moment of inertia p0341[0...n], 723
Motor operating hours maintenance interval p0651[0...n], 756
Motor overtemperature response p0610[0...n], 746
Motor overtemperature rotor p0628[0...n], 753
Motor overtemperature, stator core p0626[0...n], 753
Motor overtemperature, stator winding p0627[0...n], 753
Motor pole pair number p0314[0...n], 717
Motor pole pair number, actual (or calculated) r0313[0...n], 717
Motor pole position identification current p0329[0...n], 720
Motor pole position identification current 1st phase p0325[0...n], 719
Motor rated magnetizing current/short-circuit current p0320[0...n], 718
Motor rated stator resistance r0373[0...n], 731
Motor reactor in series number p0235, 705
Motor reluctance torque constant p0328[0...n], 720
Motor rotor leakage inductance p0358[0...n], 727
Motor rotor resistance cold
p0354[0...n], 726
r0374[0...n], 732

Motor rotor time constant / damping time constant d axis
r0384[0...n], 732
Motor saturation characteristic flux 1 p0362[0...n], 728
Motor saturation characteristic flux 2 p0363[0...n], 728
Motor saturation characteristic flux 3 p0364[0...n], 729
Motor saturation characteristic flux 4 p0365[0...n], 729
Motor saturation characteristic I_mag 1 p0366[0...n], 729
Motor saturation characteristic I_mag 2 p0367[0...n], 730
Motor saturation characteristic I_mag 3 p0368[0...n], 730
Motor saturation characteristic I_mag 4 p0369[0...n], 731
Motor stall current p0318[0...n], 718
Motor stalled delay time p2178[0...n], 981
Motor standard, 383
Motor stator inductance d axis p0357[0...n], 727
Motor stator leakage inductance p0356[0...n], 727
Motor stator leakage time constant r0386[0...n], 733
Motor stator resistance cold p0350[0...n], 725 r0370[0...n], 731
Motor temperature sensor, 132
Motor temperature sensor type p0601[0...n], 745
Motor torque constant p0316[0...n], 717
Motor type selection p0300[0...n], 710, 711
Motor weight (for the thermal motor model) p0344[0...n], 724
Motorized potentiometer, 454
Motorized potentiometer configuration p1030[0...n], 812
Motorized potentiometer maximum speed p1037[0...n], 814
Motorized potentiometer minimum speed p1038[0...n], 814
Motorized potentiometer ramp-down time p1048[0...n], 816

Motorized potentiometer ramp-up time p1047[0...n], 816
Motorized potentiometer starting value p1040[0...n], 814
MUL, 393
MUL 0 run sequence p20113, 1125
MUL 0 runtime group p20112, 1125
MUL 1 run sequence p20117, 1126
MUL 1 runtime group p20116, 1126
Multiplier, 393
Multi-pump control, 425
Pump switch-in, 428
Pump switch-out, 430
Pump switchover, 435
Service mode, 437
Stop mode, 432
Multi-pump control absolute operating hours p29530[0...5], 1155
Multi-pump control continuous operating hours p29547[0...5], 1159
Multi-pump control deviation threshold p29546, 1159
Multi-pump control disconnection lockout time p29537, 1157
Multi-pump control enable p29520, 1152
Multi-pump control holding time for boost p29552[0...3], 1160
Multi-pump control index of motors under repair r29544[0...5], 1159
Multi-pump control interlocking time p29527, 1154
Multi-pump control maximum time for continuous
operation p29531, 1156
Multi-pump control motor configuration p29521, 1152
Multi-pump control motor selection mode p29522, 1153
Multi-pump control overcontrol threshold p29526, 1154
Multi-pump control pump switchover enable p29539, 1157
Multi-pump control service mode enable p29540, 1157
Multi-pump control switch-in delay p29524, 1153

Multi-pump control switch-in threshold p29523, 1153
Multi-pump control switch-off sequence p29533, 1156
Multi-pump control switch-out delay p29525, 1154
Multi-pump control switch-out speed offset p29528, 1154
Multi-pump control Switch-over lockout time p29534, 1156
Multi-pump control switch-over speed threshold p29532, 1156
Multi-pump control time for motor stopping p29550, 1160
Multi-pump control variable-speed motor r29538, 1157

N

NCM, 394
NCM 0 run sequence p20317, 1146
NCM 0 runtime group p20316, 1146
NCM 1 run sequence p20323, 1148
NCM 1 runtime group p20322, 1147
Nominal motor starting time r0345[0...n], 724
NOT, 392
NOT 0 run sequence p20081, 1119
NOT 0 runtime group p20080, 1119
NOT 1 run sequence p20085, 1120
NOT 1 runtime group p20084, 1120
NOT 2 run sequence p20089, 1121
NOT 2 runtime group p20088, 1121
NSW, 397
NSW 0 run sequence p20222, 1138
NSW 0 runtime group p20221, 1137
NSW 1 run sequence p20227, 1139
NSW 1 runtime group p20226, 1138

Number of Command Data Sets (CDS) p0170, 696
Number of deragging cycles p29598[0...n], 1165
Number of Drive Data Sets (DDS) p0180, 697
Number of motors connected in parallel p0306[0...n], 714
Number of parameters r3986, 1048
Number of parameters to be saved r9409, 1086
Numeric changeover switch, 397
NVRAM data backup/import/delete p7775, 1060

0

OFF delay, 396
Off delay n_act = n_set p2166[0...n], 979
OFF1 command, 415
OFF3 final rounding-off time p1137[0...n], 834
OFF3 initial rounding-off time p1136[0...n], 834
OFF3 ramp-down time, 471 p1135[0...n], 833
ON command, 415
ON delay, 395
On delay comparison value reached p2156[0...n], 977
Open-loop/closed-loop control operating mode p1300[0...n], 865
Operating hours counter power unit fan p0251[0...n], 706
Operating hours counter power unit fan inside the converter p0254[0...n], 706
Operating instruction, 25
Operating Instructions, 1359
Operation, 249
Operator panel
BOP-2, 221
Menu, 221
Optimizing the closed-loop speed controller, 529
Optimum motor load angle p0327[0...n], 719
Options for electrical cabinets p3931, 1046
OR, 391

OR 0 run sequence p20049, 1114
OR 0 runtime group p20048, 1114
OR 1 run sequence p20053, 1115
OR 1 runtime group p20052, 1115
OR 2 run sequence p20057, 1116
OR 2 runtime group p20056, 1116
OR block, 391
Output frequency smoothed r0024, 670
Output load detection delay time p2180[0...n], 982
Output load identification current limit p2179[0...n], 981
Output reactor, 504
Overload, 588
Overvoltage, 598
Overvoltage protection, 181

P

Page index, 355
Parabolic characteristic, 509, 513
Parameter channel, 279, 351 IND, 281, 354, 355
Parameter index, 281, 354, 355
Parameter number, 225, 281, 354
Parameter value, 226, 287
Parameter write inhibit status r3996[0...1], 1049
Parameters
Overview, 247, 663
Partial load operation, 1347
PDE, 395
PDE 0 pulse delay time in ms p20159, 1131
PDE 0 run sequence p20162, 1132
PDE 0 runtime group p20161, 1131
PDE 1 pulse delay time in ms p20164, 1132
PDE 1 run sequence p20167, 1133
PDE 1 runtime group p20166, 1132

PDE 2 pulse delay time in ms p20335, 1149
PDE 2 run sequence p20338, 1150
PDE 2 runtime group p20337, 1149
PDF, 396
PDF 0 pulse extension time in ms p20169, 1133
PDF 0 run sequence p20172, 1134
PDF 0 runtime group p20171, 1133
PDF 1 pulse extension time in ms p20174, 1134
PDF 1 run sequence p20177, 1135
PDF 1 runtime group p20176, 1134
PDF 2 pulse extension time in ms p20345, 1150
PDF 2 run sequence p20348, 1151
PDF 2 runtime group p20347, 1150
Pe energy-saving mode ID r5600, 1053
Pe energy-saving mode pause time minimal p5602[0...1], 1053
Pe energy-saving mode time of maximum stay p5606[0...1], 1054
Pe energy-saving properties general p5611, 1054
Pe energy-saving properties mode-dependent p5612[0...1], 1054
Phase failure signal motor monitoring time p3235, 1030
PID autotuning monitoring time p2354, 1012
PID autotuning offset p2355, 1012
PID controller, 478
Pipe filling, 448
Pipe filling mode p29611[0...n], 1167
Pipe filling monitoring time p29615[0...n], 1167
Pipe filling speed p29612[0...n], 1167
Pipe filling threshold
p29614[0...n], 1167

Pipe filling time
p29613[0...n], 1167
PKW (parameter, ID value), 273
PM330 digital inputs simulation mode p4095, 1050
PM330 digital inputs simulation mode setpoint p4096, 1051
PM330 digital outputs status r4047, 1050
PN DAP ID r8939, 1081
PN Default Gateway p8922[0...3], 1078
PN Default Gateway actual r8932[0...3], 1080
PN device ID r8909, 1077
PN DHCP Mode p8924, 1079
PN DHCP Mode actual r8934, 1080
PN IP address
p8921[0...3], 1078
PN IP address actual r8931[0...3], 1080
PN MAC address r8935[0...5], 1081
PN Name of Station p8920[0...239], 1078
PN Name of Station actual r8930[0...239], 1080
PN Subnet Mask p8923[0...3], 1079
PN Subnet Mask actual r8933[0...3], 1080
Pole position, 586
Pole position identification, 587
PolID circle center point
p1998[0...n], 928
PolID technique
p1980[0...n], 927
Power cable length maximum r0231[0...1], 704
Power factor smoothed r0038, 676
Power failure, 623
Power limit motoring p1530[0...n], 885
Power limit regenerative p1531[0...n], 885
Power Module serial number r7841[0...15], 1061

Power unit alarm with 12 t overload p0294, 709
Power unit application p0205, 699, 700
Power unit code number p0201[0...n], 698
Power unit code number actual r0200[0...n], 698
Power unit configuration p0212, 702
Power unit EEPROM characteristics r3930[0...4], 1046
Power unit hardware properties r0204[0...n], 699
Power unit line phases monitoring tolerance time p1822, 911
Power unit main contactor holding time after OFF1 p0867, 793
Power unit maximum current r0209[0...4], 701
Power unit monitoring time p0857, 791
Power unit motor reactor p0233, 704
Power unit overload response p0290, 707, 708
Power unit sine-wave filter capacitance p0234, 705
Power unit temperature alarm threshold p0292[0...1], 709
Power unit thyristor rectifier wait time p0868, 793
Pressure control, 478
Procedure, 25
PROFIBUS, 190
PROFIBUS additional monitoring time p2047, 942
PROFIBUS address p0918, 795
PROFIBUS baud rate r0963, 798
PROFIBUS diagnostics peer-to-peer data transfer
addresses r2077[0...15], 950
PROFIBUS diagnostics standard r2055[0...2], 945
PROFIBUS Ident Number p2042, 941
PROFIBUS status r2054, 945
PROFIdrive diagnostics bus address PZD receive r2074[0...11], 948

PROFIdrive diagnostics PZD send double word r2063[0...15], 947
PROFIdrive diagnostics send PZD word r2053[0...16], 944
PROFIdrive diagnostics telegram offset PZD receive r2075[0...11], 948
PROFIdrive diagnostics telegram offset PZD send r2076[0...16], 949
PROFIdrive fault delay p2044, 942
PROFIdrive profile number r0965, 799
PROFIdrive PZD telegram selection p0922, 795
PROFIdrive PZD telegram selection extended p2079, 950
PROFIdrive reference speed reference frequency p60000, 1174
PROFIdrive STWIZSW interface mode p2038, 940
PROFIdrive STW1.10 $=0$ mode p2037, 940
PROFlenergy, 650
PROFINET identification data r8859[0...7], 1077
PROFINET IP of Station r61001[0...3], 1175
PROFINET Name of Station r61000[0...239], 1174
PROFINET read diagnostics channel r8858[0...39], 1077
PROFINET state r8854, 1076
Protection functions, 246
PS file fault code parameter not transferred r9408[0...19], 1085
PS file parameter index parameter not transferred r9407[0...19], 1085
PS file parameter number parameter not transferred r9406[0...19], 1085
Pt100, 592
Pt1000, 592
PTC, 592
Pulse cancellation, 275, 348
Pulse cancellation delay time p1228, 849
Pulse enable, 275, 348
Pulse frequency, 590, 591
Pulse frequency setpoint p1800[0...n], 907
Pulse frequency wobbulation amplitude p1811[0...n], 911

Pulse generator, 395
Pump, 206, 214
PZD (process data), 273
PZD maximum interconnected
r2067[0...1], 948

Q

Questions, 1361

R

Ramp-down scaling 1 p29573[0...n], 1161
Ramp-down scaling 2 p29575[0...n], 1162
Ramp-down time, 471
Ramp-function gen. tolerance for ramp-up and rampdown active

$$
\text { p1148[0...n], } 839
$$

Ramp-function generator, 464
Ramp-function generator final rounding-off time p1131[0...n], 832
Ramp-function generator initial rounding-off time p1130[0...n], 832
Ramp-function generator minimum ramp-down time p1127[0...n], 831
Ramp-function generator minimum ramp-up time p1123[0...n], 831
Ramp-function generator ramp-down time p1121[0...n], 830
Ramp-function generator ramp-up time p1120[0...n], 829, 830
Ramp-function generator rounding-off type p1134[0...n], 833
Ramp-function generator tracking intensity. p1145[0...n], 838
Ramp-up scaling 1 p29570[0...n], 1161
Ramp-up scaling 2 p29572[0...n], 1161
Ramp-up time, 471
Rated motor current p0305[0...n], 713
Rated motor current identified r0343[0...n], 724
Rated motor efficiency p0309[0...n], 715
Rated motor EMF
r0337[0...n], 722

Rated motor frequency p0310[0...n], 715, 716
Rated motor power
p0307[0...n], 714
r0394[0...n], 733
Rated motor power factor
p0308[0...n], 715
r0332[0...n], 721
Rated motor rotor resistance r0376[0...n], 732
Rated motor slip r0330[0...n], 720
Rated motor speed p0311[0...n], 716
Rated motor torque r0333[0...n], 721
Rated motor voltage p0304[0...n], 713
Rated power unit current r0207[0...4], 701
Rated power unit line supply voltage r0208, 701
Rated power unit power r0206[0...4], 700
Ratio between the total and motor moment of inertia p0342[0...n], 724
RDY (Ready), 1180
Ready, 249
Ready for switching on, 249
Real-time clock, 499
Real-Time Clock, 499
Reference current p2002, 929
Reference power r2004, 930
Reference speed reference frequency p2000, 928
Reference temperature p2006, 931
Reference torque p2003, 930
Reference voltage p2001, 929
Replace
Control Unit, 1312
Gear unit, 1312
Hardware, 1312
Motor, 1312
Power Module, 1312
Reset
Parameter, 219

Reset drive parameters p0970, 799
Reset energy consumption display p0040, 677
Reverse the output phase sequence p1820[0...n], 911
Reversing, 464
Rotating measurement configuration
p1959[0...n], 923, 924
r3928[0...n], 1045
Rotating measurement selection p1960, 924
Rounding, 471
Rounding OFF3, 471
RS flip-flop, 396
Rs identification stator resistance after switch on again r0623, 752
RS485 interface, 188
RSR, 396
RSR 0 run sequence p20192, 1136
RSR 0 runtime group p20191, 1135
RSR 1 run sequence p20197, 1137
RSR 1 runtime group p20196, 1136
RSR 2 run sequence p20328, 1149
RSR 2 runtime group p20327, 1148
RTC (Real-Time Clock), 499, 501
RTC actual daylight saving time difference r8403, 1064
RTC date p8401[0...2], 1063
RTC daylight saving time setting p8402[0...8], 1064
RTC DTC activation p8409, 1065
RTC DTC1 off time p8412[0...1], 1067
RTC DTC1 switch-on time p8411[0...1], 1066
RTC DTC1 weekday of activation p8410[0...6], 1066
RTC DTC2 off time p8422[0...1], 1068
RTC DTC2 switch-on time p8421[0...1], 1068
RTC DTC2 weekday of activation p8420[0...6], 1068

RTC DTC3 off time p8432[0...1], 1070
RTC DTC3 switch-on time p8431[0...1], 1070
RTC DTC3 weekday of activation p8430[0...6], 1069
RTC time
p8400[0...2], 1063
RTC weekday
r8404, 1065
Run sequence, 391
Runtime group, 391
Runtime group sampling time
r20001[0...9], 1110

S

Safely remove memory card p9400, 1083
Safety function, 245
Sampling times
r7901[0...81], 1062
Saturation characteristic speed to determine p1961, 925
Saturation limit for flux setpoint
p1382[0...n], 873
Save parameters
p0971, 800
Save system logbook EEPROM
p9932, 1088
Scaling
Analog input, 260
Analog output, 263
Scaling specific parameters referred to p0514[0] p0515[0...19], 739
Scaling specific parameters referred to p0514[1] p0516[0...19], 739
Scaling specific parameters referred to p0514[2] p0517[0...19], 739
Scaling specific parameters referred to p0514[3] p0518[0...19], 739
Scaling specific parameters referred to p0514[4] p0519[0...19], 740
Scaling specific parameters referred to p0514[5] p0520[0...19], 740
Scaling specific parameters referred to p0514[6] p0521[0...19], 740
Scaling specific parameters referred to p0514[7] p0522[0...19], 741
Scaling specific parameters referred to p0514[8] p0523[0...19], 741

Scaling specific parameters referred to p0514[9] p0524[0...19], 741
Scaling-specific reference values p0514[0...9], 738
SD (memory card), 66
Formatting, 66
Select debug monitor interface p2039, 940
Selecting the system of units p0505, 738
Sequence control, 249
Sequence control configuration p0869, 793
Series commissioning, 220
Service parameter p3950, 1047
Setpoint channel speed limit p1063[0...n], 819
Setpoint processing, 246, 464
Setpoint source, 246 Selecting, 452, 453, 454
Settling time, 206, 214
Short-circuit monitoring, 592, 593
Signal interconnection, 660
Signal states, 1180
Skip frequency band, 464
Skip speed 1 p1091[0...n], 825
Skip speed 2
p1092[0...n], 825
Skip speed 3 p1093[0...n], 825
Skip speed 4 p1094[0...n], 825
Skip speed bandwidth p1101[0...n], 826
Slip compensation, 507
Slip compensation limit value p1336[0...n], 870
Slip compensation scaling p1335[0...n], 869, 870
Slip frequency r0065, 688
Software error internal supplementary diagnostics r9999[0...99], 1089
Speed change with BOP-2, 221
Limiting, 464
Speed actual value filter time constant p2153[0...n], 976
Speed at the start of DC braking p1234[0...n], 851

Speed control, 527
Speed control configuration p1400[0...n], 873, 874
Speed controller adaptation speed lower p1464[0...n], 878
Speed controller adaptation speed upper p1465[0...n], 879
Speed controller encoderless operation integral time p1472[0...n], 880
Speed controller encoderless operation P-gain p1470[0...n], 879
Speed controller integral time effective r1469, 879
Speed controller Kp adaptation speed upper scaling p1461[0...n], 878
Speed controller speed actual value smoothing time (sensorless) p1452[0...n], 878
Speed controller Tn adaptation speed upper scaling p1463[0...n], 878
Speed setpoint filter 1 time constant p1416[0...n], 877
Speed setpoint selection p1000[0...n], 803, 804
Speed setpoint smoothed r0020, 669
Speed start of hibernation mode p2390[0...n], 1018
Speed threshold 1 p2141[0...n], 974
Speed threshold 2 p2155[0...n], 977
Speed threshold 3 p2161[0...n], 977
Speed threshold 4 p2163[0...n], 978
Speed_ctrl_opt dynamic factor p1967, 926
Speed_ctrI_opt dynamic factor actual r1968, 926
Speed_ctrl_opt moment of inertia determined r1969, 926
Speed_ctrl_opt saturation characteristic rotor flux
maximum p1974, 927
Speed_ctrl_opt speed p1965, 925
Speed_ctrl_opt vibration test vibration frequency
determined r1970[0...1], 927
Square-law characteristic, 509, 513

Stall limit scaling
p1553[0...n], 887
Standards
EN 61800-3, 32
Star connection (Y), 127
Starting behavior
Optimization, 514
Starting behavior"; "Optimization, 510
Starting current, 512
Starting current (voltage boost) permanent p1310[0...n], 866
Starting current (voltage boost) when accelerating p1311[0...n], 867
Starting current (voltage boost) when starting p1312[0...n], 868
State overview, 249
Stator resistance reference p0629[0...n], 754
Status word
Status word 1, 275, 276, 349
Status word 3, 278
STO (Safe Torque Off), 387
select, 387
Stop Category 0, 388
Storage medium, 229
STW1 (control word 1), 275, 348
SUB, 393
SUB 0 run sequence
p20105, 1124
SUB 0 runtime group p20104, 1123
SUB 1 run sequence p20109, 1125
SUB 1 runtime group p20108, 1124
Subindex, 281, 354, 355
Subtractor, 393
Support, 1361
Switch off
Motor, 249
OFF1 command, 249
OFF2 command, 249
OFF3 command, 249
Switch on
Motor, 249
ON command, 249
Switching on inhibited, 249, 275, 348
Switch-on delay n_act = n_set p2167[0...n], 979
Symbols, 25
System logbook activation
p9930[0...8], 1088

System logbook module selection p9931[0...180], 1088
System runtime, 1183
System runtime relative p0969, 799
System runtime total r2114[0...1], 965
System utilization measured r9975[0...7], 1089

T

Techn. controller threshold value f. I comp. hold for skip speed p2339, 1009
Technological application (Dynamic Drive Control) p0502, 736, 737
Technological application (Standard Drive Control) p0501, 736
Technological unit reference quantity p0596, 744
Technological unit selection p0595, 743
Technology application p0500, 734, 735
Technology controller, 277, 385, 478
Technology controller actual value filter time constant p2265, 1000
Technology controller actual value function p2270, 1001
Technology controller actual value inversion (sensor
type)
p2271, 1001
Technology controller configuration p2252, 997
Technology controller differentiation time constant p2274, 1002
Technology controller fault response p2345, 1010
Technology controller fixed value selection method p2216[0...n], 992
Technology controller gain actual value p2269, 1000
Technology controller integral time p2285, 1002
Technology controller Kp adaptation lower starting
point p2313, 1007
Technology controller Kp adaptation lower value p2311, 1006

Technology controller Kp adaptation upper starting point p2314, 1007
Technology controller Kp adaptation upper value p2312, 1007
Technology controller lower limit actual value p2268, 1000
Technology controller mode p2251, 996
Technology controller motorized potentiometer configuration p2230[0...n], 993
Technology controller motorized potentiometer maximum value p2237[0...n], 995
Technology controller motorized potentiometer minimum value p2238[0...n], 995
Technology controller motorized potentiometer rampdown time

$$
\text { p2248[0...n], } 996
$$

Technology controller motorized potentiometer ramp-
up time

$$
\text { p2247[0...n], } 996
$$

Technology controller motorized potentiometer
setpoint memory r2231, 994
Technology controller motorized potentiometer
starting value p2240[0...n], 995
Technology controller number actual r2229, 993
Technology controller output signal starting value p2302, 1005
Technology controller proportional gain p2280, 1002
Technology controller ramp-down time p2258, 998
Technology controller ramp-up time p2257, 998
Technology controller ramp-up/ramp-down time p2293, 1004
Technology controller setpoint 1 scaling p2255, 998
Technology controller setpoint 2 scaling p2256, 998
Technology controller setpoint filter time constant p2261, 999
Technology controller system deviation inversion p2306, 1006

Technology controller Tn adaptation lower starting point p2320, 1009
Technology controller Tn adaptation lower value p2319, 1008
Technology controller Tn adaptation upper starting
point p2321, 1009
Technology controller Tn adaptation upper value p2318, 1008
Technology controller type p2263, 999
Technology controller upper limit actual value p2267, 1000
Temperature calculation, 595
Temperature monitoring, 591, 595
Temperature sensor, 132
Temperature sensor exiting current set p29708, 1174
Temperature sensor type p29700[0...n], 1172
Temperature switch, 592
Terminal block, 253
Terminal strip, 181 Factory setting, 132
Test pulse evaluation configuration p1901, 916, 917
Test pulse evaluation status r1902, 917
Thermal adaptation, stator and rotor resistance p0620[0...n], 750
Thermal resistance adaptation reduction factor p0614[0...n], 749
Three-wire control, 415
Threshold for zero speed detection p1226[0...n], 848
Threshold speed 2 p29571[0...n], 1161
Threshold speed 3 p29574[0...n], 1162
Time, 499
Time control, 501
Time slice, 391
Time switch, 501
Timer block, 395, 396
Torque accuracy, 206, 214
Torque actual value filter time constant p3233[0...n], 1029
Torque setpoint static (sensorless) p1610[0...n], 894
Two-wire control, 415

U

U/f characteristic, 507
U/f control configuration p1302[0...n], 866
U/f control FCC starting frequency p1333[0...n], 869
U/f control slip compensation starting frequency p1334[0...n], 869
U/f mode resonance damping filter time constant p1339[0...n], 871
U/f mode resonance damping gain p1338[0...n], 870
U/f mode resonance damping maximum frequency p1349[0...n], 873
Unit system, 383
Units changeover adapted parameters r9451[0...29], 1086
Update
Firmware, 1312
Upgrading the firmware, 1307
Upload Download, 234
USB functionality p8999, 1083
USB memory access p8991, 1083
Use for the intended purpose, 26
User interfaces, 128
USS (universal serial interface), 351
UTC (Universal Time Coordinated), 499

V

Vdc controller configuration p1281[0...n], 861
Vdc controller configuration (U/f) p1280[0...n], 860
Vdc controller configuration (vector control) p1240[0...n], 852
Vdc controller integral time p1251[0...n], 854
Vdc controller integral time (U/f) p1291[0...n], 863
Vdc controller proportional gain p1250[0...n], 854
Vdc controller proportional gain (U/f) p1290[0...n], 863
Vdc controller rate time p1252[0...n], 855

Vdc controller rate time (U/f) p1292[0...n], 863
Vdc_max controller automatic detection ON signal level (U/f)
p1294, 863
Vdc_max controller automatic ON level detection p1254, 855
Vdc_max controller dynamic factor p1243[0...n], 853
Vdc_max controller dynamic factor (U/f) p1283[0...n], 862
Vdc_max controller speed threshold p1249[0...n], 854
Vdc_max controller switch-in level r1242, 852
Vdc_max controller switch-in level (U/f) r1282, 861
Vdc_max controller time threshold (U/f)
p1284[0...n], 862
Vdc_min controller, 626
Vdc_min controller dynamic factor (kinetic buffering) p1247[0...n], 853
Vdc_min controller dynamic factor (kinetic buffering)
(U/f) p1287[0...n], 863
Vdc_min controller response (kinetic buffering) p1256[0...n], 855
Vdc_min controller response (kinetic buffering) (U/f) p1296[0...n], 864
Vdc_min controller speed threshold p1257[0...n], 856
Vdc_min controller speed threshold (U/f) p1297[0...n], 864
Vdc_min controller switch-in level (kinetic buffering) p1245[0...n], 853 r1246, 853
Vdc_min controller switch-in level (kinetic buffering)
(U/f)
p1285[0...n], 862 r1286, 862
Vdc_min controller time threshold p1255[0...n], 855
Vdc_min controller time threshold (U/f) p1295[0...n], 864
Vector control, 529 Sensorless, 527
Voltage boost, 507, 510, 512, 514
Voltage boost total r1315, 868
Voltage generation alternating base voltage amplitude r3926[0...n], 1044
Voltage input, 259

Voltage limiting p1331[0...n], 868
Voltage measurement configuring p0247, 705
Voltage reserve dynamic p1574[0...n], 889
Voltage target value limit p1575[0...n], 890

W

Wire-break monitoring, 261, 592, 593
Write protection, 237
p7761, 1057
Write protection multi-master fieldbus system access
behavior
p7762, 1057

X

XOR, 392
XOR 0 run sequence p20065, 1117
XOR 0 runtime group p20064, 1117
XOR 1 run sequence p20069, 1118
XOR 1 runtime group p20068, 1117
XOR 2 run sequence p20073, 1119
XOR 2 runtime group
p20072, 1118

Z

Zero speed detection monitoring time p1227, 849
Ziegler Nichols, 487
ZSW 1 (status word 1)", 276
ZSW1 (status word 1), 275
ZWS3 (status word 3), 278
ZWST1 (status word 1), 349

Further information

SINAMICS converters:
www.siemens.com/sinamics
Safety Integrated
www.siemens.com/safety-integrated
PROFINET
www.siemens.com/profinet

Siemens AG
Digital Industries
Motion Control
Postfach 3180
91050 ERLANGEN
Germany

[^0]: (2) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)

[^1]: E] Energy saving (Page 632)

[^2]: © WARNING
 The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 $=0$) or the acceleration precontrol (p1496 = 0).
 The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).

[^3]: Note
 Bits $0 \ldots 2$ only have an influence for sensorless vector control, bit 2 is pre-assigned depending on p0500.
 For bit 2 = 1:
 The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.

 This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.
 If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
 When the bit is set, the selection of bits 0 and 1 is ignored.
 For bit $2=0$:
 Bit 3 is also automatically deactivated.
 For bit $6=1$:
 The following applies for sensorless vector control of induction motors:
 For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into openloop controlled operation.
 For bit $7=1$:
 The following applies for sensorless vector control of induction motors:
 If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
 The effective time condition for changing over into open-controlled operation is obtained from the minimum value of p1758 and 0.5 * r0384.
 Is recommended that bit 7 is activated for applications that demand a high torque at low frequencies, and at the same time require low speed gradients..
 Adequate parameterization of the current setpoint must be ensured (p1610, p1611).
 For bit $8=1$: no influence on the functionality of bits $0,1,2$
 The following applies for sensorless vector control of induction motors:
 Changeover into open-loop speed controlled operation is no longer dependent on the speed setpoint (except for OFF3), but instead is essentially dependent on time condition p1758. As a consequence, a drive can be started or reversed in closed-loop speed controlled operation with setpoints from an external control system, if these briefly lie in the openloop speed control range.

[^4]: Note
 Zero is displayed if the boost or starting speed is not active.

[^5]: * For systems according to UL: 500 V ... 600 V
 --- not applicable

[^6]: --- not applicable

[^7]: --- not applicable

[^8]: (3) EMC installation guideline (http://support.automation.siemens.com/WW/view/en/ 60612658)

